
Lecture Notes on
Operational Dynamic Semantics

15-814: Types and Programming Languages
Jan Hoffmann

Lecture 14
Tuesday, October 22, 2024

1 Introduction

In the past weeks, we have defined the dynamic semantics using structural
dynamic semantics. However, there are many different options for defin-
ing the dynamic semantics. We usually classify dynamic semantics into
denotational and operational semantics. A denotational semantics assigns
mathematical objects to expressions. For example, a the denotational se-
mantics of a function could be a mathematical function. An operational
semantics describes how an expression or program is evaluated. There are
also other forms of dynamic semantics such as axiomatic semantics and
game semantics.

In this course, we focus on operational semantics, which is the most
popular class of dynamic semantics. The structural dynamics we have see
so far is an operational semantics that is based on a transition system. The
states are (closed) expressions and the transitions form the steps for the
evaluation. Another term for structural dynamics is small-step semantics.

In this lecture we introduce two other types of operational semantics:
evaluation dynamics and an abstract machine with control stacks (the K
machine). Other terms for evaluation dynamics are big-step semantics or
natural semantics. However, the evaluation dynamics does not have a notion
of a step. Instead, it inductively defines a relation between expressions and
values. In contrast, an abstract machine is based on a transition system
and steps like the structural dynamics. The difference is that states are not
expressions but other objects that often contain expressions.

LECTURE NOTES TUESDAY, OCTOBER 22, 2024



L14.2 Operational Dynamic Semantics

There does not exist a dynamic semantics that is the best choice in all
scenarios. The right choice depends on the programming language we are
working with and the goals we want to accomplish with the dynamics. So
far, we had two main goals for our dynamics: defining and conveying how
programs are evaluated and proving type soundness. Structural dynamics is
a great choice for these goals that works for a wide range of languages. How-
ever, some features like continuations are difficult to express in a structural
dynamics.

In some cases, it is beneficial to introduce more than one dynamics so
that we can pick the best dynamics for a certain task, for instance a proof.
In these cases, we want to show that the different dynamic semantics are
equivalent.

2 Call-By-Value PCF

In this lecture, we use call-by-value PCF. Recall, the syntax and static seman-
tics that we previously defined in lecture.

e ∶∶= x variable
z zero
s(e) successor
ifz{e0;x.e1}(e) conditional
fun{τ1; τ2}(f.x.e) recursive function
ap(e1; e2) function application

Γ, x ∶ τ ⊢ x ∶ τ
Tvar

Γ ⊢ z ∶ nat
Tz

Γ ⊢ e ∶ nat

Γ ⊢ s(e) ∶ nat
Ts

Γ ⊢ e ∶ nat Γ ⊢ e0 ∶ τ Γ, x ∶ nat ⊢ e1 ∶ τ

Γ ⊢ ifz{e0;x.e1}(e) ∶ τ
Tifz

Γ, f ∶ τ1 → τ2, x ∶ τ1 ⊢ e ∶ τ2

Γ ⊢ fun{τ1; τ2}(f.x.e) ∶ τ1 → τ2
Tfun

Γ ⊢ e1 ∶ τ → τ ′ Γ ⊢ e2 ∶ τ

Γ ⊢ ap(e1; e2) ∶ τ
′

Tap

Values The values of call-by-value PCF are defined as follows. This defini-
tion does not change in the different dynamic semantics we consider.

z val
Vzero

e val
s(e) val

Vsucc
fun{τ1; τ2}(f.x.e) val

Vfun

LECTURE NOTES TUESDAY, OCTOBER 22, 2024



Operational Dynamic Semantics L14.3

Structural Operations Semantics The structural operational semantics is
inductively defined as follows.

ez→ e′

ifz{e0;x.e1}(e) z→ ifz{e0;x.e1}(e
′)

Sifz1
ifz{e0;x.e1}(z) z→ e0

Sifz2

e val
ifz{e0;x.e1}(s(e)) z→ [e/x]e1

Sifz3

e1 z→ e′1

ap(e1; e2) z→ ap(e′1; e2)
Sap1

e1 val e2 z→ e′2

ap(e1; e2) z→ ap(e1; e
′

2)
Sap2

e2 val

ap(fun{τ1; τ2}(f.x.e); e2) z→ [fun{τ1; τ2}(f.x.e), e2/f, x]e
Sap3

3 Evaluation Dynamics

The first alternative to the structural dynamics that we consider is evaluation
dynamics. An application of the evaluation dynamics of eager PCF is
the proof that the structural operational semantics and the K machine are
equivalent; a statement that we make precise soon. As it turns out, instead
of proving the statement directly, it is much easier to prove the equivalence
of the evaluation dynamics and structural operational semantics and the
equivalence of the evaluation dynamics and the K machine.

Another motivation for the evaluation dynamics is that we would like
to have an operational semantics that can be directly translated to the imple-
mentation of an efficient interpreter. This is not the case for the structural
dynamics in which we have to apply search rules such as Sap1 again and
again to find the spot in a (large) expression at which we should apply one
of the leaf rules like Sap3.

