
Lecture Notes on
Properties of System T

15-814: Types and Programming Languages
Jan Hoffmann

Lecture 6
Thursday, September 12, 2024

1 Introduction

In the previous lecture, we defined the static and dynamic semantics of
System T. In this lecture, we study the properties of System T.

First, we show the dynamic semantics has the properties that we were
aiming for when defining it:

• Values are final states that do not appear on the left side of transitions.

• For programs that are not values, there is exactly one transition to
another program.

A key to proving these properties is type soundness, which links the static
and dynamic semantics of a language through progress and preservation.

Next, we consider normalization: all System T programs evaluate to a
value. We also say all programs terminate and call System T a total language.
We discuss the difficulties of proving normalization. On Homework Assign-
ment 3, you will prove canonicity, which corresponds to normalization at
the base type nat for System T.

Finally, we discuss the expressivity of System T. We characterize the
functions Nk → N which can be defined and construct a (total) computable
function that cannot be defined in T (namely, a self-interpreter). We also
discuss Blum’s Size Theorem, which shows a shortcoming of total languages
that hampers their practicality.

LECTURE NOTES THURSDAY, SEPTEMBER 12, 2024



L6.2 Properties of System T

2 Type Soundness

Static and Dynamic Semantics Recall the definition of the static semantics
from the previous lecture. We defined the judgment

Γ ⊢ e ∶ τ

which states that expression e has type τ in context Γ. Programs are well-
typed closed expressions e, that is, we have ⋅ ⊢ e ∶ τ and usually just write
e ∶ τ .

We defined one inference rule for each syntactic form. For example, for
function application we defined the rule Tap.

Γ ⊢ e1 ∶ τ → τ ′ Γ ⊢ e2 ∶ τ
Γ ⊢ app(e1, e2) ∶ τ ′

Tap

For the dynamic semantics we defined two judgments e val, which states
that the expression e is a value, and ez→ e′, which states that e steps to e′.
If we consider call-by-name evaluation order then we have the following rules
for function application.

e1 z→ e′1

app(e1, e2) z→ app(e′1, e2)
Eap1

app((λ (x ∶ τ) e), e2) z→ [e2/x]e
Eap4

We now want to show that (1) values are final states that do not appear
on the left side of transitions and (2) there is exactly one transition for
programs that are not values. The first part and the determinacy of the
transition relation can be directly proved by rule induction.

Lemma 1 (Finality of Values) There is no expression e such that e val and ez→
e′ for some expression e′.

The previous lemma can be proved by rule induction on e val and ez→
e′.

Lemma 2 (Determinacy) If ez→ e′ and ez→ e′′ then e′ ≡α e′′.

In the previous lemma, we write e′ ≡α e′′ to emphasize the fact that
bound variables may be renamed during evaluation. However, we identify
α-equivalent expressions, so e = e′ means e ≡α e′ anyway. The proof of the
lemma is by rule induction on ez→ e′.

LECTURE NOTES THURSDAY, SEPTEMBER 12, 2024



Properties of System T L6.3

Progress and Preservation What remains to be shown is that the evalua-
tion does not get stuck before reaching a value. We first show that programs
are not stuck states: either they are values or there is a transition. This
property is called progress and we prove it by rule induction on the type
judgment e ∶ τ .

Theorem 3 (Progress) If e ∶ τ then either e val or there exists an expression e′

such that ez→ e′.

During an evaluation, we might still encounter a bad expression like
app(s(z),z), which is not a value but also does not have a transition. How-
ever, this does not happen: Programs always transition to programs of the
same type and the expression app(s(z),z) is not a program. This property
is called preservation.

Theorem 4 (Preservation) If e ∶ τ and ez→ e′ then e′ ∶ τ .

The proof proceeds by rule induction on the judgment ez→ e′. We will
apply inversion to e ∶ τ . To get a flavor of the proof, we go through the case
Eap1.

Proof: Case Eap1
Then e = app(e1, e2), e1 z→ e′1, and e′ = app(e′1, e′2).
Our goal is to show app(e′1, e′2) ∶ τ .
We first apply inversion to app(e1, e2) ∶ τ and derive e1 ∶ τ ′ → τ , and e2 ∶ τ ′.
Now we can use the induction hypothesis with e1 z→ e′1 and obtain e′1 ∶
τ ′ → τ . But then it follows that e′ = app(e′1, e′2) ∶ τ because we can derive this
judgement by applying rule Eap1 with the premises e′1 ∶ τ ′ → τ and e2 ∶ τ ′. ◻

Together, progress and preservation ensure that programs do not get
stuck during their evaluation. This is sometimes expressed with the slogan
well typed programs don’t go wrong. While this is the case for System T,
programs in more expressive languages can diverge or terminate with an
error even if they are well typed.

3 Normalization

In System T, all programs terminate. One the one hand, this seems intuitively
clear since recursive (or looping) computations are implemented with the
recursor, which terminates after a bounded number of iterations. One the
other hand, the λ-Calculus does not even have numbers or recursion in the

LECTURE NOTES THURSDAY, SEPTEMBER 12, 2024



L6.4 Properties of System T

definition of its syntax but we can still define λ-expressions, such as the Y
combinator, that give rise to general recursion (and divergence).

