
Lecture Notes on
Recursion in the λ-Calculus

15-814: Types and Programming Languages
Jan Hoffmann and Frank Pfenning

Lecture 3
Tuesday, September 3, 2024

1 Introduction

In this lecture, we first conclude our study of computation in the λ-Calculus
by discussing how we can express primitive recursion and general recur-
sion. In the next lecture, we formalize the definitions that we introduced
informally using the concept of rule induction.

2 Primitive Recursion

It is easy to define very fast-growing functions by iteration, such as the
exponential function, or the “stack” function iterating the exponential.

exp ≜ λb. λe. e (times b) (succ zero)
stack ≜ λb. λn.n (exp b) (succ zero)

Everything appears to be going swimmingly until we think of a very simple
function, namely the predecessor function defined by

pred 0 = 0
pred (n + 1) = n

You may try for a while to see if you can define the predecessor function,
but it is difficult. The problem is that we have to go from λs. λz. s (. . . (s z))
to λs. λz. s (. . . z), that is, we have to remove an s rather than add an s as was
required for the successor. One possible way out is to change representation
and define n differently so that predecessor becomes easy (see Exercise 1).

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2024

L3.2 Recursion in the λ-Calculus

We run the risk that other functions then become more difficult to define, or
that the representation is larger than the already inefficient unary represen-
tation already is. We follow a different path, keeping the representation the
same and defining the function directly.

We can start by assessing why the schema of iteration does not immedi-
ately apply. The problem is that in

f 0 = c
f (n + 1) = g (f n)

the function g only has access to the result of the recursive call of f on n, but
not to the number n itself. What we would need is the schema of primitive
recursion:

f 0 = c
f (n + 1) = h n (f n)

where n is passed to h. For example, for the predecessor function we have
c = 0 and h = λx.λy. x (we do not need the result of the recursive call, just n
which is the first argument to h).

2.1 Defining the Predecessor Function

Instead of trying to solve the general problem of how to implement primitive
recursion, let’s define the predecessor directly. Mathematically, we write
n � 1 for the predecessor (that is, 0 � 1 = 0 and n + 1 � 1 = n). The key idea
is to gain access to n in the schema of primitive recursion by rebuilding it
during the iteration. This requires pairs, a representation of which we will
construct shortly.

Our specification then is

pred2 n = ⟨n,n � 1⟩

and the key step in its implementation in the λ-calculus is to express the
definition by a schema of iteration rather than primitive recursion. The start is
easy:

pred2 0 = ⟨0,0⟩

For n + 1 we need to use the value of pred2 n. For this purpose we assume
we have a function letpair where

letpair ⟨e1, e2⟩k = k e1 e2

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2024

Recursion in the λ-Calculus L3.3

In other words, letpair passes the elements of the pair to a “continuation” k.
Using letpair we start as

pred2 (n + 1) = letpair (pred2 n) (λx.λy. . . .)

If pred2 satisfies it specification then reduction will substitute n for x and
n � 1 for y. From these we need to construct the pair ⟨n + 1, n⟩ which we can
do, for example, with ⟨x + 1, x⟩. This gives us

pred2 0 = ⟨0,0⟩
pred2 (n + 1) = letpair (pred2 n) (λx.λy. ⟨x + 1, x⟩)

predn = letpair (pred2 n) (λx.λy. y)

2.2 Defining Pairs

The next question is how to define pairs and letpair. The idea is to just
abstract over the continuation itself! Then letpair isn’t really needed because
the functional representation of the pair itself will apply its argument to
the two components of the pair, but if want to write it out it would be the
identity.

⟨e1, e2⟩ ≜ λk. k e1 e2
pair ≜ λx.λy. λk. k xy
letpair ≜ λp. p

Then letpair p k =β pk and pair e1 e2 =β ⟨e1, e2⟩.
This is an example how introducing an abstraction (namely pairs) makes

it easier to implement a challenging function.

2.3 Proving the Correctness of the Predecessor Function

Summarizing the above and expanding the definition of letpair we obtain
the following definitions.

pred2 ≜ λn.n (λp. p (λx.λy.pair (succx)x)) (pair zero zero)
pred ≜ λn.pred2 n (λx.λy. y)

Let’s do a rigorous proof of correctness of pred.1 For the representation of
natural numbers, we use the following equalities.

0 g c =β c
n + 1 g c =β g (ng c)

1We did not carry out this proof in lecture relying on intuition and testing instead.

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2024

L3.4 Recursion in the λ-Calculus

Lemma 1 pred2 n =β ⟨n,n � 1⟩

Proof: By mathematical induction on n.

