
Lecture Notes on
λ-Calculus: Normal Forms and Data

15-814: Types and Programming Languages
Frank Pfenning and Jan Hoffmann

Lecture 2
Thursday, August 29, 2024

1 Introduction

In this lecture, we continue our exploration of the λ-calculus and the repre-
sentation of data and functions on them. We first discuss nontermination
and normal forms. We then discuss ways of representing and manipulate
Booleans and natural numbers in the λ-calculus.

2 Nontermination

Consider again the λ-calculus as introduced in Lecture 1. Recall that normal
forms are expressions that cannot be reduced by β-reduction. We say that e is
a normal form of e′ if e is a normal form and e =β e′. Here, we just consider
β-equality since α-equality (renaming of bound variables) is already built-in:
From now on, we silently identify expressions that are α-equivalent.

It is natural to consider the following questions.

1. Does every expression have a normal form?

2. Can we always compute a normal form if one exists?

3. Are normal forms unique?

The answers to these questions are crucial to understanding to what extent
we might consider the λ-calculus a universal model of computation.

LECTURE NOTES THURSDAY, AUGUST 29, 2024

L2.2 λ-Calculus: Normal Forms and Data

Does every expression have a normal form?

If the λ-calculus is to be equivalent in computational power to Turing ma-
chines in some way, then we would expect the answer to be “no” because
computations of Turing machines may not halt. However, it is not imme-
diate to think of some expression that doesn’t have a normal form. If you
haven’t seen something like this already, you might want to try to come up
with one. The simplest one is probably

Ω ≜ (λx.xx) (λx.xx)

Indeed, there is only one possible β-reduction and it immediately leads to
exactly the same term:

Ω = (λx.xx) (λx.xx)
z→β (λx.xx) (λx.xx)
z→β (λx.xx) (λx.xx)
z→β . . .

So Ω reduces in one step to itself and only to itself.

Can we always compute a normal form if one exists?

The answer here is “yes”, although it is not easy to prove that this is the case.
Let’s consider an example (recall that K = λx.λy. x):

K I Ωz→β (λy. I)Ωz→β I

So the expression K I Ω does have a normal form, even though Ω does not.
This is because the constant function K I ignores its argument. On the other
hand we also have

K I Ωz→β K I Ωz→β K I Ωz→β ⋯

because we have the Ωz→β Ω and reduction can be applied anywhere in an
expression.

Fortunately, there is a strategy which turns out to be complete in the
sense that if an expression has a normal form, this strategy will find it. It
is called leftmost-outermost or normal-order reduction. This strategy scans
through the expression from left to right and when it find a redex (that
is, an expression of the form (λx. e) e′) it applies β-reduction and then
returns to the beginning of the result expression. In particular, it does

LECTURE NOTES THURSDAY, AUGUST 29, 2024

λ-Calculus: Normal Forms and Data L2.3

not consider any redex in e or e′, only the “outermost” one. Also, in an
expression ((λx. e1) e2) e3 it does not consider any potential redex in e3, only
the leftmost one.

This strategy works in our example: the redex in Ω would not be consid-
ered, only the redex K I and then the redex (λy. I)Ω.

In this course we are using LAMBDA, an implementation of the λ-
calculus. This implementation of uses a straightforward function for leftmost-
outermost reduction, complicated very slightly by the fact that names such
as K or I which in the notes are only abbreviations at the mathematical level
of discourse, are actual language-level definitions in the implementation.
So we have to expand the definition of K, for example, before applying
β-reduction, but we do not officially count this as a substitution.

The notion of leftmost-outermost reduction is closely related to the
notion of call-by-name evaluation in programming languages (and, with
a little more distance, to call-by-need which is employed in Haskell). In
contrast, call-by-value would reduce the argument of a function before
applying the β-reduction, which is not complete, as our example shows.
The analogy is not exact, however, since in programming languages such
as ML or Haskell we also do not reduce under λ-abstractions, a fact that
represents a sharp dividing line between foundational calculi such as the λ-
calculus and actual programming languages. We will justify and understand
these decisions in a few lectures.

Are normal forms unique?

The outcome of a computation starting from e is its normal form. At any
point during a computation there may be many redices. Ideally, the out-
come would be independent of the reduction strategy we choose as long
as we reach a normal form. Otherwise, the meaning of an expression (as
represented by its normal form) may be ambiguous. Therefore, Church
and Rosser [CR36] spend considerable effort in proving the uniqueness of
normal forms. The key technical device is a property called confluence (also
referred to as the Church-Rosser property). It is often depicted in the following
diagram:

e

e1 e2

e′

∗ ∗

∗ ∗

LECTURE NOTES THURSDAY, AUGUST 29, 2024

L2.4 λ-Calculus: Normal Forms and Data

More formally:

Theorem 1 (Church-Rosser) Let e be an expression. If ez→∗β e1 and ez→∗β e2
for some expressions e1 and e2 then there exists an expression e′ such that e1 z→∗β e′

and e2 z→
∗

β e′.

