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1 Introduction

Polymorphism refers to the possibility of an expression to have multiple types.
System T does not feature polymorphism and as a result we have to, for
example, implement the identity function for each argument type we want
to use it with.

id1 ≜ λ (x ∶ nat)x
id2 ≜ λ (x ∶ nat→ nat)x

The function id1 can be applied to arguments of type nat and the function
id2 can be applied to arguments of type nat → nat. However, the imple-
mentations of both functions are identical, that is, id1 and id2 have the same
function body. This is it is beneficial to just have one implementation of the
identity function and assign it a polymorphic type

id ∶ ∀(t.t→ t)

to express all possible argument types in a single form.
Christopher Strachey [Str00] distinguished two forms of polymorphism:

ad hoc polymorphism and parametric polymorphism. Ad hoc polymorphism
refers to multiple types possessed by a given expression or function which
has different implementations for different types. For example, plus might
have type int→ int→ int but also float→ float→ float with different implemen-
tations at these two types. Similarly, a function show ∶ ∀(t. t→ string)might
convert an argument of any type into a string, but the conversion function
itself will of course have to depend on the type of the argument: printing
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L9.2 Parametric Polymorphism

Booleans, integers, floating point numbers, pairs, etc. are all very different
operations. Even though it is an important concept in programming lan-
guages, in this lecture we will not be concerned with ad hoc polymorphism.

In contrast, parametric polymorphism, which we introduce in this lecture,
refers to a function that behaves the same at all possible types. The identity
function, for example, is parametrically polymorphic because it just returns
its argument, regardless of its type. The essence of “parametricity” wasn’t
rigorously captured until the beautiful analysis by John Reynolds [Rey83],
which we will sketch in a later lecture on parametricity.

Slightly different systems for parametric polymorphism were discovered
independently by Jean-Yves Girard [Gir71] and John Reynolds [Rey74]. Gi-
rard worked in the context of logic and developed System F, while Reynolds
worked directly on type systems for programming language and designed
the polymorphic λ-calculus. With minor syntactic changes, we will follow
Reynolds’s presentation.

2 Universally Quantified Types

We would like to add types of the form ∀(t. τ) to express parametric poly-
morphism. The fundamental idea is that an expression of type ∀(t. τ) is a
function that takes a type as an argument.

This is a rather radical change of attitude. So far, our expressions only
contained type annotations to make types unique, and now types become
embedded in expressions and are actually passed to functions. Let’s see
where it leads us. Now we could write

λ(t)λ(x ∶ t). x ∶ ∀(t. t→ t)

but abstraction over a type seems so different from abstraction over a ex-
pressions that we make up a new notation and instead write

Λ(t)λ(x ∶ t). x ∶ ∀(t. t→ t)

using a capital lambda (Λ). To express the typing rules, our contexts carry
two different forms of declarations: x ∶ τ (as we had so far) and now also
ttype, expressing that t is a type variable. The typing judgment then has
the form

∆ Γ ⊢ e ∶ τ

without repeated variables or type variables in Γ and ∆. There will be some
further presuppositions mentioned later. For type abstractions, we have the
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rule
∆, ttype Γ ⊢ e ∶ τ

∆ Γ ⊢ Λ(t) e ∶ ∀(t.τ)
Tt-abs

Here, t is a bound variable in Λ(t) e and ∀(t.τ) so we allow it to be silently
renamed if it conflicts with any variable already declared in Γ or ∆. We
implicitly use α-equivalence by requiring that we pick the same name t for
both bound variables: the t in Λ(t) e and the t in ∀(t.τ).

We haven’t yet seen how t can actually appear in e, but we can already
verify:

ttype x ∶ t ⊢ x ∶ t
Tvar

ttype ⋅ ⊢ λ(x ∶ t)x ∶ t→ t
Tlam

⋅ ⊢ Λ(t)λ(x ∶ t)x ∶ ∀(t. t→ t)
Tt-abs

The next question is how do we apply such a polymorphic function to a
type? Again, we could just write e(τ) for the application of a polymorphic
function e to a type τ , but we would like it to be more syntactically apparent
so we write e [τ].

