
Assignment 1
The Untyped λ-Calculus

15-814: Types and Programming Languages
Jan Hoffmann & C. B. Aberlé

Due Tuesday, September 10, 2024
75 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope https://www.gradescope.com/courses/838981. Please use the attached template
to typeset your assignment and make sure to include your full name and Andrew ID. For the
written problems, you may also submit handwritten answers that have been scanned and are easily
legible.

Please carefully read the policies on collaboration and credit on the course web pages at
https://www.cs.cmu.edu/~janh/courses/814/24/.

You should upload the following files to Gradescope:

• hw01.pdf with your written solutions to the questions.

• hw01.lam with the code, where the solutions to the problems are clearly marked and
auxiliary code (either from lecture or your own) is included so it passes the LAMBDA checker.

In the following, tasks marked with Lambda involves programming in LAMBDA. They should
be completed in the aforementioned *.lam file. Please do not present the solution on paper.

1 Calculating in the λ-Calculus

Task 1 (Lambda 5 pts) Implement the following boolean functions.

1. The “and” operator such that

and true true =β true
and true false =β false
and false true =β false
nor false false =β false

2. The “or” operator such that
or true true =β true
or true false =β true
or false true =β true
or false false =β false

ASSIGNMENT 1 DUE TUESDAY, SEPTEMBER 10, 2024
75 PTS

https://www.gradescope.com/courses/838981
https://www.cs.cmu.edu/~janh/courses/814/24/policies/
https://www.cs.cmu.edu/~janh/courses/814/24/


The Untyped λ-Calculus HW1.2

3. The “nor” operator such that

nor true true =β false
nor true false =β false
nor false true =β false
nor false false =β true

Task 2 (35 pts) A prominent subset of the computable functions on the natural numbers are the
primitive recursive functions. They include functions like addition, multiplication, predecessor, and
(iterated) exponentiation. More generally, they can be characterized as the set of total computable
functions that does not “grow incredibly fast” (like Ackermann’s function).

The set of primitive recursive functions Pr is inductively generated by the constant functions,
successor, projection, composition, and primitive recursion. For a natural number n ∈ N, we write
Nn → N for the set of n-ary functions whose domain is a n-tuple of natural numbers and domain is
the natural numbers. Define Pr as the smallest subset of Nn → N such that the following holds:

1. The function constn,k : Nn → N defined by (x1, . . . , xn) 7→ k is in Pr for all n, k ∈ N.

2. The function succ : N → N defined by n 7→ n+ 1 is in Pr.

3. The function projn,k : Nn → N defined by (x1, . . . , xn) 7→ xk is in Pr for all n > 0 and
1 ≤ k ≤ n.

4. Given f : Nn → N ∈ Pr and a sequence of k-ary functions g1, . . . , gn : Nk → N, each of which
is in Pr, the function comp(f, g1, · · · , gn) : Nk → N defined by x 7→ f(g1(x), . . . , gn(x)) is in
Pr.

5. Given f : Nn → N ∈ Pr and g : Nn+2 → N ∈ Pr, let rec(f, g) : Nn+1 → N be the unique
function satisfying the following:

rec(f, g)(0, x) = f(x)

rec(f, g)(n+ 1, x) = g(n+ 1, rec(f, g)(n, x), x)

Then rec(f, g) is in Pr.12

Consider the following representation of natural numbers in the lambda calculus:

0 = λs. λz. z
n+ 1 = λs. λz. s (n s z)

We say that a function f : Nn → N is realized by a lambda calculus expression f when

((((f x1) x2) · · · ) xn) =β f(x1, x2, · · · , xn)
1Note that x ∈ Nn is a tuple/vector, so notational convention dictates that f(x) is f(x1, · · · , xn) and rec(f, g)(0, x) is

rec(f, g)(0, x1, · · · , xn). Feel free to expand or compress vector notation in your proof to make it easier to understand.
2To simplify the encoding, we use the recursion scheme of weak primitive recursion. It has been shown that it is

equivalent to the scheme of primitive recursion in an article by Fischer, Fischer, and Beigel.

ASSIGNMENT 1 DUE TUESDAY, SEPTEMBER 10, 2024
75 PTS

https://dl.acm.org/doi/pdf/10.1145/74074.74089


The Untyped λ-Calculus HW1.3

for all natural numbers x1, x2, . . . , xn. In the above f is also called the realizer, and when a function
f has a realizer, we say that f is realizable. Prove that any f ∈ Pr is realizable.