The solid lines are given reduction sequences while the reduction sequences
represented by dashed lines have to be shown to exist. Reduction here
is in multiple steps (indicated by the star “∗”). For the λ-calculus (and
the original Church-Rosser Theorem), this reduction would usually be β-
reduction. Very roughly, the proof shows how to simulate the steps from e
to e2 when starting from e1 and (symmetrically) simulate the steps from e to
e1 when starting from e2.

Confluence implies the uniqueness of normal forms. Suppose e1 and e2
in the diagram are normal forms. Because they cannot be reduced further,
the sequence of reductions to e′ must consist of zero steps, so e1 = e

′
= e2.

Confluence implies that even though we might embark on an unfortu-
nate path (for example, keep reducing Ω in K I Ω) we can still recover if
indeed there is a normal form. In this example, we might eventually decide
to reduce K I and then the redex (λy. I)Ω.

3 Representing Booleans

Before we can claim the λ-calculus as a universal language for computation,
we need to be able to represent data. The simplest nontrivial data type are
the Booleans, a type with two elements: true and false. The general technique
is to represent the values of a given type by normal forms, that is, expressions
that cannot be reduced by β-reduction. Furthermore, they should be closed,
that is, not contain any free variables. We need to be able to distinguish
between two values, and in a closed expression that suggest introducing
two bound variables. We then define rather arbitrarily one to be true and
the other to be false

true ≜ λx.λy. x
false ≜ λx.λy. y

The next step is to define functions on values of the type. Let’s start with
negation: we are trying to define a λ-expression not such that

not true =β false
not false =β true

LECTURE NOTES THURSDAY, AUGUST 29, 2024

λ-Calculus: Normal Forms and Data L2.5

We start with the obvious:
not ≜ λb. . . .

Now there are two possibilities: we could either try to apply b to some
arguments, or we could build some λ-abstractions. Let’s first try the one
where b is applied to some arguments.

not ≜ λb. b (. . .) (. . .)

We suggest two arguments to b, because b stands for a Boolean, and Booleans
true and false both take two arguments. true = λx.λy. x will pick out the
first of these two arguments and discard the second, so since we specified
not true = false, the first argument to b should be false!

not ≜ λb. b false (. . .)

Since false = λx.λy. y picks out the second argument and not false = true, the
second argument to b should be true.

not ≜ λb. b false true

Now it is a simple matter to calculate that the computation of not applied to
true or false completes in three steps and obtain the correct result.

not true z→
3
β false

not false z→3
β true

We writez→n
β for reduction in n steps, andz→∗β for reduction in an arbitrary

number of steps, including zero steps. In other words, z→∗β is the reflexive
and transitive closure ofz→β .

An alternative solution hinted at above is to start with

not′ ≜ λb. λx.λy. . . .

We pose this because the result of not b should be a Boolean, and the two
Booleans both start with two λ-abstractions. Now we reuse the previous
idea, but apply b not to false and true, but to y and x.

not′ ≜ λb. λx.λy. b y x

Again, we calculate
not′ true z→

3
β false

not′ false z→3
β true

LECTURE NOTES THURSDAY, AUGUST 29, 2024

L2.6 λ-Calculus: Normal Forms and Data

An important observation here is that

not = λb. b (λx.λy. y) (λx.λy. x) /= λb. λx.λy. b y x = not′

Both of these are normal forms (they cannot be reduced) and therefore repre-
sent values (the results of computations). Both correctly implement negation
on Booleans, but they are different. This is evidence that when computing
with particular data representations in the λ-calculus it is not extensional:
even though the functions behave the same on all the arguments we care
about (here just true and false), the are not convertible. To actually see that
they are not convertible we need the Church-Rosser theorem which says
if e1 and e2 are αβ-convertible then there is a common reduct e such that
e1 z→

∗

β e and e2 z→
∗

β e.
There are many possible representations of the Booleans in the λ-calculus.

