
Lecture Notes on
Inference Rules and Careful Definition of

λ-Calculus

15-814: Types and Programming Languages
Jan Hoffmann and Frank Pfenning

Lecture 4
Thursday, September 5, 2024

1 Introduction

We formalize the definitions that we introduced informally using the concept
of rule induction.

2 Inference Rules and Rule Induction

We now revisit the definition of the λ-calculus to formalize the concepts
like β-equality, which have introduced informally. Throughout this course,
we use inference rules to write down inductive definitions. Inference rules
usually define a judgment, which can be thought of as a relation between
certain objects. An inference rule has the form

J1⋯Jn

J

where Ji and J are judgments. We call J1, . . . , Jn the premises of the rule
and J the conclusion. The meaning of the rule is that J1 and J2 and . . . Jn
imply J .

Inference rules can be best understood by example. For instance, we can
inductively define a judgment e exp, which states that e is an expression. We
define this judgment with 3 inference rules.

x var
x exp

E1

x var e exp
λx.e exp

E2

e1 exp e2 exp
(e1 e2) exp

E3

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2024



L4.2 Inference Rules and Careful Definition of λ-Calculus

Rules are often annotated with names, here E1, E2, and E3, so that we can
easily reference them. In the rule E1, we assume that we already have a
judgment x var for variables available. The rule states that each variable
is an expression. The other rules reflect the remainder of the inductive
definition of expressions.

We can take two views on the meaning of such inductive definitions. The
first one is that inference rules define the smallest set of judgments that is
closed under the rules. In the example, that is the smallest set that contains
x exp for each variable, λx.e exp if e exp is in the set and x is a variable, and
(e1 e2) exp if e1 exp and e2 exp are in the set.

Equivalently, we can say that the rules define the set of judgments that
are derivable using the rules. A judgment is derivable if it has a derivation
tree.

For example, we can derive ((λx.x) y) exp with the following derivation
tree.

x var
x var
x exp

E1

(λx.x) exp
E2

y var
y exp

E1

((λx.x) y) exp
E3

As we have seen, the expressions of the λ-calculus can be described by a
grammar that can be seen as an abbreviation of the rules. So it is in general
not necessary to write down such inference rules when we define the syntax
of a programming language. However, most inductive definitions cannot
be defined by a simple grammar. For example, let us define a judgment
size(e, n) that states that an expression e has size n.

x var
size(x,1)

S1

x var size(e, n)
size(λx.e, n + 1)

S2

size(e1, n1) size(e2, n2)

size(e1 e2, n1 + n2 + 1)
S3

We prove a statement about judgments by rule induction. This means
that for each rule, we assume the statement holds for the premises of the
rule (induction hypothesis) and show that it holds for the conclusion. For
example, we can prove the following lemma.

Lemma 1 If e exp then there exist an n such that size(e, n).

Proof: By induction on the judgment e exp.

Case E1: Then e = x and x var. But then size(x,1) by rule S1.

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2024



Inference Rules and Careful Definition of λ-Calculus L4.3

Case E2 ∶ Then e = λx.e′ for some e′, x var, and e′ exp. We can apply the
induction hypothesis to the premise e′ exp and conclude that there
exists n′ such that size(e′, n′). Then we can apply rule S2 to derive
size(λx.e′, n′ + 1).

Case E3: Then e = (e1 e2) for some ei, and we have e1 exp and e2 exp. So
we can apply the induction hypothesis twice and conclude that there
exists n1 and n2 such that size(e1, n1) and size(e2, n2). But then we can
apply the rule S3 to conclude size(e1 e2, n1 + n2 + 1).

◻

Again, there are two views we can take to justify rule induction. The
first view is that we show that the judgments for which the statement holds
are closed under the inference rules. But since the inductively-defined
judgments are the smallest such set, we have shown that the judgments are
included in the set for which the statement holds. The second view is to
think of rule induction as an induction on derivation trees. We make a case
distinction on the rule that has been used at the root and assume that the
statement holds for the subtrees (induction hypothesis). If you examine the
proof of Lemma 1 again, you can even few it as a program that converts a
derivation tree of e exp into a derivation tree of size(e, n).