A natural way, for more efficiently evaluating an application ap(e1; e2) is
the following. First evaluate e1 to a value fun{τ1; τ2}(f.x.e), then evaluate e2
to a value v2, and finally evaluate [fun{τ1; τ2}(f.x.e), e2/f, x]e to the value
that is the result of the application. This leads directly to a recursive im-
plementation that corresponds to the inductive definition of the evaluation
dynamics. Note that we only related expressions to values in the description
of the evaluation strategy without introducing a notion of steps.

LECTURE NOTES TUESDAY, OCTOBER 22, 2024



L14.4 Operational Dynamic Semantics

The judgment
e ⇓ v

of the evaluation dynamics states that expression e evaluates to value v. It is
inductively defined by the following rules.

z ⇓ z
Ez

e ⇓ v

s(e) ⇓ s(v)
Es

e ⇓ z e0 ⇓ v

ifz{e0;x.e1}(e) ⇓ v
Eifz1

e ⇓ s(v′) v val′ [v′/x]e1 ⇓ v

ifz{e0;x.e1}(e) ⇓ v
Eifz2

e1 ⇓ fun{τ1; τ2}(f.x.e) e2 ⇓ v2 [fun{τ1; τ2}(f.x.e), v2/f, x]e ⇓ v

ap(e1; e2) ⇓ v
Eap

We can prove the following theorems by induction on the judgment
e ⇓ v.

Theorem 1 If e ∶ τ and e ⇓ v then v ∶ τ .

Theorem 2 If e ∶ τ and e ⇓ v then v val.

Relation to Structural Dynamics Now that we have defined another oper-
ation semantics, we want to related it to the structural dynamics. We can
show that the two dynamic semantics are equivalent as formalized by the
following theorem. As usual, we identify α-equivalent expressions.

Theorem 3 Let e ∶ τ be a program. Then e ⇓ v if and only if ez→∗ v and v val.

The direction from left to right is called soundness and can be proved by
induction on e ⇓ v.

Lemma 4 (Soundness) Let e ∶ τ be a program. If e ⇓ v then ez→∗ v.

The direction for right to left is called completeness and more difficult
to prove. We want to prove the statement by induction on the number of
steps n in the evaluation ez→n v. However, in the induction step, it is not
immediately clear how we need to conclude e ⇓ v from the premises ez→ e′

and e′ ⇓ v. Luckily, we can prove the following lemma by induction on the
stepping relation.

Lemma 5 Let e ∶ τ . If ez→ e′ and e′ ⇓ v then e ⇓ v.

LECTURE NOTES TUESDAY, OCTOBER 22, 2024



Operational Dynamic Semantics L14.5

Divergence The evaluation dynamics has some advantages over the struc-
tural dynamics. For instance, the structure of the inference rules is similar
to the structure of the type rules because the premises refer to the subex-
pressions of the expression in the concluding. This can simplify certain
proofs. It is also closer to the implementation of an efficient interpreter,
particularly if we replace substitution with a value environment in which
we map variables to values.

A major shortcoming of the evaluation dynamics is that it cannot distin-
guish computations that get stuck from computations that do not terminate.
I both cases, there is simply no value v such that e ⇓ v. This is why the
evaluation dynamics cannot be used to show type soundness.

It is possible, to define a variant of the evaluation dynamics that ad-
dresses this shortcoming. We define the judgment

e ⇓n v

which includes a natural number n that reflects the size of the derivation
tree (or the cost of the evaluation). The existing rules are altered as in the
following example.

e1 ⇓
n1 fun{τ1; τ2}(f.x.e) e2 ⇓

n2 v2 [fun{τ1; τ2}(f.x.e), v2/f, x]e ⇓
n v

ap(e1; e2) ⇓
n1+n2+n+1 v

Eap

Then we add an abort rule that can be applied to any expression.

e ⇓0 ○
Eabort

An aborted computation e ⇓n ○ corresponds to a partial derivation tree of
size n. If part a part of the derivation is aborted then the complete derivation
is aborted. This is reflected by adding rules such as the following.

e1 ⇓
n1 fun{τ1; τ2}(f.x.e) e2 ⇓

n2 ○

ap(e1; e2) ⇓
n1+n2+1 ○

Eap

Type Safety With this new judgement we can formulate and prove a
theorem that is equivalent to progress and preservation.

Theorem 6 (Type Safety) If e ∶ τ then either e ⇓n v for some n or e ⇓m ○ for all
m ∈ N.

LECTURE NOTES TUESDAY, OCTOBER 22, 2024



L14.6 Operational Dynamic Semantics

4 Control Stacks (K Machine)

In this section, we introduce the K Machine, it is an abstract machine for
call-by-value PCF that is based on control stacks. Control stacks are used to
define the dynamics of continuations and simplify the dynamics of other
forms for manipulating control such as exceptions. Like the structural opera-
tional semantics, the K machine is also a transition system and evaluation is
a sequence of transitions between states. However, states of the K machine
consist of a control stack and an expression.

