
Assignment 8
Data Abstraction

15-814: Types and Programming Languages
Jan Hoffmann & Corinthia Beatrix Aberlé

Due Thursday, November 14, 2024
75 points

You should hand in two files:

• hw08.pdf with your written solutions to the questions.

• hw08.cbv with the code for the LAMBDA implementation tasks.

1 Definability of existential types

In this assignment, we study properties of existential types in System F. For background and further
information on existential types, see Chapter 17 of PFPL.

Existential types may be encoded using universal types:

∃t. τ := ∀u. (∀t. τ → u) → u

pack{t.τ}(ρ, e) = Λu. λc : (∀t. τ → u). c[ρ](e)

open{t.τ ; τ2}(e, t, x.e2) = e[τ2](Λt. λx : τ. e2)

Note that we annotate open with the type τ2 computed by the client.
We may check that the encoding preserves the static semantics of existential types.

Task 1 (5 points) Given ∆, t type Γ ⊢ τ type, ∆ ⊢ ρ type, and ∆ Γ ⊢ e : [ρ/t]τ , show that ∆ Γ ⊢
pack{t.τ}(ρ, e) : ∃t. τ under the given encoding.

Task 2 (5 points) Given ∆ Γ ⊢ e : ∃t. τ , ∆, t type Γ, x : τ ⊢ e2 : τ2, and ∆ ⊢ τ2 type, show that
∆ Γ ⊢ open{t.τ ; τ2}(e, t, x.e2) : τ2 under the given encoding.

We may check that the encoding preserves the call-by-name dynamics of existential types:

Task 3 (5 points) Show that pack{t.τ}(ρ, e) val.

Task 4 (5 points) Prove that if e 7→ e′, then open{t.τ ; τ2}(e, t, x.e2) 7→∗ open{t.τ ; τ2}(e′, t, x.e2).

Task 5 (15 points) Show that open{t.τ ; τ2}(pack{t.τ}(ρ, e), t, x.e2) 7→∗ [ρ/t, e/x]e2.

ASSIGNMENT 8 DUE THURSDAY, NOVEMBER 14, 2024
75 POINTS



Data Abstraction HW8.2

2 Representation Independence

In this problem you are asked to provide an implementation of an integer counter. In the first one
we represent an integer a as a pair ⟨x, y⟩ of two natural numbers x and y where a = x− y. In the
second, we represent an integer a ≥ 0 as pos · a and an integer a ≤ 0 as neg · −a. Note that neither
of these representations is unique.

We say that a pair ⟨x, y⟩ of natural numbers represents the integer a if a = x− y. We call this
the difference representation and call the representation type diff. For the sake if simplicity, we choose
a unary representation for the natural numbers.

bool = (true : 1) + (false : 1)
nat = µα. (zero : 1) + (succ : α)
diff = nat × nat

The implementations of each of the following counter operations are given in hw09.cbv:

(i) A constant d zero : diff representing the integer 0.

(ii) The function d inc : diff → diff representing incrementing integers.

(iii) The function d dec : diff → diff representing decrementing integers.

(iv) The function d is0 : diff → bool that tests whether the state of the counter represents 0.

Task 6 (10 points) We consider an alternative signed representation of integers where

sign = (pos : nat) + (neg : nat)

where pos · x represents the integer x and neg · x represents the integer −x.
Define the following functions in analogy with the previous set of functions and include them

in the file hw09.cbv.

(i) s zero : sign

(ii) s inc : sign → sign

(iii) s dec : sign → sign

(iv) s is0 : sign → bool

Task 7 (5 points) With the definitions from previous two tasks you should be able to implement
the following signature for an integer counter:

INTCTR = {
type ictr
init : ictr
inc : ictr → ictr
dec : ictr → ictr
is0 : ictr → bool

}

ASSIGNMENT 8 DUE THURSDAY, NOVEMBER 14, 2024
75 POINTS



Data Abstraction HW8.3

where init, inc, dec and is0 have their obvious specification with respect to integers (with init
representing a counter with initial value 0), generalizing the natural number counter defined in
lecture. Provide the following definitions in the file hw09.cbv.

(i) The type INTCTR as an existential type.

(ii) DiffCtr : INTCTR, using the difference representation of integers.

(iii) SignCtr : INTCTR, using the signed representation of integers.

Task 8 (25 points) In this task you are asked to show that the two implementations of integer coun-
ters from the previous subtask are logically equivalent. Make sure your previous implementations
are correct or else this may be difficult!

In the proofs below you may freely use the correctness of functions on unary numbers, specif-
ically zero = 0 and succ n = n+ 1. If you need properties of other functions on (unary) natural
numbers you should carefully state them and assume them as lemmas, but you do not need to
prove them.

(i) Define a relation R that allows you to prove DiffCtr ≈ SignCtr ∈ JINTCTRK.

(ii) Prove that d zero ≈ s zero ∈ JRK. If this is not straightforward, you may want to rethink your
definition of R.

(iii) Prove that d inc ≈ s inc ∈ JR → RK.

(You should also convince yourself that d dec ≈ s dec ∈ JR → RK, but you do not need to
prove it.)

(iv) Prove that d is0 ≈ s is0 ∈ JR → boolK.

If all of the above holds, then you know that no client of your INTCTR interface can distinguish
the two implementations!

ASSIGNMENT 8 DUE THURSDAY, NOVEMBER 14, 2024
75 POINTS


	Definability of existential types
	Representation Independence