Base: n = 0. Then

pred2 0 =β 0 (. . .) (pair zero zero)
=β pair zero zero By repn. of 0
=β ⟨0,0⟩ = ⟨0,0 � 1⟩ By repn. of 0 and pairs

Step: n =m + 1. Then

pred2m + 1 =β m + 1 (λp. p (λx.λy.pair (succx)x)) (pair zero zero)
=β (λp. p (λx.λy.pair (succx)x)) (m (λp. . . .) (. . .)) By repn. of m + 1
=β (λp. p (λx.λy.pair (succx)x)) (pred2m) By defn. of pred2
=β (λp. p (λx.λy.pair (succx)x)) ⟨m,m � 1⟩ By ind. hyp. on m

=β ⟨m,m � 1⟩ (λx.λy.pair (succx)x)
=β pair (succm)m By repn. of pairs
=β ⟨m + 1,m⟩ By repn. of successor and pairs
= ⟨m + 1, (m + 1) � 1⟩ By defn. of �

◻

Theorem 2 predn =β n � 1

Proof: Direct, from Lemma 1.

predn = (λn.pred2 n (λx.λy. y))n
=β pred2n (λx.λy. y)
=β ⟨n,n � 1⟩ (λx.λy. y) By Lemma 1
=β (λk. k n,n � 1) (λx.λy. y) By repn. of pairs
=β n � 1

◻

An interesting consequence of the Church-Rosser Theorem is that if
e =β e′ where e′ is in normal form, then ez→∗β e′.

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2024

Recursion in the λ-Calculus L3.5

2.4 Primitive Recursion

The general case of primitive recursion follows by a similar argument. Recall

f 0 = c
f (n + 1) = h n (f n)

We begin by defining a function f2 specified with

f2 n = ⟨n, f n⟩

We can define f2 using the schema of iteration.

f2 0 = ⟨0, c⟩
f2 (n + 1) = letpair (f2 n) (λx.λy. ⟨x + 1, hxy⟩)

f n = letpair (f2 n) (λx.λy. x)

To put this all together, we implement a function specified with

f 0 = c
f (n + 1) = h n (f n)

with the following definition in expressions of c and h:

pair = λx.λy. λg. g xy

f2 ≜ λn.n (λr. r (λx.λy.pair (succ x) (h x y))) (pair zero c)
f ≜ λn. f2 n (λx.λy. y)

Recall that for the concrete case of the predecessor function we have c = 0
and h = λx.λy. x.

2.5 The Significance of Primitive Recursion

We have used primitive recursion here only as an aid to see how we can
define functions in the pure λ-calculus. However, when computing over nat-
ural numbers we can restrict the functions that can be formed in schematic
ways to obtain a language in which all functions terminate. Primitive recur-
sion plays a central role in this because if c and g are terminating then so is f
formed from them by primitive recursion. This can be proved by induction
on n.

In this way we obtain a very rich set of functions. However, this set does
for instance not include a function that simulates general Turing machines.

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2024

L3.6 Recursion in the λ-Calculus

We will see in the next few lectures that for each terminating program-
ming languages, there are total and computable functions that cannot be
implemented.

Furthermore, if we give a so-called constructive proof of a statement in
certain formulations of arithmetic with mathematical induction, we can
extract a function that is defined by primitive recursion. We will probably
not have an opportunity to discuss this observation further in this course,
but it is an important topic in the course 15-317/15-657 Constructive Logic.

3 General Recursion

Recall the schemas of iteration and primitive recursion:

f 0 = c
f (n + 1) = g (f n)

f 0 = c
f (n + 1) = g n (f n)

We have already seen how functions defined by iteration and primitive
recursion can be represented in the λ-calculus. We can also see that functions
defined in this manner are terminating as long as c and g are.

Since there are computable functions that do not fit such of schema of
recursion, there must be a more general way of defining recursive functions
in the λ-Calculus.

The most general recursion schema we might think of is

f = hf

which means that in the right-hand side we can make arbitrary recursive
calls to f . For the function plus, the function h could be defined as follows.

h = λplus. λn. λk. if (n = 0) then k
else succ (plus (pred n) k)

Here, we assume that we have functions for testing x = y on natural numbers,
and for conditionals (see Exercise L1.4). The function h reduces to the
addition function plus if we apply it to plus.

The interesting question now is if we can in fact define an f explicitly
when given h so that it satisfies f = hf . We say that f is a fixed point of h,
because when we apply h to f we get f back. Since our solution should
be in the λ-calculus, it would be f =β hf . A function f satisfying such an
equation may not be uniquely determined. For example, the equation f = f
(so, h = λx.x) is satisfied by every function f . On the other hand, if h is a

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2024

Recursion in the λ-Calculus L3.7

constant function such as λx.I then f =β (λx. I) f =β I has a simple unique
solution. For the purpose of this lecture, any function that satisfies the given
equation is acceptable.

