
Assignment 5
Recursive programs and recursive types

15-814: Types and Programming Languages
Jan Hoffmann & C.B. Aberlé

Due Friday, October 11, 2024
75 points

1 Least fixed-points

In lecture we noted that the fixed-point computation of PCF picks out the most undefined computa-
tion that satisfies the desired fixed-point equation. In this section we explore some key properties
of partial orders that are used in the denotational semantics of PCF, a perspective that furnishes a
mathematical account of the meaning of programs that makes the above perspective precise.

Complete partial orders. Recall that a partial order is a pair (P,⊑) consisting of a set P together
with a binary relation ⊑ on P that is

reflexive: x ⊑ x for all x ∈ P transitive: x ⊑ y and y ⊑ z =⇒ x ⊑ z

antisymmetric: x ⊑ y and y ⊑ x =⇒ x = y

Fix a partial order (P,⊑). A chain in P is sequence of elements of P of the following form:

d0 ⊑ d1 ⊑ d2 ⊑ . . .

More precisely, a chain is a function d : N → P such that di ⊑ di+1 for all i. The least upper bound
of a chain d is an element x ∈ P such that di ⊑ x for all i and for any other element y ∈ P such that
di ≤ y for all i, we have x ≤ y. If every chain in P has a least upper bound, then P is an ω-complete
partial order, written as ωCPO. In an ωCPO, we write

⊔
i di for the least upper bound of a chain d.

Continuous maps of ωCPOs. A function f : P → Q between partial orders (P,⊑P ), (Q,⊑Q) is
monotone when it preserves the ordering relation, i.e.

x ⊑P y =⇒ f(x) ⊑Q f(y)

If (P,⊑P ) and (Q,⊑Q) are both ωCPOs, then a monotone f : P → Q is ω-continuous if it preserves
least upper bounds of chains, i.e.

f

(⊔
i

di

)
=
⊔
i

f(di)

for all chains d : N → P .

ASSIGNMENT 5 DUE FRIDAY, OCTOBER 11, 2024
75 POINTS



Recursive programs and recursive types HW5.2

Domains. An ωCPO (P,⊑) is a domain if there is an element ⊥ ∈ P such that ⊥ ⊑ x for all x ∈ P .

In a domain model of PCF, we interpret types as domains and functions as continuous maps
between domains. Intuitivly, the ordering relation of domains reflects the information, or definedness
order between programs, where the ⊥ element of each type represents a totally undefined program
(e.g. an infinite loop with no effects).

In order to define this interpretation of PCF, we inductively define a partial order on semantic
values of each type, in a manner that should by now be familiar to you from your prior work with
logical relations. In the case of the function type σ → τ , assuming inductively that σ and τ have
already been assigned domains (JσK,⊑σ) and (JτK,⊑τ ), respectively, we define the interpretation
of σ → τ as the set JσK ⇒ JτK of continuous functions JσK → JτK, equipped with the partial order
⊑σ→τ such that f ⊑σ→τ g if for all s ∈ JσK, we have f(s) ⊑τ g(s).

That the fixed-point computation of PCF chooses the most undefined function (i.e. the least
function on the information order) satisfying the fixed-point equation is then corroborated by the
fact that in a domain model of PCF, fixed-points are interpreted by the least fixed-point of the
corresponding domain map.

Least fixed-points.
Consider a function fun f(x : σ) : τ is e of type σ → τ in call-by-value PCF. Assuming,

inductively, that e is interpreted as a continuous map JeK : (JσK ⇒ JτK) → (JσK ⇒ JτK), we then
compute the interpretation of fun f(x : σ) : τ is e as the least fixed point of JeK.

Task 1 (10pts) Let (D,⊑) be a domain and f : D → D a continuous map. Prove that the sequence

i ∈ N 7→ f (i)(⊥)

where
f (0)(⊥) = ⊥ and f (i+1)(⊥) = f(f (i)(⊥))

is a chain in ⊑.

Task 2 (25pts) Let (D,⊑) and f be as in task 1. Prove that the least fixed-point of f is given by
⊔

i f
(i)(⊥).