Another statement we could prove is that the size of an expression is
unique. Given that we proved Lemma 1 already, we only need to show that,
for a given expression e, there is at most one n such that size(e, n). A good
way to state formulate the needed lemma is as follows.

Lemma 2 If size(e, n) and size(e,m) then n =m.

Again, we prove the lemma by rule induction. We have two options: We
can induct on the judgment size(e, n) or the judgment size(e,m), which will
not make a difference in the proof because the statement we aim to prove is
symmetric.

Let’s proceed by induction on size(e, n). When we come to the case of
the Rule S1 we know e = x, x var, and n = 1. But how do we proceed now?
We would like to show that m = 1. This is intuitively clear because the
only rule that applies to variables is Rule S1. We can prove m = 1 by an
inner rule induction on size(x,m) (recall that e = x). In the case of Rule S1,
we immediately have m = 1. Rule S2 does not apply because x ≠ (e1 e2).
Similarly, Rule S3 also does not apply. So it follows that m = 1.

The other cases are similar and both require an inner induction on
size(e,m) as well.

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2024



L4.4 Inference Rules and Careful Definition of λ-Calculus

In the future, you do not have to write out the inner induction on
size(e,m) but instead simply apply inversion, which is stated by the fol-
lowing lemma.

Lemma 3 (Inversion) Let size(e, n).

1. If e = var x then n = 1.

2. If e = (e1 e2) then there exists n1 and n2 such size(e1, n1), size(e2, n2), and
n = n1 + n2 + 1.

3. If e = λx.e′ then there exists n such that size(e′, n′) and n = n′ + 1.

The prove proceeds by induction on size(e, n) as previously sketched for
the case of Rule S1.

3 Binding, Scope, and Substitution

We will first discuss abstract binding trees and then return to the λ-calculus
to formally define substitution.

3.1 Abstract Binding Trees

In the following, we rigorously define substitution and related concepts
like α-equivalence for the λ-calculus. However, these definitions directly
generalize to all programming languages we discuss in this course. An eco-
nomical way to formalize these syntax-related concepts is to abstract from
a single programming language and to define them for so-called abstract
binding trees (ABTs) [Har16]. Then the apply to every language whose syntax
is defined using ABTs.

In this course, we are not going to define ABTs but we will use the ABT
notation to define the syntax of languages. For example, the syntax of the
λ-calculus can be defined as follows.

Concrete Abstract
Expressions e ∶∶= λx. e lam(x.e)

e1 e2 app(e1, e2)

ABTs are a generalization of abastract syntax trees that add the concepts
of variables and binding. In the previous grammar, we do not mention
variables explicitly. ABTs automatically come with a notion of variables

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2024



Inference Rules and Careful Definition of λ-Calculus L4.5

that range over the different sorts of the language. For the λ-calculus, we
only have the sort of expressions and variables always stand for expressions.
However, other languages have multiple sorts such as expressions and types.
Then we have variables that range over expressions and other variables that
range over types.

The definition of the syntactic objects (here expressions) is given by a set
of operators. In the previous example, the operators are lam and app. Each
operator comes with a fixed number of arguments and a binding structure.
The binding is indicated by writing x.e like in the lambda abstraction. It
means that one variable (x) is bound here and the scope of the binding is e.
If multiple variables are bound then we write x1, . . . , xn.e.

ABTs are useful not only for formally defining general syntactic concepts
but also when specifying the syntax semantics of language. The advantage
is that the scope of bindings and operators is unambiguous. Later in the
semester, you will likely prefer specifying languages in ABT notation.

