
Lecture Notes on
Overview and The Lambda Calculus

15-814: Types and Programming Languages
Jan Hoffmann and Frank Pfenning

Lecture 1
Tuesday, August 27, 2024

1 Overview

We start with a motivation of the course contents and then informally discus
the (untyped) λ-Calculus.

What is a Programming Language? Before we can talk about how we
study programming languages, we first should define what a programming
language is. If you think about the question then you may consider a defini-
tion such as the text files accepted by a compiler or interpreter. However, this
definition is kicking the can down the road because then you would have to
define what a compiler or interpreter is. Even if we had such a definition,
the resulting language definition would be somewhat unsatisfactory: Hand-
ing somebody a compiler is not a good way to describe a programming
language.

A better definition would be to say that a programming language is defined
by a language standard. This is rather unspecific but the right idea. So what is
a language standard? Most commonly, it is a document written in a natural
language. If you ever read a language standard (like the C11 Standard) then
you know that it is often unclear and sometimes underspecified. This is not
surprising since natural language is all too often imprecise. Also, does a
programming language even exist if it is not implemented?

In this course, our point of view is that a programming language is a
mathematical object. It is not defined by an implementation and not am-
biguous like a language standard written in a language like English. Instead,

LECTURE NOTES TUESDAY, AUGUST 27, 2024

L1.2 Overview and The Lambda Calculus

a programming language is formally defined by its static and dynamic se-
mantics, which we usually define by rule induction. The static semantics
defines the set of programs (or, more generally, the set of expressions) and
the dynamic semantics defines what the result is of running (or evaluating)
a program.

Why Study Programming Languages? The are many good reasons to
study programming languages. We want to understand both existing and
future programming languages and be able to compare them in a systematic
way. If we start a new project then we want to be able to make an informed
decision about the right programming language to select for the project. We
might even want to design a new programming language and should then
be in a position to avoid past mistakes. Finally, understanding programming
languages helps to become a better programmer since you will be able to
better pick the right tool (or language feature) for a given implementation
task.

How to Study Programming Languages? In this course, we will not study
or compare popular languages. For one thing, we don’t want to reinforce
or repeat common mistakes in language design. For another thing, popular
languages are complex and difficult to describe. Finally, the popularity of
languages changes over time and we aim to focus on knowledge that enables
you to understand existing and future languages. Similarly, we will not talk
about so called paradigms like imperative or functional programming. At best,
such paradigms describe a programming style. You can write functional
programs in an imperative language and all practical functional languages
exhibit imperative programs. Therefore, using paradigms for classifying
languages makes little sense. But what can we do instead?

Most practical languages have the same expressivity; we say they are
Turing complete. This means we can implement the same set of functions.1

So how do programming languages differ? Why are we usually not using
assembly or machine languages to write programs? The reason is that a
programming language provides mechanisms to systematically structure
programs. The key is that these mechanisms are provided by abstractions
that are enforced by the language. The study of programming languages focuses
therefore on the study of abstraction and composition. Abstractions hide informa-
tion, restrict interaction, and, in return, guarantee certain properties that we
can rely on when implementing programs. Composition is about combining

1We will make this more precise in the next weeks.

LECTURE NOTES TUESDAY, AUGUST 27, 2024

Overview and The Lambda Calculus L1.3

programs without breaking abstractions. With this view, programming lan-
guages are interesting if they provide strong abstractions and are therefore
restrictive.

A common abstraction found in most language is that of a function. The
only way to interact with a function is to call it by providing an argument.
You cannot jump into an arbitrary position in the body of the implementation
of the function and only execute a part of it (like you could in an assembly
language).

Type theory provides a systematic way of studying and characterizing
such abstractions. Types classify different forms of data and computations.
By studying types, we focus on the atomic parts of programming languages
and distinguish languages based on the abstractions they provide.

2 The λ-Calculus

This course is about the principles of programming language design, many
of which derive from the notion of type. Nevertheless, we will start by
studying an exceedingly pure notion of computation based only on the
notion of function, that is, Church’s λ-calculus [CR36]. There are several
reasons to do so.