Let’s return to Church’s representation of natural numbers. With the
quantifier, we now have

nat = ∀(t. (t→ t)→ t→ t)

Then we can verify with typing derivations as above:

zero ∶ nat

zero = Λ(t)λ(s ∶ t→ t)λ(z ∶ t) z

We also expect the successor function to have type nat→ nat, but there is
one slightly tricky spot. We start:

succ ∶ nat→ nat

succ = λn.Λ(t)λ(s ∶ t→ t)λ(z ∶ t) s (n )

Before, we just applied n to s and z, but now n ∶ nat, which means that it
expects a type as its first argument. At this point (in a hypothetical typing
derivation we did not write out), we have the context

ttype n ∶ nat, s ∶ t→ t, z ∶ t
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L9.4 Parametric Polymorphism

so we need to instantiate the quantifier with t, which next requires argu-
ments of type t→ t and t (which we have at hand with s and z).

succ ∶ nat→ nat

succ = λn.Λ(t)λ(s ∶ t→ t)λ(z ∶ t). s (n [t] s z)

It becomes more interesting with the addition function. Recall that in the
untyped setting we had

plus = λn.λk.n succ k

iterating the successor function n times on argument k. The start of the
typed version is again relatively straightforward: the only difference is that
we need to apply n first to a type.

plus ∶ nat→ nat→ nat

plus = λn.λk.n [ ] succ k

But what type do we need? We have that the next argument has type
nat→ nat and the following one nat, so that we need to instantiate t with
nat!

plus ∶ nat→ nat→ nat

plus = λn.λk.n [nat] succ k

So we need that
n ∶ ∀(t. (t→ t)→ t→ t)

and then
n [nat] ∶ (nat→ nat)→ nat→ nat

We should point out that this definition of addition cannot be typed in
System T. In that setting, n can only be applied to functions s of one fixed
type τ→τ to iterate starting from z ∶ τ . This means that very few functions are
actually definable—essentially only functions like successor and addition,
but not exponentiation, or predecessor.

A significant aspect of this is that we instantiate the quantifier in nat =

∀(t. (t→ t)→ t→ t)with nat itself.
These considerations lead us to a rule where we substitute into the type:

∆ Γ ⊢ e ∶ ∀(t. τ) ∆ ⊢ τ ′ type

∆ Γ ⊢ e [τ ′] ∶ [τ ′/t]τ
Tt-app

The second premise is there to check that the type τ ′ which is part of the
expression e [τ ′] is valid. This just means that all the type variables occurring
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in τ ′ are declared in ∆ (just like all the expression variables in e must be
declared in Γ).

Here is a small sample derivation, assuming we have defined

id ∶ ∀t. t→ t
id = Λ(t)λ(x ∶ t)x

Then we can typecheck:

⋮

⋅ ⊢ id ∶ ∀(t. t→ t)

⋮

⋅ ⊢ nattype

⋅ ⊢ id [nat] ∶ nat→ nat
Tt-app

⋮

⋅ ⊢ 3 ∶ nat

⋅ ⊢ id [nat]3 ∶ nat
Tapp

where we need some rules to verify that nat is a closed type (that is, has no
free type variables). Fortunately, that’s easy: we just check all the compo-
nents of a type.

∆ ⊢ τ1 type ∆ ⊢ τ2 type

∆ ⊢ τ1→ τ2 type
Uarr

∆, ttype ⊢ ttype
Uvar

∆, ttype ⊢ τ type

∆ ⊢ ∀(t. τ)type
Uall

3 Summary: Syntax and Typing Rules

Here is the summary of the language of the polymorphic λ-calculus:

Types τ ∶∶= t ∣ τ1→ τ2 ∣ ∀(t. τ)
Expressions e ∶∶= x ∣ λ(x ∶ τ) e ∣ e1(e2) ∣ Λ(t) e ∣ e [τ]

Expression Contexts Γ ∶∶= ⋅ ∣ Γ, x ∶ τ
Type Contexts ∆ ∶∶= ⋅ ∣∆, ttype

We assume that all variables and type variables in a context are distinct, and
rename bound variable or type variables to maintain this invariant.

In a judgment ∆ Γ ⊢ x ∶ τ ′, we also assume that for all x ∶ τ ∈ Γ ∆ ⊢
τ type. We maintain this property in the type rules, that is, we can prove
the following lemma.
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L9.6 Parametric Polymorphism

Lemma 1 If ∆ Γ ⊢ x ∶ τ ′ and ∆ ⊢ τ type for all x ∶ τ ∈ Γ then ∆ ⊢ τ ′.