We can extend this to an interpretation of PCF expressions as continuous maps between
domains, per the following theorem (you will have a chance to develop this interpretation in detail
yourself in one of the final projects for this course):

Theorem 1 There is a function J−K that assigns each PCF expression e : τ to an element JeK ∈ JτK, where
Jσ → τK = JσK ⇒ JτK, as above, and JnatK = {⊥} ∪ N ordered by the flat ordering ⊑nat such that

x ⊑nat y ⇐⇒ x = ⊥ or x = y

such that every nonterminating expression e : nat is mapped to JeK = ⊥, and for every terminating
expression e : nat, we have JeK = n if and only if e 7→∗ n.

Task 3 (5pts) Using the above theorem, show that PCF cannot distinguish terminating and nonterminating
computations of type nat, i.e. there is no expression f : nat → nat in PCF such that f(e) 7→∗ 0 if e is
nonterminating, and f(e) 7→∗ 1 otherwise.

ASSIGNMENT 5 DUE FRIDAY, OCTOBER 11, 2024
75 POINTS



Recursive programs and recursive types HW5.3

2 Strictly Positive Recursive Types & Initial Algebras

In this section, we work in System FPC with call-by-value dynamics.
Let t be a type variable. The set of strictly positive type expressions in t, written P[t] is defined to

be the least set of types closed under the following rules:

t ∈ P[t] 0 ∈ P[t] 1 ∈ P[t]
τ1 ∈ P[t] τ2 ∈ P[t]

τ1 + τ2 ∈ P[t]
τ1 ∈ P[t] τ2 ∈ P[t]

τ1 × τ2 ∈ P[t]

Recursive types of the form rec(t.τ) where τ ∈ P[t] are called strictly positive recursive types, and
form an especially well-behaved class of recursive types containing most familiar examples from
programming. For instance, we have already seen in lectures how the natural numbers can be
represented as the type rec(t.1 + t), and the expression 1 + t is indeed strictly positive in t.

In this section, we will see how strictly positive recursive types can be seen as arising from a
similar kind of least fixed point as in the previous section. In order to do so, we generalize the notion
of least fixed point to be defined only up to isomorphism, leading to the notion of an initial algebra.

Task 4 (15pts) Show by induction on τ ∈ P[t] that if there is an FPC expression ef : σ1 → σ2 for closed
types σ1, σ2, then there is an expression τ [ef ] : [σ1/t]τ → [σ2/t]τ .

A τ -algebra, for τ ∈ P[t], is a pair (σ, s) consisting of a closed type σ together with an expression
s of type [σ/t]τ → σ.

Example For τ = t× t, one possible τ -algebra is the pair (nat,plus), where plus : nat× nat →
nat is the usual addition of natural numbers. A different τ -algebra with the same carrier type is
(nat,times), where times : nat× nat → nat is the usual multiplication of natural numbers.

Task 5 (5pts) Show that for all τ ∈ P[t], the type rec(t.τ) carries the structure of a τ -algebra, i.e. there is a
function algτ : [(rect.τ)/t]τ → rec(t.τ). (Hint: you do not need to use induction.)

Given τ -algebras (σ1, s1), (σ2, s2) an expression ef of type σ1 → σ2 is a homomorphism from
(σ1, s1) to (σ2, s2) if for all values v : [σ1/t]τ ,

ef (s1(v)) = s2(τ [ef ](v))

Example For τ = t× t as in the above example, the function exp : nat → nat where exp(n) = 2n,
is a homomorphism from the τ -algebra (nat,plus) to (nat,times), since for all m,n ∈ N

exp(plus(m,n)) = times(exp(m),exp(n))

A τ -algebra (σ, s) is called initial if for every τ -algebra (σ′, s′) there is a unique homomorphism
fs′ : σ → σ′ from (σ, s) to (σ′, s′)

Task 6 (10pts) Show that for all τ ∈ P[t], the algebra (rec(t.τ), algτ ) defined in task 5 is initial. You do
not need to show that the homomorphisms you construct are unique, but you should prove that they are
homomorphisms (hint: use recursion; you still do not need induction.)

Task 7 (5pts) Show that initial algebras for a given τ ∈ P[t] are unique up to isomorphism, i.e. if (σ1, s1)
and (σ2, s2) are both initial τ -algebras, then σ1 ∼= σ2 (you may use the informal definition of isomorphism
given in lecture).

Compare the notion of initial algebras we have developed here with the notion of least fixed points given
previously. In what way can this be regarded as a notion of least fixed point ”up to isomorphism”?

ASSIGNMENT 5 DUE FRIDAY, OCTOBER 11, 2024
75 POINTS


	Least fixed-points
	Strictly Positive Recursive Types & Initial Algebras