• We will see a number of important concepts in their simplest possible
form, which means we can discuss them in full detail. We will then
reuse these notions frequently throughout the course without the same
level of detail.

• The λ-calculus is of great historical and foundational significance. The
independent and nearly simultaneous development of Turing Ma-
chines [Tur36] and the λ-Calculus [CR36] as universal computational
mechanisms led to the Church-Turing Thesis, which states that the ef-
fectively computable (partial) functions are exactly those that can be
implemented by Turing Machines or, equivalently, in the λ-calculus.

• The notion of function is the most basic abstraction present in nearly all
programming languages. If we are to study programming languages,
we therefore must strive to understand the notion of function.

• It’s cool!

In mathematical practice, functions are ubiquitous. For example, we

LECTURE NOTES TUESDAY, AUGUST 27, 2024

L1.4 Overview and The Lambda Calculus

might define
f(x) = x+ 5
g(x, y) = 2x+ y

Oddly, we never state what f or g actually are, we only state what happens
when we apply them to arbitrary arguments such as x or y. The λ-calculus
starts with the simple idea that we should have notation for the function
itself, the so-called λ-abstraction.

f = λx. x+ 5
g = λx.λy. 2x+ y

Syntax We can already see that in a pure calculus of functions we will
need at least three different kinds of expressions that we define inductively
as follows.

• Variables x, y, z, etc. are expressions.

• If e is an expression then the λ-abstractions λx. e is an expression.

• If e1 and e2 are expressions then the application e1 e2 is an expression.

We summarize this inductive definition in the following form.

Variables x, y, z, . . .
Expressions e ::= λx. e | e1 e2 | x

This is the definition of the concrete syntax of the λ-calculus that we use in the
implementation together with additional conventions and notations such as
parentheses to avoid ambiguity.

1. Juxtaposition (which expresses application) is left-associative so that
x y z is read as (x y) z.

2. λx. is a prefix whose scope extends as far as possible while remain-
ing consistent with the parentheses that are present. For example,
λx. (λy. x y z)x is read as λx. ((λy. (x y) z)x).

Often, we also define the abstract syntax of a language that is based on
abstract binding trees (ABTs), which are a generalization of abstract syntax
trees.

Concrete Abstract
Expressions e ::= λx. e lam(x.e)

e1 e2 app(e1, e2)

LECTURE NOTES TUESDAY, AUGUST 27, 2024

Overview and The Lambda Calculus L1.5

In an ABT, we have different operators that indicate the binding of variables.
In the λ-calculus, there are two operators, one for lambda abstraction and
one for function application. A variable is always an ABT and is not explic-
itly mentioned. We will revisit this concept later. So the identity function
has the abstract syntax lam(x.x) and concrete syntax λx. x.

Semantics The meaning or semantics of an expression is linked to the
meaning of a variable. Here, a variable is a placeholder for an expression.
We could therefore call variables also expression variables. That means that if
we have an expression e that contains a variable x then we can replace x with
an expression e′ to obtain another expression. We say that e′ is substituted
for x in e and write [e′/x]e. For now, we will use this notion of substitution
informally—in the next lecture we will define it formally.

The abstraction λx. e for some arbitrary expression e stands for the
function, which, when applied to some e′ becomes [e′/x]e, that is, the result
of substituting e′ for all (free) occurrences of the variable x in e.

We say λx. e binds the variable x with scope e. Variables that occur in
e but are not bound are called free variables, and we say that a variable x
may occur free in an expression e. For example, y is free in λx. x y but
not x. Bound variables can be renamed consistently in an expression. So
we consider λx. x+ 5 to be equal to λy. y + 5 and λwhatever .whatever + 5.
Generally, we rename variables silently because we identify expressions that
differ only in the names of λ-bound variables. But, if we want to make the
step explicit, we call it α-conversion.

λx. e =α λy.[y/x]e provided y not free in e

The proviso is necessary, for example, because λx.x y ̸= λy.y y.
We capture the rule for function application with

(λx. e2) e1 =β [e1/x]e2

and call it β-conversion. Some care has to be taken for the substitution to be
carried our correctly—we will return to this point later.