The one we discussed is called the Church encoding of the Booleans. It is
the canonical encoding because it corresponds to the elimination form for
Booleans: the conditional or if-then-else. Consider the function not again:

λb. b false true

Now compare not with an implementation of the function using a condi-
tional:

λb. if b then false else true

If we remove the keywords if, them, and else from this definition then we
obtain our function not again. This is not a coincidence since our Booleans
behave exactly like a conditional. A Boolean b applied to two λ-expressions
e1 and e2 will “branch” and β-reduce to e1 if b =β true or to e2 if b =β false.
We therefore define

if ≜ λb. λx.λy. b x y

4 Representing Natural Numbers

When we think about the computational power of a calculus we generally
consider the functions on the natural numbers natural numbers 0,1,2,
The first step to defining such functions in the λ-Calculus is to find a rep-
resentation of the natural numbers. We are looking for an expression n of
the natural number n, such that n is distinct. We obtain this by thinking of
the natural numbers as generated from zero by repeated application of the
successor function. Since we want our representations to be closed we start

LECTURE NOTES THURSDAY, AUGUST 29, 2024

λ-Calculus: Normal Forms and Data L2.7

with two abstractions: one (z) that stands for zero, and one (s) that stands
for the successor function.

0 ≜ λs. λz. z
1 ≜ λs. λz. s z
2 ≜ λs. λz. s (s z)
3 ≜ λs. λz. s (s (s z))
. . .
n ≜ λs. λz. s (. . . (s

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

z))

In other words, the representation n iterates its first argument n times over
its second argument

nf x = fn
(x)

where fn
(x) = f(. . . (f

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n times

(x)))

The first order of business is to define a successor function succ that
satisfies succ n = n + 1. As usual, there is more than one way to define it,
here is one (throwing in the definition of zero for uniformity):

zero = 0 ≜ λs. λz. z
succ = λn.n + 1 ≜ λn.λs. λz. s (nsz)

We cannot carry out the correctness proof in closed form as we did for the
Booleans since there would be infinitely many cases to consider. Instead we
calculate generically (using mathmetical notation and properties)

succ n
= λs. λz. s (nz s)
= λs. λz. s (sn(z))
= λs. λz. sn+1(z)
= n + 1

A more formal argument uses mathematical induction over n.
Using the iteration property we can now define other mathematical

functions over the natural numbers. For example, addition of n and k
iterates the successor function n times on k.

plus ≜ λn.λk.n succ k

You are invited to verify the correctness of this definition by calculation.
Similarly:

times ≜ λn.λk.n (plus k) zero

LECTURE NOTES THURSDAY, AUGUST 29, 2024

L2.8 λ-Calculus: Normal Forms and Data

Exercises

Exercise 1 Define the following functions on Booleans in at least two distinct
ways.

1. “nor”, the negation of disjunction

2. The conditional “if” such that

if true e1 e2 =β e1
if false e1 e2 =β e2

Exercise 2 One approach to representing functions defined by the schema
of primitive recursion is to change the representation so that n is not an
iterator but a primitive recursor.

0 = λs. λz. z
n + 1 = λs. λz. sn (nsz)

1. Define the successor function succ (if possible) and show its correct-
ness.

2. Define the predecessor function pred (if possible) and show its correct-
ness.

3. Explore if it is possible to directly represent any function f specified
by a schema of primitive recursion, ideally without constructing and
destructing pairs.

Exercise 3 The unary representation of natural numbers requires tedious
and error-prone counting to check whether your functions (such a factorial,
Fibonacci, or greatest common divisor in the exercises below) behave cor-
rectly on some inputs with large answers. Fortunately, you can exploit that
the LAMBDA implementation counts the number or reduction steps for you
and prints it in decimal form!

(i) We have
n succ zeroz→∗β n

because n iterates the successor function n times on 0. Run some
experiments in LAMBDA and conjecture how many leftmost-outermost
reduction steps are required as a function of n. Note that only β-
reductions are counted, and not replacing a definition (for example,
zero by λs. λz. z). We justify this because we think of the definitions as
taking place at the metalevel, in our mathematical domain of discourse.

LECTURE NOTES THURSDAY, AUGUST 29, 2024

λ-Calculus: Normal Forms and Data L2.9

(ii) Prove your conjecture from part (i), using induction on n. It may be
helpful to use the mathematical notation fkc to describe a λ-expression
generated by f0 c = c and fk+1 c = f (fk c) where f and c are λ-
expressions. For example, n = λs. λz. sn z or succ3 zero = succ (succ (succ zero)).

References

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion.
Transactions of the American Mathematical Society, 39(3):472–482, May
1936.

[Har16] Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, second edition, April 2016.

LECTURE NOTES THURSDAY, AUGUST 29, 2024

	Introduction
	Nontermination
	Representing Booleans
	Representing Natural Numbers