If we believe in the Church-Turing thesis, then any computable function
should be representable on Church numerals in the λ-calculus, so there is
reason to hope there are explicit representations for such f . The answer is
given by the so-called Y combinator.2 Before we write it out, let’s reflect on
which laws Y should satisfy? We want that if f = Y h and we specified that
f = hf , so we get Y h = h (Y h). We can iterate this reasoning indefinitely:

Y h = h (Y h) = h (h (Y h)) = h (h (h (Y h))) = . . .

In other words, Y must iterate its argument arbitrarily many times.
The ingenious solution deposits one copy of h and the replicates Y h.

Y = λh. (λx.h (xx)) (λx.h (xx))

Here, the application xx takes care of replicating Y h, and the outer applica-
tion of h in h (xx) leaves a copy of h behind. Formally, we calculate

Y h =β (λx.h (xx)) (λx.h (xx))
=β h ((λx.h (xx)) (λx.h (xx)))
=β h (Y h)

In the first step, we just unwrap the definition of Y . In the second step
we perform a β-reduction, substituting [(λx.h (xx))/x]h (xx). In the third
step we recognize that this substitution recreated a copy of Y h.

You might wonder a function defined with Y will ever terminate since

Y h =β h (Y h) =β h (h (Y h)) =β h (h (h (Y h))) = . . .

Well, it sometimes doesn’t. Actually, this is important if we are to represent
partial recursive functions which include functions that are undefined (have
no normal form) on some arguments. Reconsider the specification f = f as
a recursion schema. Then h = λg. g and

Y h = Y (λg. g) =β (λx. (λg. g) (xx)) (λx. (λg. g) (xx)) =β (λx.xx) (λx.xx)

The expression on the right-hand side here (called Ω) only reduces to itself.
It therefore does not have a normal form. In other words, the function

2For our purposes, a combinator is simply a λ-expression without any free variables.

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2024

L3.8 Recursion in the λ-Calculus

f = Y (λg. g) = Ω solves the equation f = f by giving us a result which
always diverges.

However, some recursive functions always terminate. Consider, for
example, a case where f does not call itself recursively at all: f = λn. succ n.
Then h0 = λg.λn. succ n. And we calculate further

Y h0 = Y (λg.λn. succ n)
=β (λx. (λg.λn. succ n) (xx)) (λx. (λg.λn. succ n) (xx))
=β (λx. (λn. succ n)) (λx. (λn. succ n))
=β λn. succ n

So, fortunately, we obtain just the successor function if we apply β-reduction
from the outside in. It is however also the case that there is an infinite reduction
sequence starting at Y h0. By the Church-Rosser Theorem this means that
at any point during such an infinite reduction sequence we could still also
reduce to λn. succ n. A remarkable and nontrivial theorem about the λ-
calculus is that if we always reduce the left-most/outer-most redex (which
is the first expression of the form (λx. e1) e2 we come to when reading an
expression from left to right) then we will definitely arrive at a normal form
when one exists. And by the Church-Rosser theorem such a normal form is
unique (up to renaming of bound variables, as usual).

If a fixed point is not unique then the result of the Y combinator will
return the most undefined result. Consider again the successor function but
this time we will use the recursive result. Define

h1 ≜ λn. succ n

Then we calculate

Y h1 = Y (λn. succ n)
=β (λn. succ n)(Y h1)
=β succ (Y h1)
= (λn.λs. λz. s (nsz)) (Y h1)
=β λs. λz. s ((Y h1) s z)
=β λs. λz. s ((λs. λz. s ((Y h1) s z)) s z)
=β λs. λz. s (s ((Y h1) s z))
=β . . .

Like Ω, this “infinite” number does not have a normal form but can appear
in expressions that have a normal form. For example:

(Y h1)(λx.succ zero) zero =β 1̄

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2024

Recursion in the λ-Calculus L3.9

4 Defining Functions by Recursion

Consider the factorial function, which we deliberately write using general
recursion rather than primitive recursion.

fact n = if n = 0 then 1 else n ∗ fact(n − 1)