3.2 Free and Bound Variables

The free variables of an expression of the λ-calculus are defined by the
judgment x ∈ e, which reads variable x is free in expression e.

x var
x ∈ x

V1

y ∈ e y ≠ x

y ∈ lam(x.e)
V2

x ∈ e1

x ∈ app(e1, e2)
V3

x ∈ e2

x ∈ app(e1, e2)
V4

Free variables are placeholders for expressions. Changing the name of a
free variable changes the meaning of an expression. This can be seen if the
expression is a sub-expression of a larger expression. One the other hand,
we can change the name of bound variables without changing the meaning
of an expression in any context (as long as we don’t intrigued name clashes).
Since the name of bound variables does not matter, it does generally not
make sense to define something like the bound variables of an expression.

3.3 Substitution and Alpha-Equivalence

Through substitution we give meaning to variables. Maybe surprisingly,
substitution is subtle to formalize. The main difficulty is an issue that
is called variable capture. To understand the issue, consider for example
the expression λx.y x, which is a function that applies the variable y to
its argument. If we substitute x for y then we get λx.x x. The result we
expected is a function that applies the variable x to its argument but what
we got is a function that applies its argument to itself.

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2024



L4.6 Inference Rules and Careful Definition of λ-Calculus

One way to solve the problem is to define substitution only if such a
variable capture does not happen. We define the judgment sub(ex, x, e, e′)
through the rules below. The meaning is that the expression e′ is the result
of replacing variable x with expression ex in expression e.

sub(ex, x, x, ex)
S1

y ≠ x

sub(ex, x, y, y)
S2

sub(ex, x, e1, e
′

1) sub(ex, x, e2, e
′

2)

sub(ex, x,app(e1, e2),app(e
′

1, e
′

2))
S3

sub(ex, x, lam(x.e), lam(x.e))
S4

x ≠ y y /∈ ex sub(ex, x, e, e
′
)

sub(ex, x, lam(y.e), lam(y.e
′
))

S5

With this approach, substitution is undefined some expressions: There
does not exist an e such that sub(x, y, λx.y x, e). This is however very
inconvenient. For example, it is difficult to define β-reduction since we now
have to address the cases in which substitution is not defined. Our goal is
therefore to define a total version of the judgment sub.

The idea of the total substitution judgment is to use α-equivalence. In
future lectures, we will implicitly identify α-equivalent expressions (and
types). So if we talk about an expression such as λx.x, we mean the α-
equivalence class of λx.x.

The judgment for α-equivalence is defined by the following rules. Note
that the judgment e1 =α e2 is indeed an equivalence relation.

e =α e
A1

e1 =α e′1 e2 =α e′2

app(e1, e2) =α app(e′1, e
′

2)
A2

sub(y, x, e, e′) y /∈ e

lam(x.e) =α lam(y.e′)
A3

e =α e′

e′ =α e
A4

e1 =α e2 e2 =α e3

e1 =α e3
A5

Equipped with α-equivalence we can now define the result of substitu-
tion to rename bound variables to avoid name capturing. The following rule
defines a judgment subα(ex, x, e, e′) that is total in the sense that for every
ex, x and e there exists an e′ such that subα(ex, x, e, e′).

sub(ex, x, e0, e
′
) e0 =α e

subα(ex, x, e, e
′
)

Subα

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2024



Inference Rules and Careful Definition of λ-Calculus L4.7

We write [ex/x]e for (the equivalence class of) an expression e′ such that
subα(ex, x, e, e

′). The substitution [ex/x]e is well-defined since all such e′

are α-equivalent.

4 Beta-Reduction

Finally, we can use inference rules to define β-reduction and β-equality. The
rules for β-equality are as follows.

app(lam(x.e), e′) =β [e
′
/x]e

B1

e1 =β e′1 e2 =β e′2

app(e1, e2) =β app(e′1, e
′

2)
B2

e =β e′

lam(x.e) =β lam(x.e′)
B3

e =β e
B4

e1 =β e2 e2 =β e3

e1 =β e3
B5

e =β e′

e′ =β e
B6

To define β-reduction we would only use rules B1, . . . ,B3. To define the
multi-step β-reduction ez→∗β e′ we would use only rules B1, . . . ,B5.