∆ Γ, x ∶ τ ⊢ x ∶ τ
Tvar

∆ Γ, x ∶ τ ⊢ e ∶ τ ′ ∆ ⊢ τ type

∆ Γ ⊢ λ(x ∶ τ) e ∶ τ → τ ′
Tlam

∆ Γ ⊢ e1 ∶ τ → τ ′ ∆ Γ ⊢ e2 ∶ τ

∆ Γ ⊢ e1(e2) ∶ τ
′

Tapp

∆, ttype Γ ⊢ e ∶ τ

∆Γ ⊢ Λ(t) e ∶ ∀(t.τ)
Tt-abs

∆ Γ ⊢ e ∶ ∀(t. τ) ∆ ⊢ τ ′ type

∆ Γ ⊢ e [τ ′] ∶ [τ ′/t]τ
Tt-app

4 Typing Self-Application Polymorphically

As an exercise in building a typing derivation, we provide a polymorphic
type for self-application λx.x x. We accomplish this by allowing x to have
a polymorphic types ∀(t. t→ t). We call this type u (or unit) because there
is exactly one normal term of this type: the polymorphic identity function.
Applying the identity to itself seems plausible in any case. So we claim:

u = ∀(t. t→ t)

ω ∶ u→ u
ω = λ(x ∶ u)x [u] x

This is established by the following typing derivation. When you want to
build such a derivation yourself, you should always built it “bottom-up”,
starting with the final conclusion. The fact that the rules are syntax-directed
means you have no choice which rule to choose, but some parts of the type
may be unknown and may need to be filled in later.

x ∶ u ⊢ x [u] ∶ x ∶ u ⊢ x ∶

x ∶ u ⊢ x [u] x ∶ u
tp/app

⋅ ⊢ λ(x ∶ u)x [u] x ∶ u→ u
tp/lam

As a rule of thumb, it seems to work best to first fill in the first premise of an
application (rule Tapp) and then the second. Continuing in the left branch of
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the derivation (and remembering that u = ∀(t. t→ t)):

x ∶ u ⊢ x ∶ u
Tvar

⋮

t type ⊢ t→ ttype

⋅ ⊢ utype
Uall

x ∶ u ⊢ x [u] ∶ u→ u
Ttpapp

x ∶ u ⊢ x ∶ u
Tvar

x ∶ u ⊢ x [u] x ∶ u
Tapp

⋅ ⊢ λ(x ∶ u)x [u] x ∶ u→ u
Tlam

The fact that t→ t is a valid type follows quickly by the Tarr and Tvar rules.
There are more types that work for self-application (see Exercise 3).

Crucial in this example is that we can instantiate the quantifier in
u = ∀(t. t→ t)with u itself. This “self-referential” nature of the type quanti-
fier is called impredicativity because it quantifies not only over types already
defined, but also itself. Some systems of type theory reject impredicative
quantification because the meaning of the quantified type is not constructed
from the meaning of types we previously understand. Impredicativity was
also seen as a source of paradoxes, although Girard did give a syntactic
argument for the consistency of System F [Gir71] with impredicative quan-
tification.

5 Church Numerals Revisited

We can now revisit the representation of Church numerals and express
them and functions on them in the polymorphic λ-calculus. We present
the definitions in the language LAMBDA, which uses polymorphic types
when files have extension .poly or the command line argument -l poly.
We use !a as concrete syntax for ∀t, and /\a for Λt. Type definitions
are preceded by the keyword type, and type declarations for variable
definitions are preceded by the keyword decl.

1 type nat = !a. (a -> a) -> a -> a
2

3 decl zero : nat
4 decl succ : nat -> nat
5

6 defn zero = /\a. \s. \z. z
7 defn succ = \n. /\a. \s. \z. s (n [a] s z)
8

9 decl plus : nat -> nat -> nat
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L9.8 Parametric Polymorphism

10 defn plus = \n. \k. n [nat] succ k
11

12 decl times : nat -> nat -> nat
13 defn times = \n. \k. n [nat] (plus k) zero
14

15 norm _0 = zero
16 norm _1 = succ _0
17 norm _2 = succ _1
18 norm _3 = succ _2
19

20 norm _6 = times _2 _3

Listing 1: Polymorphic natural numbers in LAMBDA

So far, this straightforwardly follows the structure of the motivating
examples. To represent the predecessor function, we require pairs of natural
numbers. But what are their types? Recall:

pair = λx.λy. λk. k xy

from which conjecture something like

pair ∶ nat→ nat→ (nat→ nat→ τ)→ τ

where τ is arbitrary. So we realize that this function is polymorphic and we
abstract over the result type of the continuation. We call the type of pairs of
natural numbers nat2. In the type of the pair function it is then convenient to
place the type abstraction after the two natural numbers have been received.

nat2 = ∀(t. (nat→ nat→ t)→ t)

pair ∶ nat→ nat→ nat2

pair = λ(x ∶ nat)λ(y ∶ nat)Λ(t)λk. k xy

Now we can define the pred2, with the specification that pred2 n = pair n n � 1.
We leave open the two places we have to provide a type.