To write this in the λ-calculus we first define a zero test ifz satisfying

ifz 0 c d = c
ifz n + 1 c d = d

which is a special case of if iteration and can be written, for example, as

ifz = λn.λc. λd.n (K d) c

Eliminating the mathematical notation from the recursive definition of fact
get the equation

fact = λn. ifz n (succ zero) (times n (fact (predn)))

where we have already defined succ, zero, times, and pred. Of course, this is
not directly allowed in the λ-calculus since the right-hand side mentions
fact which we are just trying to define. The function hfact which will be the
argument to the Y combinator is then

hfact = λf.λn. ifz n (succ zero) (times n (f (predn)))

and

fact = Y hfact

We can write and execute this now in LAMBDA notation (see file rec.lam)

1 defn I = \x. x
2 defn K = \x. \y. x
3 defn Y = \h. (\x. h (x x)) (\x. h (x x))
4

5 defn ifz = \n. \c. \d. n (K d) c
6

7 defn h_fact = \f. \n. ifz n (succ zero) (times n (f (pred n)))
8 defn fact = Y h_fact
9

10 norm _120 = fact _5
11 norm _720 = fact (succ _5)

Listing 1: Recursive factorial in LAMBDA

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2024

http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/03-recursion/rec.lam

L3.10 Recursion in the λ-Calculus

Exercises

Exercise 1 Once we can define each individual instance of the schemas
of iteration and primitive recursion, we can also define them explicitly as
combinators.

Define combinators iter and primrec such that

(i) The function iter g c satisfies the schema of iteration

(ii) The function primrec h c satisfies the schema of primitive recursion

You do not need to prove the correctness of your definitions.

Exercise 2 Define the following functions in the λ-calculus using the LAMBDA

implementation. Here we take “=” to mean =β , that is, β-conversion.
You may use all the functions in nat.lam as helper functions. Your

functions should evidently reflect iteration, primitive recursion and pairs.
In particular, you should avoid the use of the Y combinator which will be
introduced in Lecture 3.

Provide at least 3 test cases for each function.

(i) if0 (definition by cases) satisfying the specification

if0 0 x y = x

if0 k + 1 x y = y

(ii) even satisfying the specification

even 2k = true

even 2k + 1 = false

(iii) half satisfying the specification

half 2k = k

half 2k + 1 = k

Exercise 3 The Lucas function (a variant on the Fibonacci function) is de-
fined mathematically by

lucas 0 = 2
lucas 1 = 1
lucas (n + 2) = lucas n + lucas (n + 1)

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2024

http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/02-primrec/nat.lam

Recursion in the λ-Calculus L3.11

Give an implementation of the Lucas function in the λ-calculus via the
LAMBDA implementation.

You may use the functions from nat.lam as helper functions, as well
as those from Exercise 2. Your functions should evidently reflect iteration,
primitive recursion and pairs. In particular, you should avoid the use of the
Y combinator which will be introduced in Lecture 3.

Test your implementation on inputs 0, 1, 9, and 11, expecting results 2,
1, 76, and 199. Include these tests in your code submission, and record the
number of β-reductions used by your function.

Exercise 4 We can define binomial coefficients bin n k by the following
recurrence:

bin 0 k = 1
bin (n + 1) 0 = 1
bin (n + 1) (k + 1) = bin n k + bin n (k + 1)

Give an implementation of the bin function in the λ-calculus via the LAMBDA

implementation.
You may use the functions from nat.lam as helper functions, as well

as those from Exercise 2. Your functions should evidently reflect iteration,
primitive recursion and pairs. In particular, you should avoid the use of the
Y combinator which will be introduced in Lecture 3.

Provide at least 5 test cases.

Exercise 5 Give an implementation of the factorial function in the λ-calculus
as it arises from the schema of primitive recursion. How many β-reduction
steps are required for factorial of 0, 1, 2, 3, 4, 5 in each of the two implemen-
tations?

Exercise 6 The Fibonacci function is defined by

fib 0 = 0
fib 1 = 1
fib (n + 2) = fib n + fib (n + 1)

Give two implementations of the Fibonacci function in the λ-calculus (us-
ing the LAMBDA implementation). You may use the functions in (see file
rec.lam).

(i) Exploit the idea behind the encoding of primitive recursion using pairs
to give a direct implementation of fib without using the Y combinator.

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2024

http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/02-primrec/nat.lam
http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/02-primrec/nat.lam
http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/03-recursion/rec.lam

L3.12 Recursion in the λ-Calculus

(ii) Give an implementation of fib using the Y combinator.

Test your implementation on inputs 0, 1, 9, and 11, expecting results 0, 1,
34, and 89. Which of the two is more “efficient” (in the sense of number of
β-reductions)?

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2024

	Introduction
	Primitive Recursion
	Defining the Predecessor Function
	Defining Pairs
	Proving the Correctness of the Predecessor Function
	Primitive Recursion
	The Significance of Primitive Recursion

	General Recursion
	Defining Functions by Recursion