5 Limitations of the λ-Calculus

The λ-Calculus is arguably the most elegant programming language. If we
believe Church’s law then it can also express all commutable functions. So
why should we even consider other programming languages? There are
multiple reasons to study other languages and in particular typed languages.

Expressivity One could say that we got more than we bargained for with
the λ-Calculus. We defined a seemingly simple programming language
(which only provides functions) and discovered that it is expressive enough
to not only express non-termination but all commutable functions and
abstractions such as pairs and natural numbers. However, we set out to
study such abstraction in isolation. We also want to study languages that
are normalizing, that is, languages in which all programs terminate. Both is
difficult in the λ-Calculus.

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2024



L4.8 Inference Rules and Careful Definition of λ-Calculus

Weak Abstractions While we can express abstractions such as pairs and
natural numbers in the λ-Calculus, these abstractions are not enforced. For
example, we can call the function plus with arguments that are not Church
numerals and the resulting expression can either be evaluated to a normal
form or will diverge. There will be no warning or error. In this way, the
λ-Calculus behaves similarly to an assembly language. On the one hand,
this makes it difficult to use the λ-Calculus to implement complex software.
It would simple be hard to debug large λ expressions when we only see
some nonsensical result but do not get hints for finding the point at which
the computation went wrong. On the other hand, it makes it difficult to
reason about programs in the λ-Calculus. For example, we cannot prove
by induction on the natural numbers that plus will always terminate (has a
normal form) if its arguments terminate.

Strong Reduction β-reduction and normal (or leftmost-outermost) evalua-
tion differ from evaluation in most programming languages. So far we have
considered only evaluation strategies that are based on strong reduction. In
strong reduction, we allow evaluation of a function without an argument as
defined by Rule B3.

e =β e′

lam(x.e) =β lam(x.e′)
B3

Evaluation strategies based on weak reduction (like call-by-name or call-
by-value, which we will discuss in the next lecture) do not allow such
evaluations. As a result, all lambda abstractions lam(x.e) are normal forms.

It would be perfectly possible, to define the λ-Calculus using a weak re-
duction strategy. We would still be able to express all commutable functions.
However, we would have to make some modifications. For instance, the
Church numerals would not work in such a setting since, for example, the
normal form a the successor of a Church numeral would not be a Church
numeral. So we would have to use a different encoding like Barendregt
numerals. Moreover, the Church-Rosser theorem would not hold anymore
since we the order of β-reductions would matter [BLM05] and we would not
have the confluence property. Finally, we would only define a λ-Calculus in-
stead of the λ-Calculus, which was defined by Church using β-equivalence.
For these reasons, the λ-Calculus with a weak reduction strategy looses
some of its appeal.

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2024



Inference Rules and Careful Definition of λ-Calculus L4.9

Exercises

Exercise 1 Prove by rule induction: For all e and n, if size(e, n) then e exp.

Exercise 2 Provide an expression e such that subα(x, y, λx.y x, e). Give a deriva-
tion tree for the judgment subα(x, y, λx.y x, e).

References

[BLM05] Tomasz Blanc, Jean-Jacques Lévy, and Luc Maranget. Sharing
in the weak lambda-calculus. In Aart Middeldorp, Vincent van
Oostrom, Femke van Raamsdonk, and Roel C. de Vrijer, editors,
Processes, Terms and Cycles: Steps on the Road to Infinity, Essays
Dedicated to Jan Willem Klop, on the Occasion of His 60th Birthday,
volume 3838 of Lecture Notes in Computer Science, pages 70–87.
Springer, 2005.

[Har16] Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, second edition, April 2016.

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2024


	Introduction
	Inference Rules and Rule Induction
	Binding, Scope, and Substitution
	Abstract Binding Trees
	Free and Bound Variables
	Substitution and Alpha-Equivalence

	Beta-Reduction
	Limitations of the -Calculus

