Assignment 3
Canonicity for System T

15-814: Types and Programming Languages
Jan Hoffmann & C.B. Aberlé

Due Tuesday, September 24, 2024
75 pts

In this assignment, you are given a proof of a key property of System T — Canonicity — which
makes use of the fundamental technique of logical relations. Some of the sub-proofs of key lemmas
& inductive cases contained in this proof have been omitted, and you are tasked with filling them
in. The proof has been written as a gentle introduction to the main ideas of logical relations; read
the proof carefully to familiarize yourself with these ideas, and then write out the missing steps.
For your convenience, these missing pieces are listed as tasks at the end of this handout.

1 A Primer on Logical Relations

A desirable property of a programming language such as System T is that every closed program in
that language should compute to a well-defined value of the corresponding type. Given a type T,
the property that every closed expression e : 7 evaluates to a value (i.e. canonical form) of type 7
is known as canonicity for the type 7. If a given term e : 7 has this property, we say that e satisfies
canonicity. Here, we will consider the problem of proving the following:

Theorem 1 (Canonicity for nat) For all closed programs e : nat in System T, there exists n € N such
that e | 7.

As we have already seen in lecture, a naive attempt at proving the related property of normalization
by induction on typing derivations for System T fails for the case of function application, and
this same difficulty arises when proving Canonicity. What is needed is some systematic way of
strengthening the induction hypothesis so as to force this case to go through as well. For this
purpose, we now introduce a central concept of PL Theory: logical relations.

N.B. In this assignment, we work with the call-by-name dynamics of T as given in the lecture
notes. This simplifies the proof slightly but the technique also applies to the call-by-value dynamics.

Recall the following definitions.

Numerals For n € N, 7 is defined as the n-fold composition of s applied to z.

Evaluation Relation We write e |} v if e —* v and v val.
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2 Logical Relations — Gluing Syntax to Semantics
Consider the application rule T, for System T

I'tei:o—T1 I'bey:o
I'Fei(er) : 7

Suppose we are attempting to argue by induction on derivations that a closed expression e; (e2) :
nat satisfies canonicity, for some closed programs e; : nat — nat and e : nat. As we have seen,
it is not enough for both e; and e; to satisfy canonicity on their own; however, if e; additionally
had the property that e;(¢’) satisfied canonicity for any expression ¢’ : nat satisfying canonicity,
the result would follow immediately. What is needed, then, is to somehow relativize the induction
hypothesis to the types occurring in a derivation so as to allow for this stronger hypothesis to occur
in such a proof.

Note that whether or not a given term e : nat satisfies canonicity can instead be expressed as a
relation between e and some natural number n, namely e | 7. Upon reflection, it is clear also that
the strengthened induction hypothesis given above for a term e : nat — nat can also be expressed
as a relation between e and some mathematical object — this time a function f : N — N, with the
relation being as follows:

e for any closed expression €’ : nat and n € N such that e || 7, we have e(¢’) | f(n).

These relations effectively allow us to simulate the dynamics of (syntactic) expressions by linking
(or gluing) them to corresponding (semantic) mathematical objects, and derive key properties of the
former from the latter.

To make this construction precise, we first define, for each System T type 7, a corresponding set
|7| of mathematical objects, by induction on the structure of 7:

¢ |nat| =N
® |0 — 7] is the set of functions from |o| to |7|.

We then define, for each type 7, a corresponding relation |-, C {(e,v) | e : 7 and v € |7|}, again
by induction on 7:

¢ clhpatn <= eln
o clbprr f <= Ve :0,veE|o|(e ko v = e(€) I f(v)).

When e I, v for e : 7 and v € |7|, we say that e realizes — or is a realizer for — v (c.f. the definition of
realizers for the A-calculus).

A key lemma regarding It-; as defined above, which one generally expects to hold for logical
relations of this sort, is the following:

Lemma 2 (Head Expansion) Ife: 7and e : 7 withv € |7| such that e — ¢’ and €' -, v, then e |-, v.
Proof: See Task 1 at end of handout. O

N.B. You may use the Head Expansion lemma freely in all of your subsequent proofs.
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3 The Fundamental Theorem

The canonicity of nat would straightforwardly follow if it were the case that, for every closed
expression e : 7 there exists some |e| € |7| such that e I |e|. This property is almost, but not quite,
what is commonly called the Fundamental Theorem of the Logical Relation (FTLR). As stated, this
version of the fundamental theorem is still not amenable to a proof by induction on derivations,
since it applies only to closed terms, and the presence in System T of rules such as i

Nx:oke:7

I'Flam{z.e}:0 =7

requires us to consider open terms as well. However, there is an easy fix for this, which is to simply
treat open terms as functions on closed terms. For this purpose, we extend the definitions of |7]|
and |-, above to apply to contexts I as follows:

e ForI'=u21:7,...,2p : Ty, define |I'| = {(v1,...,v) | v1 € |71, ..., vn € |Tn|}
e ForT'=a21:7,...,2p: Ty withey; : 71, ..., ep:pand vy € |11, ..., vy € |7|, define
(e1,...,en) lFp (v1,...,vy) < el v1and ... and e, IF;, v,
For notational simplicity, givenI" = z1 : 7,..., 2, : 7, we write v : ' to mean v = (ey, ..., ey)
such thate; : 7, ..., e, : 7. Then giveny = (ey,...,e,) : ['and I' - e : 7, write 7(e) for the result
of substituting each ¢; for x; ine, i.e. [e1/x1, ..., en/xy](€).

