
Lecture Notes on
Gödel’s System T

15-814: Types and Programming Languages
Jan Hoffmann

Lecture 5
Tuesday, September 12, 2023

1 Introduction

In this lecture we discuss System T, which has been developed by Kurt Gödel
as a logical system in 1930s [Göd80]. We present System T as a programming
language that features natural numbers, higher-order functions, and the
schema of primitive recursion. In contrast to the λ-Calculus, System T
has a type system that is part of the static semantics, which defines the set
of programs. This makes System T a normalizing language, that is, every
System T program terminates. While termination is a desirable property, we
will see that normalizing languages cannot express all total functions we
can implement in the λ-Calculus and have other limitations that make them
difficult to use as general purpose programming languages.

2 Historical Context

This lecture is the first time we encounter the Curry–Howard Correspondence
that links mathematical logic and (normalizing) programming languages.
We will revisit and explore this connection later in the course. Here, we just
note that System T was introduced as a logical reasoning system that has
been part of Gödel’s response to Hilbert’s program, which aimed at grounding
mathematics in a set of axioms and reasoning rules that implies all math-
ematical theorems, including the consistency of the axioms. The work on
Hibert’s program was triggered by the foundational crises of mathematics
that emerged after the discovery of Russel’s paradox in 1901.

LECTURE NOTES TUESDAY, SEPTEMBER 12, 2023



L5.2 Gödel’s System T

Gödel approached Hilbert’s program by investigating if a solution is at
all possible. In 1929, he proved his completeness theorem which states that
there is a set of decent inference rules so that

If a theorem follows from a set of assumptions then it can be
proved by a derivation tree using the inference rules.

This was followed in 1931 by Gödel’s famous incompleteness theorems,
which imply that the goals of Hilbert’s program cannot be achieved. The
incompleteness theorems [Raa20] state that

for every set of decent axioms and inference rules there are theo-
rems that we cannot derive.

The incompleteness theorem only applies to sets of axioms that are powerful
enough to reason about integer arithmetic. The proof of the first incomplete-
ness theorem constructs a theorem that intuitively states I’m not provable
and cannot be proved or disproved. The second incompleteness theorem
constructs a theorem that intuitively states the set of axioms is consistent and
also cannot be proved or disproved (consistent means that the axioms are
not contradictory).

Gödel’s work was extremely innovative and introduced ideas such as
encoding of data in numbers and the necessity a mathematical notion of
compatibility. The latter arose from the need to precisely define what a decent
axiom or rule is. Gödel’s idea was that a rule or axiom is decent if it can
be mechanically determined if it was used correctly. Today, we would say
that rules and axioms should be decidable. To this end, Gödel proposed the
notion of general recursive functions as a formalization of compatibility in 1934.
This definition was later shown to be equivalent to Church’s λ-Calculus
(proposed in 1935) and the Turing’s machines (proposed in 1936).

3 System T

System T has been introduced by Gödel in 1941 as a mitigation of the second
incompleteness theorem. He showed that it is possible to prove the consis-
tency of the theory of arithmetic (Peano arithmetic) in a higher-order version
of the same theory in which theorems can quantify over theorems (not only
numbers). Here, we define System T as the corresponding programming
language with natural numbers, higher-order functions, and a type system.

LECTURE NOTES TUESDAY, SEPTEMBER 12, 2023



Gödel’s System T L5.3

Syntax The syntax of System T is given by types and expressions. The
types consists of natural numbers nat and function types τ1 → τ2.

Abstract Concrete
Typ τ ∶∶= nat nat number

arr(τ1, τ2) τ1 → τ2 function

Exp e ∶∶= x x variable
z z zero
s(e) s(e) successor
rec{e0;x.y.e1}(e) rec e{z↪ e0 ∣ s(x)with y ↪ e1} recursion
lam{τ}(x.e) λ (x ∶ τ) e abstraction
app(e1, e2) e1(e2) application

Like in the λ-Calculus, we have syntactic forms for function abstraction
and function application. A difference is that we function abstractions
λ (x ∶ τ) e are annotated with types τ that indicated the type of the function
argument. This is not a requirement but ensures the desirable property that
types of closed expressions are unique.