We can for instance attempt to implement the Church numerals in Sys-
tem T. However, we now have to annotate the function abstractions in the
numerals with types. We can define n using an arbitrary but fixed type τ as
follows.

n ≜ λ (s ∶ τ → τ)λ (z ∶ τ) sn(z)

However, since we have to fix the type τ , we can only express iterations
whose result is of type τ . In this way, we can express the successor, addition,
and multiplication but not much more. Helmut Schwichtenberg showed
that these functions are the extended polynomials [Sch75].

The reason programs in System T terminate is that the type system
rules out expressions like the Y combinator. For example, recall the lambda
expression

Ω ≜ (λx.xx) (λx.xx)

An expression like Ω cannot by typed in System T because for all types τ
and τ ′

⋅ /⊢ (λ (x ∶ τ)x(x)) ∶ τ ′ .

Because of the rule Tap, we know that τ = τ → τ2 but for all τ and τ2, we
have τ ≠ τ → τ2.

Normalization and Logical Relations We define

e ⇓ v if ez→∗ v and v val

We can then formulate the normalization theorem as follows.

Theorem 5 (Normalization) If e ∶ τ then e ⇓ v for some v.

The proof of Theorem 5 is challenging and requires a technique called
Tait’s method or logical relations. To motivate the need for this technique, let
us observe why induction on the typing judgment alone does not suffice.
First, note that the theorem is immediate for values. For instance, consider
the case of successor:

Γ ⊢ e ∶ nat
Γ ⊢ s(e) ∶ nat

Ts

Observe that, by assumption in the theorem, we have Γ = ⋅. By induction
hypothesis, we know e ⇓ v. We can apply the canonical-forms lemma (using

LECTURE NOTES THURSDAY, SEPTEMBER 12, 2024



Properties of System T L6.5

τ = nat) to obtain v = n. Therefore, we know that s(e) ↦∗ s(n) ≜ n + 1, and
so the theorem holds.

However we are not as fortunate in case of an elimination rule. Consider
application:

Γ ⊢ e1 ∶ τ ′ → τ Γ ⊢ e2 ∶ τ ′

Γ ⊢ app(e1, e2) ∶ τ
Tap

By assumption, we have again that Γ = ⋅. By induction, we get e1 ⇓ v1 and
e2 ⇓ v2 for values v1 and v2. So we have that app(e1, e2) ↦∗ app(v1, v2).
We can now use the canonical-forms lemma to show that v1 has the form
λ(x ∶ τ)e′. Then we can step app(v1, v2) ↦ [v2/x]e′. But now we are stuck
because we cannot apply the induction hypothesis to [v1/x]e′ ∶ τ since it is
not a premise of the rule Tap.

To make the proof go through we have to strengthen the induction to
a property of expressions called hereditary termination, which is defined
inductively on the type structure:

• HTnat(e) if e ⇓ v for some v.

• HTτ1→τ2(e) if e ⇓ lam{τ1}(x.e′) and for all e1 such that HTτ1(e1), we
have HTτ2([e1/x]e′).

You will use such a construction in the homework, where hereditary
termination is replaced by a more general methodology based on candidates
to prove canonicity, which is normalization at the base type for System T.

Theorem 6 (Canonicity) Given a closed program e ∶ nat of base type, we have
that e ⇓ n for some n.

4 Definability and Undefinability

System T is very expressive. It can express all primitive recursive functions
but also very fast growing functions that are not primitive recursive. An
example of such a function is Ackermann’s function A ∶ N2 → N which is
defined as follows.

A(0, n) = n + 1
A(m + 1,0) = A(m,1)
A(m + 1, n + 1) = A(m,A(m + 1, n))

Ackermann’s function grows fast. For instance A(3, n) = 2n+3 − 3 and

A(4, n) = 22⋯
2

− 3 where there are n + 3 powers in the stack function.

LECTURE NOTES THURSDAY, SEPTEMBER 12, 2024



L6.6 Properties of System T

We say that a function f ∶ Nk → N is definable in System T if there exists
an expression ef ∶ σk such that ef(n1)⋯(nk) ⇓ f(n1, . . . , nk) for all natural
numbers n1, . . . , nk. Here we define σ0 = nat and σn+1 = nat→ σn.

We can characterize the definable functions as follows.

The functions definable in System T are all commutable func-
tions that can be proved to be terminating in Peano arithmetic;
intuitively, by a nested induction on the natural numbers.

Undefinability System T is incomplete in the following sense. There are
total and computable functions that cannot be defined in T. The classic
example of such a function is a self-interpreter. An interpreter is a function
that accepts two arguments, a program e ∶ nat → nat and an argument
n ∈ N, and returns the result of evaluating e(n), that is, m ∈ N such that
e(n) ⇓ m. Intuitively, an interpreter is a computable function. We can for
instance implement the dynamic semantics of T and perform steps until we
reach a value. The normalization theorem guarantees that this interpreter
terminates for each program.