Hint. Your proof should proceed by induction on the construction of a given function f ∈ Pr.
The cases for the constant functions and projections are given as examples.

Case: f is constn,k for some n, k. Define constn,k ≜ λy1, . . . , yn. k. Let x1, . . . , xn ∈ N. Compute:

(((constn,k x1) · · · ) xn) = ((((λy1, . . . , yn. k) x1) · · · ) xn)
=β k

= constn,k(x1, · · · , xn)

Case: f is projn,k for some n, k such that n > 0 and 1 ≤ k ≤ n. Define projn,k ≜ λy1, . . . , λyn. yk.
Observe that this expression is well-scoped since 1 ≤ k ≤ n. Let x1, . . . , xn ∈ N. Compute:

(((projn,k x1) · · · ) xn) = ((((λy1, . . . , yn. yk) x1) · · · ) xn)
=β xk

= projn,k(x1, · · · , xn)

Note. You may assume that β-equivalence is a congruence for the lambda calculus, that is, you
can use the following two lemmas without proof:

1. If e =β e′ then (λx. e) =β (λx. e′).

2. If e1 =β e′1 and e2 =β e′2 then (e1 e2) =β (e′1 e
′
2).

Now fill in the remaining cases for the induction, given below:

Case: f is succ...
Hint. To show that a function f is realizable, you should construct a λ-term f and then argue

that f is a realizer for f .

Case: f is comp(h, g1, · · · , gn) for some primitive recursive functions h : Nn → N and g1, . . . , gn :
Nk → N...

Hint. Make use of the induction hypothesis, by which you may assume that h, g1, . . . , gn are all
realizable.

Case: f is rec(h, g) for some primitive recursive functions h : Nn → N and g : Nn+2 → N...
Hint. There are (at least!) two valid ways to go about constructing a λ-term that realizes rec(h, g),

both of which we sketch for you:

1. Use the Y-combinator to define rec(h, g) recursively. In this case, you may freely use the
combinator pred defined in the lectures, and assume that it realizes the predecessor function.
You may also wish to make use of the if0 combinator you define in Task 4 below.

ASSIGNMENT 1 DUE TUESDAY, SEPTEMBER 10, 2024
75 PTS



The Untyped λ-Calculus HW1.4

2. Let aux(h, g) : Nn+1 → N2 be the function given by

aux(h, g)(m,x1, . . . , xn) = (k, rec(h, g)(m,x1, . . . , xn))

Show that there is a λ-term corresponding to aux(h, g), and then define rec(h, g) as proj2,2 ◦
aux(h, g). In this case, you may need the following helper functions for pairs:

• pair = λx.λy.λp. p x y

• fst = λx.λy.x

• snd = λx.λy.y

In both cases, you will need to argue by induction on m ∈ N that for all x ∈ Nn your realizer f has
the property that f m x =β rec(h, g)(m,x).

Task 3 (0pts) The unary representation of natural numbers requires tedious and error-prone count-
ing to check whether your functions (such as the Lucas function in the exercise below) behave
correctly on some inputs with large answers. Fortunately, you can exploit that the LAMBDA

implementation counts the number or reduction steps for you and prints it in decimal form!
Given the representation of natural numbers in nat.lam, the number of reductions steps used

when normalizing n succ zero is 3n+ 2. You may find this useful for reading a normalized numeral.
For instance, the second line in the following code should produce 8 upon execution:

norm n = lucas zero
norm _ = n succ zero

Task 4 (Lambda 20 pts) Implement the following functions. You may use all the functions in
nat.lam as helper functions.

(i) if0 (definition by cases) satisfying the specification

if0 0 x y =β x

if0 k + 1 x y =β y

(ii) even satisfying the specification

even 2k =β true

even 2k + 1 =β false

(iii) half satisfying the specification
half 2k =β k

half 2k + 1 =β k

Task 5 (Lambda 15 pts) The Lucas function (a variant on the Fibonacci function) is defined as
follows:

L 0 = 2
L 1 = 1
L (n+ 2) = L n+ L (n+ 1)

Implement a function lucas that realizes L. You may use the functions from nat.lam as helper
functions, as well as those from Task 4. Test your implementation on inputs 0, 1, 9, and 11,
expecting results 2, 1, 76, and 199. Include these tests in your code submission hw01.lam.

ASSIGNMENT 1 DUE TUESDAY, SEPTEMBER 10, 2024
75 PTS

http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/02-primrec/nat.lam
http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/02-primrec/nat.lam
http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/02-primrec/nat.lam

	Calculating in the -Calculus