The introduction for natural numbers are zeroand the successor, which
yields a unary encoding. The elimination form for natural numbers is
the recursor rec{e0;x.y.e1}(e), which implements the schema of primitive
recursion.

For n ∈ N, we define the numeral n inductively as follows.

0 ≜ z

n + 1 ≜ s(n)

Recursor The recursor defines a terminating recursive computation us-
ing primitive recursion. To understand how it works, recall the schema of
primitive recursion from Lecture 3:

f 0 = c
f (n + 1) = h n (f n)

Translating f to our recursor lead the following expression

f = λ (n ∶ nat)recn{z↪ ec ∣ s(x)with y ↪ eh(x)(y)}
where the expression ec is the implementation of the constant c and the
expression eh is the implementation of the function h. So ec is the base case
of the recursion and eh is the step function that will be applied n times.

LECTURE NOTES TUESDAY, SEPTEMBER 12, 2023



L5.4 Gödel’s System T

For example, we can define the addition function in System T as follows.

add = λ (n ∶ nat)λ (m ∶ nat)recn{z↪m ∣ s(x)with y ↪ s(y)}

We will see how such an expression behaves in an evaluation when we
discuss the dynamic semantics.

4 Static Semantics

We use a type system to define the programs of System T. We want to create
a normalizing language, so every program should evaluate to a number or
a function, which are the values of System T. But what are the programs
of System T? In the λ-Calculus, we could define programs to be closed
expressions, that is, expression that do not contain free variables. However,
this approach seems to not work for System T. What should for instance be
the result of evaluating the expression app(s(z),z)? It does not make sense
to apply 1 to 0 because 1 is not a function. Using a type system, we exclude
such nonsensical programs and define programs to be well-typed closed
expressions.

We inductively define the judgment

Γ ⊢ e ∶ τ

where e is an expression, τ is a type, and Γ is variable context that maps
variables to types. We define

Γ ∶∶= ⋅ empty context
Γ, x ∶ τ mapping

We require that every variable appears at most once in a context Γ. So if we
write Γ1,Γ2 we refer to the joined map of Γ1 and Γ2 with the implicit side
condition dom(Γ1) ∩ dom(Γ1) = ∅. The order in which variable bindings
appear in Γ does not matter.

The programs of System T are well-typed and closed expressions e or,
more precisely, expressions for which we can derive the judgment

⋅ ⊢ e ∶ τ .

We usually just write e ∶ τ for a program of type τ .
The type rules of System T are syntax directed. That means that there is

exactly one type rule for each syntactic form. The rule Tvar states that the

LECTURE NOTES TUESDAY, SEPTEMBER 12, 2023



Gödel’s System T L5.5

Γ, x ∶ τ ⊢ x ∶ τ Tvar
Γ ⊢ z ∶ nat Tz

Γ ⊢ e ∶ nat
Γ ⊢ s(e) ∶ nat Ts

Γ ⊢ e ∶ nat Γ ⊢ e0 ∶ τ Γ, x ∶ nat, y ∶ τ ⊢ e1 ∶ τ
Γ ⊢ rec{e0;x.y.e1}(e) ∶ τ

Trec

Γ, x ∶ τ ⊢ e ∶ τ ′
Γ ⊢ lam{τ}(x.e) ∶ τ → τ ′

Tlam
Γ ⊢ e1 ∶ τ → τ ′ Γ ⊢ e2 ∶ τ

Γ ⊢ app(e1, e2) ∶ τ ′
Tap

Figure 1: Type Rules of System T

expression x is type τ if the hypothesis x ∶ τ is part of the context Γ. The rule
Tz states that the constant z has type nat in every context. The rule Ts states
that s(e) has type nat in context Γ if e has type nat in the same context.

To understand the rule Trec we can consult our previous discussion of the
intended meaning of the recursor. The expression e is supposed to evaluate
to a natural number that indicates the number of times we should iterate
the step function. The result of the computation of the recursor is of type
τ . Consequently, the expression e0 for the base is also of type τ . Finally,
the step functions e1 also has type τ and consumes the predecessor of the
current iteration (x ∶ nat) and the result of the previous iteration (y ∶ τ ). It
is important to note that the result type τ of the recursor is arbitrary and
includes function types. This makes System T very expressive and lets us,
for instance, implement functions that are not primitive recursive such as
Ackermann’s function.