A self-interpreter is a definition of an interpreter for System T in System
T. To show that we cannot define such a function in T, we use diagonal-
ization to show that if we have a self-interpreter then we can construct an
expression that evaluates to the successor of the result of its evaluation, which is
a contradiction.

To define a self-interpreter, we need to talk about functions on the natural
numbers. So instead of a program e, the self-interpreter should accept an
argument n ∈ N. To this end, we observe that we can effectively encode
an expression e as a number ⌜e⌝ ∈ N so that e can be computed from ⌜e⌝.
Practically, the encoding can be done by writing a System T program to a
file and saving it on a hard drive. The decoding can be to read the file from
the hard drive. We can express such an encoding mathematically by using
Gödel numbering. However, we are not defining it here.

Fix an effective encoding ⌜e⌝ of expressions.
We call the function funiv ∶ N × N → N a universal function if for every

expression e ∶ nat→ nat

funiv(⌜e⌝,m) = n iff e(m) ⇓ n

We do not need to specify what happens if funiv is applied to an argument
whose first component does not correspond to an encoded expression to
make the proof work. So the result can be an arbitrary number in this case.

LECTURE NOTES THURSDAY, SEPTEMBER 12, 2024



Properties of System T L6.7

Theorem 7 We can implement a universal function for System T in the λ-calculus.

The previous theorem follows from the fact that we can compute the
decoding of an expression and then feed it to an interpreter for T.

Now we prove that universal functions cannot be implemented in T.
The proof idea is the following: If we can implement a self-interpreter
eself in T then we can call it with it’s own encoding as in the following
expression eself(⌜eself⌝). This form of self-reference enables us to create a
looping computation. However, this contradicts the normalization theorem.

Theorem 8 (Incompleteness) Universal functions are not definable in System
T.

Proof: Assume that euniv ∶ nat → nat → nat implements a universal func-
tion. Then

eδ = λ (m ∶ nat) euniv(m)(m)

implements the diagonal function δ ∶ N→ N. We have

eδ(⌜e⌝) ⇓ n if e(⌜e⌝) ⇓ n (1)

Now we can construct the offending expression e∆(⌜e∆⌝)where

e∆ ≜ λ (x ∶ nat)s(eδ(x))

Assume e∆(⌜e∆⌝) ⇓ n0.
The we have the following contradiction:

e∆(⌜e∆⌝) z→ s(eδ(⌜e∆⌝)) z→∗ s(n0)

The first step follows from the definition of e∆ and the evaluation rules for
function application. The following steps follow from the evaluation rule
for the successor and Equation 1. ◻

Note that, in the proof, we did not use any properties of System T other
than being able to define functions using the successor function. Therefore,
the theorem effectively applies to every total language.

However, the proof only applies to total languages. We used the normal-
ization theorem when we assumed e∆(⌜e∆⌝) ⇓ n0. We can construct such an
expression from a self interpreter in a partial language like the λ-Calculus.
However, we would not get a contradiction but a proof that shows that
e∆(⌜e∆⌝) does not terminate.

LECTURE NOTES THURSDAY, SEPTEMBER 12, 2024



L6.8 Properties of System T

5 Blum’s Size Theorem

We have already experienced that programming in a total language can be
difficult when we implemented the predecessor function using the schema
of iteration in the λ-Calculus. Another example is the implementation of
Ackermann’s function in System T.

It is in fact a general limitation of (expressive) total languages that there
are functions that are difficult to implement while they are easy to implement
in the λ-Calculus. The reason is that a program in a total language already
includes its termination proof. However, there are (succinct) programs that
require elaborate termination proofs. In general, these programs cannot
be directly expressed in a total language and sometimes each equivalent
program in the total language has to be very large. This fact is formalized
by Blum’s Size Theorem [MY78] (page 166).

Theorem 9 (Blum’s Size Theorem) Let L be a total programming language in
which we can define an infinite number of functions N → N. Then there exists a
family of functions (fn)n∈N such that fn ∶ N→ N and

• fn is definable in the λ-Calculus with an implementation of size n

• fn is definable in L but the shortest implementation has size m ≥ 22n .

I picked the function 22
n

as an example to make the theorem concrete
but it could be another fast growing computable function.

To prove the theorem, we have to precisely define the concepts program-
ming language and size of a program. Machtey and Young [MY78] simply say
a programming language is an enumeration of computable functions so
that for two functions in the enumeration their composition appears in the
enumeration as well. They also leave the notion of size abstract and only
require that there are finitely many programs of a fixed size.

Exercises

Exercise 1 Prove Lemma 2.

Exercise 2 Define Ackermann’s function in System T.

LECTURE NOTES THURSDAY, SEPTEMBER 12, 2024



Properties of System T L6.9

References

[MY78] Michael Machtey and Paul Young. An Introduction to the General
Theory of Algorithms. Elsevier Science Inc., USA, 2nd edition, 1978.

[Sch75] Helmut Schwichtenberg. Definierbare funktionen imλ-kalkül mit
typen. Arch. Math. Log., 17(3-4):113–114, 1975.

LECTURE NOTES THURSDAY, SEPTEMBER 12, 2024


	Introduction
	Type Soundness
	Normalization
	Definability and Undefinability
	Blum's Size Theorem