If we think beyond mere equality at computation, we see that β-conversion
has a definitive direction: we apply is from left to right. We call this β-
reduction and it is the engine of computation in the λ-calculus.

(λx. e2) e1 7−→β [e1/x]e2

LECTURE NOTES TUESDAY, AUGUST 27, 2024

L1.6 Overview and The Lambda Calculus

3 Simple Functions and Combinators

The simplest functions are the identity function and the constant function.
The identity function, called I, just returns its argument x.

I ≜ λx. x

The constant function returning x could be written as

λy. x

We calculate
(λy. x) e 7−→β x

for any expression e since y does not occur in the expression x. This is
somewhat incomplete in the sense the expression λy. x has a free variable.
What we would like is an expression K without free variables, such K x is
the constant function, always returning x. But that’s easy: we just abstract
over x.

K ≜ λx. λy. x

Then Kx 7−→β λy. x is the constant function returning x.
We call expressions without free variable closed expression. A combina-

tor is just a closed λ-expression like I or K. We will see more interesting
combinators in the next lecture.

4 Function Composition

One the most fundamental operation on functions in mathematics is to
compose them. We might write

(f ◦ g)(x) = f(g(x))

Having λ-notation we can first explicitly denote the result of composition
(with some redundant parentheses)

f ◦ g = λx. f(g(x))

As a second step, we realize that ◦ itself is a function, taking two functions
as arguments and returning another function. Ignoring the fact that it is
usually written in infix notation, we define

◦ ≜ B ≜ λf. λg. λx. f (g x)

LECTURE NOTES TUESDAY, AUGUST 27, 2024

Overview and The Lambda Calculus L1.7

We call it B because that’s its traditional name as a combinator.
One of the fundamental properties of function composition is that it is

associative, that is, (f ◦ g) ◦ h = f ◦ (g ◦ h). If our representation of function
composition is correct, we should be able to verify

B f (B g h) = B (B f g)h

In general, two expressions e1 and e2 are equal (or β-equivalent) if we can
transform e1 into e2 using a series of β- and α-conversions. Verify that this
relation is reflexive, symmetric, and transitive.

Using this definition, we aim to verify the aforementioned equality.
Let’s start with the left side and the right side and apply β-reduction. The
definition of B takes place here in our language of mathematical discourse,
to replacing its definition is not actually a step of β-equality but just equality.
We highlight in red the variable or binder that is being replaced, renamed,
or substituted for in the following step.

B f (B g h)
= (λf. λg. λx. f (g x)) f (B g h)
=β (λg. λx. f (g x)) (B g h)
=β λx. f ((B g h)x)
= λx. f (((λf. λg. λx. f (g x)) g h)x)
=α λx. f (((λf. λg′. λx. f (g′ x)) g h)x)
=β λx. f ((λg′. λx. g (g′ x))hx)
=β λx. f ((λx. g (hx))x)
=β λx. f (g (hx))

Note that the renaming from g to some other variable name g′ (α-conversion)
is necessary, because otherwise the variable g would be captured by the
binder on g, giving us the wrong answer:

λx. f (((λf. λg. λx. f (g x)) g h)x)
̸=β λx. f ((λg. λx. g (g x))hx)
=β λx. f (h (hx))

This is one of the last times we’ll be explicit about α-conversion and we’ll
just silently apply it as needed.

With a similar chain of reasoning we can verify that for the right-hand
side we have

B (B f g)h =β λx. f (g (hx))

Therefore, by transitivity and symmetry of equality, we know that function
composition is associative as it should be.

LECTURE NOTES TUESDAY, AUGUST 27, 2024

L1.8 Overview and The Lambda Calculus

References

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion.
Transactions of the American Mathematical Society, 39(3):472–482, May
1936.

[Tur36] Alan Turing. On computable numbers, with an application to
the entscheidungsproblem. Proceedings of the London Mathematical
Society, 42:230–265, 1936. Published 1937.

LECTURE NOTES TUESDAY, AUGUST 27, 2024

	Overview
	The -Calculus
	Simple Functions and Combinators
	Function Composition