The rule Tlam states that a function abstraction has type τ → τ ′ if the
function body e has type τ ′ under the assumption that the argument x has
type τ . An interesting detail is that we use the context Γ, x ∶ τ in the typing
of the expression e without verifying that x /∈ dom(Γ). We can get away with
this because of α-equivalence: lam{τ}(x.e) binds the variable x and we pick
a representative from the equivalence class so that the variable x does not
appear in Γ.

The rule Tap for function applications states that e1 has to have a function
type τ → τ ′ in context Γ and that e2 has to have a matching argument type τ
in the same context. Then the application app(e1, e2) has type τ ′ in context
Γ.

The type judgment Γ ⊢ e ∶ τ is a hypothetical judgment. The variable typ-
ings x ∶ τ ′ in the context Γ are the hypotheses. The meaning of a hypothesis

LECTURE NOTES TUESDAY, SEPTEMBER 12, 2023



L5.6 Gödel’s System T

is that the variable x does not stand for arbitrary expressions like in the
λ-Calculus but for expressions of type τ ′. We can replace the occurrences of
x in the expression e with an expression of the same type τ ′ and can then
derive that the resulting expression has type τ . This is made precise by the
following lemma, which can be proved by rule induction on Γ, x ∶ τ ′ ⊢ e ∶ τ .

Lemma 1 (Substiution) If Γ, x ∶ τ ′ ⊢ e ∶ τ and Γ ⊢ e′ ∶ τ ′ then Γ ⊢ [e′/x]e ∶ τ .

We can prove inversion lemmas. For example, we show the following
one for the successor. The proof is by induction on the judgment Γ ⊢ s(e) ∶ τ .

Lemma 2 (Inversion Successor) If Γ ⊢ s(e) ∶ τ then τ = nat and Γ ⊢ e ∶ nat.

Another property we can prove is that types are unique in a given
context. This property is not a requirement for a programming language
but desirable.

Lemma 3 If Γ ⊢ e ∶ τ and Γ ⊢ e ∶ τ ′ then τ = τ ′.

We can prove the lemma by induction on Γ ⊢ e ∶ τ and by applying inversion
to Γ ⊢ e ∶ τ

The type system also enjoys structural properties like weakening and
contraction. Weakening states that we can add variables to our context that
are not used without hampering a type derivation. Contraction states that
we can use variables in the context as often as we want in an expression.
Later in this curse, we will study substructural type systems that do not enjoy
some (or all) of these structural properties.

Lemma 4 (Weakening) If Γ ⊢ e ∶ τ then Γ, x ∶ τ ′ ⊢ e ∶ τ .

Lemma 5 (Contraction) If we have Γ, x1 ∶ τ ′, x2 ∶ τ ′ ⊢ e ∶ τ then Γ, x ∶ τ ′ ⊢
[x,x/x1, x2]e ∶ τ .

The proof of both lemmas proceeds by induction on the type judgment on
the left-hand side of the implication.

We can prove inversion lemmas. For example, we show the one for the
successor.

Lemma 6 (Inversion Successor) If Γ ⊢ s(e) ∶ τ then τ = nat and Γ ⊢ e ∶ nat.

LECTURE NOTES TUESDAY, SEPTEMBER 12, 2023



Gödel’s System T L5.7

5 Dynamic Semantics

We now define the dynamic semantics (or just dynamics), which defines
the result of evaluating a program. There are different ways in which
we can define the dynamics. In this course, we focus on an operational
approach. It is called operational because it is close to the implementation
of an interpreter.

For System T we define a structural dynamic semantics. It is sometimes
also called small-step operational semantics or just small-step semantics.
The idea is to define a transition system, so that states are programs and
transitions represent computational steps. Our goal is that programs either
transition to another state or are final states (which we call values) that do
not transition further. We want transitions to be deterministic as well.