pred2 ∶ nat→ nat→ nat

pred2 = λ(n ∶ nat). n [ ] (λp. p [ ] (λ(x ∶ nat)λy.pair (succ x) x)) (pair zero zero)

In the first box, we need to fill in the result type of the iteration (which is the
type argument to n), and this is nat2. In the second box we need to fill in the
result type for the decomposition into a pair, and that is also nat2. Then, for
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the final definition of pred we only extract the second component of the pair,
so the continuation only returns a natural number rather than a pair.

pred ∶ nat→ nat

pred = λn.pred2(n) [nat] (λx.λy. y)

Below is a summary of this code in LAMBDA.

1 type nat2 = !a. (nat -> nat -> a) -> a
2

3 decl pair : nat -> nat -> nat2
4 defn pair = \x. \y. /\a. \k. k x y
5

6 decl pred2 : nat -> nat2
7 defn pred2 = \n. n [nat2] (\p. p [nat2] (\x. \y. pair (succ x) x))
8 (pair zero zero)
9

10 decl pred : nat -> nat
11 defn pred = \n. pred2 n [nat] (\x. \y. y)
12

13 norm _6_5 = pred2 _6
14 norm _5 = pred _6

Listing 2: Predecessor on natural numbers in LAMBDA

6 Dynamic Semantics

We now define the dynamic semantics of System F. Here, we present the
eager (or call-by-value) version of the rules. Similarly as for System T, the
choice of the evaluation order is inconsequential for System F since it is a
total language.

Both function and type abstraction are values.

λ (τ ∶ x) e val
Vlam

Λ(t) e val
Vt-abs

In the definition of the stepping relation, we have familiar rules for
function application. For type instantiation, we substitute the argument
type τ into the body of the type abstraction. Intuitively, this leads to a step
that is conform to preservation since for instance (Λ(t)λ(x ∶ t)x)[nat]z→
λ(x ∶ nat), ;x.

e1 z→ e′1

e1(e2)z→ e′1(e2)
Eap1

e1 val e2 z→ e′2

e1(e2)z→ e1(e
′

2)
Eap2
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e2 val

(λ (τ ∶ x) e)(e2)z→ [e2/x]e
Eap3

ez→ e′

e[τ]z→ e′[τ]
Et-ap1

(Λ(t) e)[τ]z→ [τ/t]e
Et-ap2

We can prove type safety.

Theorem 2 (Progress) If e ∶ τ then either e val or there exists an e′ such that
ez→ e′

Theorem 3 (Preservation) If e ∶ τ and ez→ e′ then e′ ∶ τ .

One remarkable fact about the polymorphic λ-calculus (which is quite
difficult to prove) is that every program still evaluates to a value. We can
prove this with a similar logical relations (or candidates) method as for System
T.

Theorem 4 (Normalizatoin) If e ∶ τ then ez→∗ v for a v such that v val.

Exercises

Exercise 1 Fill in the blanks in the following judgments so that it holds, or
indicate there is no way to do so. You do not need to justify your answer or
supply a typing derivation, and the types do not need to be “most general”
in any sense. As always, feel free to use LAMBDA to check your answers.

(i) ⊢ ∀t. t→ β type

(ii) ⊢ Λ(t)x [t→ t] y [β] ∶ ∀t. β

(iii) ⋅ ⊢ λ(x ∶?)x [ ]xx ∶

(iv) t type ⊢ ∶ ∀β. t→ β

(v) x ∶ ∀t. (∀β.β → β)→ t, γ type ⊢ ∶ (γ → γ)→ γ

Exercise 2 Prove that if Γ ⊢ e ∶ τ under the presupposition that Γ ctx then
Γ ⊢ τ type.
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Exercise 3 We write F for a (mathematical) function from types to types
(which is not expressible in the polymorphic λ-calculus but requires system
Fω). A more general family of types (one for each F ) for self-application is
given by

uF = ∀t. t→ F (t)

ωF ∶ uF → F (uF )
ωF = λ(x ∶?)x [uF ] x

We recover the type from this lecture with F = Λ(t) t. You may want to verify
the general typing derivation in preparation for the following questions, but
you do not need to show it.

(i) Consider F = Λ(t) t→ t. In this case uF = bool. Calculate the type and
characterize the behavior of ωF as a function on Booleans.

(ii) Consider F = Λ(t) (t→ t)→ t. Calculate uF , the type of ωF , and charac-
terize the the behavior of ωF . Can you relate uF and ωF to the types
and functions we have considered in the course so far?
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