One way motivate control stacks, is as method to avoid search rules like
the ones we use in the structural dynamics to find the spot in an expression
in which the evaluation makes progress. This is achieved by splitting the
expression in a part that we are currently working on (the expression of the
state) and the surrounding expression (the control stack).

We start by defining the states of the transition system. They have two
forms.

K ▷ e evaluate expression e on stack K
K ◁ e evaluate stack K with value e

Stacks K are lists of frames defined as follows.

K ∶∶= ϵ
K;f

The definition of frames f depends on the language we consider and
the evaluation order. For call-by-value PCF, the frames are defined by the
following grammar.

f ∶∶= s(−)

ifz{e0;x.e1}(−)
ap(e1;−)
ap(−; e2)

Initial and final states of the transition system are defined by the following
rules.

ϵ▷ e initial ϵ◁ e final

LECTURE NOTES TUESDAY, OCTOBER 22, 2024



Operational Dynamic Semantics L14.7

The following rules define the transitions.

K ▷ zz→K ◁ z
Kz

K ▷ s(e) z→K;s(−) ▷ e
Ks1

K;s(−) ◁ ez→K ◁ s(e)
Ks2

K ▷ ifz{e0;x.e1}(e) z→K;ifz{e0;x.e1}(−) ▷ e
Kif1

K;ifz{e0;x.e1}(−) ◁ zz→K ▷ e0
Kif2

K;ifz{e0;x.e1}(−) ◁ s(e) z→K ▷ [e/x]e1
Kif3

K ▷ fun{τ1; τ2}(f.x.e) z→K ◁ fun{τ1; τ2}(f.x.e)
Kfun

K ▷ ap(e1; e2) z→K;ap(−; e2) ▷ e1
Kap1

K;ap(−; e2) ◁ fun{τ1; τ2}(f.x.e) z→K;ap(fun{τ1; τ2}(f.x.e);−) ▷ e2
Kap2

K;ap(fun{τ1; τ2}(f.x.e);−) ◁ e2 z→K ▷ fun{τ1; τ2}(f.x.e), e2/f, x]e
Kap3

Type Safety To formulate progress and preservation, we need to extend
the typing rules to program states. One problem is that we get stuck if in a
state K ◁ e, the expression e is not compatible with the first frame on the
stack K. Consider for instance ap(−;s(z)) ◁ z. The only rule that matches
this stack is Kap2. However, to make a transition the expression e has to be
a function instead of z. So this is a stuck state for which we cannot make
progress.

Another problem is that we can reach stuck states if the frames on the
stack are not compatible. Consider for example

ap(−;s(z));s(−) ◁ z .

The expression z is compatible with the frame but eventually we will step
to the stuck state ap(−;s(z)) ◁ s(z).

To ensure the compatibility of expressions, stacks, and successive frames,
we define for each frame an input and output type. The judgment f ∶ τ1↝ τ2

LECTURE NOTES TUESDAY, OCTOBER 22, 2024



L14.8 Operational Dynamic Semantics

states that frame f accepts a value of type τ1 and eventually produces a
value of type τ2.

s(−) ∶ nat↝ nat
Fs

e0 ∶ τ x ∶ nat ⊢ e1 ∶ τ

ifz{e0;x.e1}(−) ∶ nat↝ τ
Fifz

e1 ∶ τ
′ → τ

ap(e1;−) ∶ τ
′↝ τ

Fap1
e2τ
′

ap(−; e2) ∶ τ
′ → τ ↝ τ

Fap2

A stack is well-typed and expecting a value of type τ , written as K ◁∶ τ ,
if the input and output types of consecutive frames match and the topmost
frame is expecting a value of type τ .

ϵ◁∶ τ

K ◁∶ τ ′ f ∶ τ ↝ τ ′

K; f ◁∶ τ

Finally, states are well-typed if they consist of well-typed stacks with
compatible well-typed expressions.

e ∶ τ K ◁∶ τ

K ▷ e ok

e ∶ τ K ◁∶ τ

K ◁ e ok

Now we can formulate type safety.

Theorem 7 (Progress) If s ok then either s final or there exists an s′ such that
sz→ s′.

The proof is by induction on s ok.

Theorem 8 (Preservation) If s ok and sz→ s′ then s′ ok.

The proof is by induction on sz→ s′.
Finally, we can also show that the K machine is sound and complete

with respect to the structural operation semantics. However, to prove the
equivalence directly, we would need to define a bisimulation. We can avoid
this technical difficulty by proving the K machine sound and complete with
respect to the evaluation dynamics.

Theorem 9 (Soundness) If ϵ▷ ez→∗ ϵ◁ v then e ⇓ v.

Theorem 10 (Completeness) If e ⇓ v then K ▷ e z→∗ K ◁ v for every stack
K.

LECTURE NOTES TUESDAY, OCTOBER 22, 2024


	Introduction
	Call-By-Value PCF
	Evaluation Dynamics
	Control Stacks (K Machine)