When defining the structural dynamics, we have some degree of freedom.
For instance, we can decide to evaluate function by-name or by-value. In the
case of System T, this choice is inconsequential in sense that programs e ∶ nat
at base type evaluate to the same value in both versions.

Values The values, the final states in the transition system, are inductively
defined by the judgment v val. There are two kinds of values function
abstractions and numerals n.

lam{τ}(x.e) val Vlam
z val

Vz
e val

s(e) val Vs

Call-By-Value Transitions We inductively define the judgement ez→ e′,
which states that e steps to e′ in one step. Multi-step evaluation ez→∗ e′ is
defined inductive by the following rules.

ez→∗ e′ M1
ez→∗ e′ e′ z→ e′′

ez→∗ e′′ M2

Figure 2 contains the rules for the step relation. Rule Es states that to
make a step in the evaluation s(e), we have to make a step in e. The rules
Erec1,Erec2, andErec3 specify how to evaluate the recursor rec{e0;x.y.e1}(e).
We first evaluate the “argument” e that specifies the number of recursive
steps. If e is already a value, we consider two cases. If e = z then we
step to e0. If e = s(e′) then we evaluate e1 with e′ and rec{e0;x.y.e1}(e′)
substituted for the variables x and y. This is the self-reference that powers
the recursive computation.

LECTURE NOTES TUESDAY, SEPTEMBER 12, 2023



L5.8 Gödel’s System T

ez→ e′

s(e)z→ s(e′) Es
ez→ e′

rec{e0;x.y.e1}(e)z→ rec{e0;x.y.e1}(e′)
Erec1

rec{e0;x.y.e1}(z)z→ e0
Erec2

s(e) val
rec{e0;x.y.e1}(s(e))z→ [e,rec{e0;x.y.e1}(e)/x, y]e1

Erec3

e1 z→ e′1

app(e1, e2)z→ app(e′1, e2)
Eap1

e1 val e2 z→ e′2

app(e1, e2)z→ app(e1, e′2)
Eap2

e2 val

app((λ (x ∶ τ) e), e2)z→ [e2/x]e
Eap3

Figure 2: Call-By-Value Step Relation

The function application app(e1, e2) is evaluated in call-by-value or eager
evaluation order. Rule Eap1 specifies that we first evaluate the expression e1.
Rules Eap2 and Rule Eap3 ensure that we first evaluate e2 to a avlue bevore
we perform the substitution of the argument.

In an eager language, variables stand for values. This should be reflected by
the structural dynamic semantics that only substitutes values. The rules we
present are therefore not truly eager since we substitute the recursor for y in
the rule Erec3.

Call-By-Name Transitions If we use the call-by-name (or lazy) evaluation
order then we replace the rules Eap2 and Eap3 with the following rule Eap4.

app((λ (x ∶ τ) e), e2)z→ [e2/x]e
Eap4

This rule is similar to Eap3 but without the premise e2 val.
Call-by-name function evaluation is only suitable for a lazy language in

which variables stand for general expression.

Exercises

Exercise 1 Provide a type τ and a derivation tree for the judgment

λ (n ∶ nat)λ (m ∶ nat)recn{z↪m ∣ s(x)with y ↪ s(y)}τ .

LECTURE NOTES TUESDAY, SEPTEMBER 12, 2023



Gödel’s System T L5.9

Exercise 2 Prove Lemma 1.

Exercise 3 Prove Lemma 3.

Exercise 4 Let

add ≜ λ (n ∶ nat)λ (m ∶ nat)recn{z↪m ∣ s(x)with y ↪ s(y)}τ .

Provide a derivation of the judgment

add(2)(2)z→∗ 4 .

References

[Göd80] Kurt Gödel. On a hitherto unexploited extension of the finitary
standpoint. Journal of Philosophical Logic, 9:133–142, 1980.

[Raa20] Panu Raatikainen. Gödel’s incompleteness theorems. Stanford
Encyclopedia of Philosophy, 2020.

LECTURE NOTES TUESDAY, SEPTEMBER 12, 2023


	Introduction
	Historical Context
	System T
	Static Semantics
	Dynamic Semantics