We can now state (and prove) the proper Fundamental Theorem of Logical Relations.
Theorem 3 (FTLR) 1. forall T +- e : 7, there exists a function |e| : |I'| — |7

2. such that for all v : I and v, € |I'| with ~y IFr vy, we have 7(e) I+ |e|(vy)
Proof: We proceed by induction on the derivationof I' - e : 7.
Case: T, — we have

1. Define |z| : |T'| — |7| by

|| (w1, .y U, v) =0
for all (uy,...,un,) € |TV].
2. Then given ', e : T,z : 7 with vy € I, v € |7| such that
7/76 ”_1"’,36:7- Uty Ve,

this in particular means that

vie(x) = elrve = |z|(vy,ve,)
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Case: T, — we have

I'Fz:nat
1. Define |z| : |I'| = Nby |z|(v) = 0forall v € |I.
2. By construction, for all v : I with v,, € |I'| such that v Fr v, we have

¥(z) = 2zl 0 = [z[(vy)

Case: T, — we have
I'Fe:nat

I'F s(e) : nat

By induction hypothesis, we have |e| : |I'| = N such that ¥(e) IFpnat |e[(vy) forally : T"and v, € ||
such that v IFr v,.

1. Define |s(e)| : |T'| = Nby [s(e)|(v) = 1 + |e|(v)
2. Then for all v : I and v, € |I'| such that «y -1 v,, we have

Y(s(e)) = s(3(e)) Fnas 1+ lef(vy) = [s(e)l(vy)

Case: T,.. — we have

I'+e:nat I'keg:7 I'x:nat,y:7Fe:7

'k rec{eg;z.y.e1}(e) : 7

By induction hypothesis we have functions |e| : |[I'| = N, |eg| : [I'| = |7], |e1] : [T'| x N x |7| — |7]
such that

7(e) lFnat |e](vy) and  F(eo) k7 |eol(vy) and v, €, e Ik |e1|(vy, Ver, Ver)

forall v :T', ¢ :nat, ¢ : 7 withv, € [T|, vo €N, ver € |7| such that vy IFr vy and €’ IFpa¢ v and
e’ ”_7— Ve!! .
Define an auxiliary function ¢’ : N x |I'| — |7| as follows:

9'(0,v) = leo|(v)
Jd(n+1,v) = |e|(v,n+1,¢(n,v))

Then
1. Define |rec{eg;z.y.e1}(e)| : |T'| = |7| by
|[rec{eo; z.y.e1}(e)l(v) = ¢'(le](v), v)
2. Then for all y : I with v, € |I'| such that ~ IFr v, we have
Y(rec{eo;z.y.e1}(e)) = rec{y(en); z.yy(e1)}(7(e))

By induction on |e|(vy), we will show that rec{y(eo); z.yA(e1)}(F(e)) I+ ¢'(le](vy), vy)
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(a) When |e|(v,) = 0 we have that §(e) —* 0, and therefore

rec{¥(eo); z.y-A(e1)}(A(e)) =" Fleo) I+ leol(vy) = (0, |7])

and so the result follows by head expansion.

(b) If le|(vy) = 1 + n for some n such that rec{y(eq); z.y.7(e1)} () I+ ¢'(n,v,) it follows
that
rec{Aleo); 2yA(en) }A(e)
—* rec{ilen): zyAlen)} (1
= ([n+1/z]rec{7(eo); z.
- \e1|(v7,n+1,g’(n,v7))
= ¢(n+1,v,)

+n
yA(e1)}(m)[/y](F(er)))

so the result follows by Head Expansion.

Case: T, — See Task 2 at end of handout.
Case: T}, — See Task 3 at end of handout.

This completes the proof of the fundamental theorem. O
Corollary 4 (Canonicity for nat) For e : nat there exists n € N such that e |} 7.
Proof: See Task 4 at end of handout. O
Task 1 (20pts) Prove Lemma 2 (Head Expansion).
Task 2 (25 pts) Complete the proof for Case: T4y, in the proof of Theorem 3 (FTLR).
Task 3 (25 pts) Complete the proof for Case: T,), in the proof of Theorem 3 (FTLR).
Task 4 (5 pts) Prove Corollary 4 (Canonicity for nat), using FTLR.
Hint: You may use the following proposition whenever you need it on this homework.

Proposition 1 (Compatibility) Multistep transition is compatible with evaluation contexts (i.e. rules
Eap1/ ES/ Erecl)-

This means that the following rules are admissible for multistep transition.

er*e o er—*e B e—*e I
Ty« 4, apl TN ok N s % ’ recl
e(er) —* e (e1) s(e) —=* s(¢) rec(e, ep, z.y.e1) —* rec(e, ey, z.y.€1)
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