
Lecture Notes on
Parametricity

15-814: Types and Programming Languages
Jan Hoffmann

Lecture 16
Tuesday, October 29, 2024

1 Introduction

Recall our previous discussion of parametric polymorphism in System F
(also called the Polymorphic λ-Calculus). Parametric polymorphism is the
idea that a function of type ∀(t.t → τ) will “behave the same” on all types σ
that might be used for t. This has far-reaching consequences, in particular
for modularity and data abstraction. As we will see in the next lecture, if
a client to a library that hides an implementation type is parametric in this
type, then the library implementer or maintainer has the opportunity to
replace the implementation with a different one without risk of breaking the
client code.

The informal idea that a function behaves parametrically in a type vari-
able t is surprisingly difficult to capture technically. Reynolds [Rey83] real-
ized that it must be done relationally. For example, a function g : ∀(t.t → t)
is parametric if for any two types τ and σ, and any relation between values
of type τ and σ, if we pass g related arguments it will return related results.

Let’s illustrate this idea with another (unknown) function

· ⊢ f : ∀(t.t → t → t)

Assume f is parametric in its type argument. We have

f [bool] : bool → bool → bool

f [nat] : nat → nat → nat

LECTURE NOTES TUESDAY, OCTOBER 29, 2024



L16.2 Parametricity

Now consider a relation R : bool ↔ nat between Booleans and natural
numbers such that false R 0 and true R n for n > 0. If

f [bool](false)(true) 7→∗ false

then it must also be the case that, for example,

f [nat](0)(17) 7→∗ 0

On the other hand, from the indicated behavior and relation we cannot
immediately make a statement about

f [nat](42)(0)

But we can pick a different relation! Let false S 42 and true S 0 (and no other
values are related). From the relation S and parametricity we conclude

f [nat](42)(0) 7→∗ 42

We can see that parametricity is quite powerful, since we can tell a lot
about the behavior of f without knowing its definition. A detail that we
avoided discussing is that f is in fact a higher-order function and, say,
f [nat] maps natural numbers to functions of type nat → nat. So what
does parameterized actually state for such a function? As we will see, it
states that for any relation R : bool ↔ nat, if we apply f [bool] to and
f [nat] two related arguments then we get two functions that map R-related
arguments to R-related results. This is why we needed to include (true, 0)
in the relations R and S in the example.

What Reynolds showed is that in a polymorphic λ-calculus with prod-
ucts and Booleans, all expressions are parametric in this sense.

Parametricity, arises from the definition of equality for expressions. So
we start by exploring equality for System T and then consider an extension
of System T with type abstraction and application.

2 Equality for System T

Recall the types of System T.

Typ τ ::= nat

τ1 → τ2

We will not refer to the definition of the expressions in this lecture but
repeat the definition for completeness.

LECTURE NOTES TUESDAY, OCTOBER 29, 2024



Parametricity L16.3

Abstract Concrete
Exp e ::= x x

z z

s(e) s(e)
rec{e0;x.y.e1}(e) rec e {z ↪→ e0 | s(x) with y ↪→ e1}
lam{τ}(x.e) λ (x : τ) e
ap(e1; e2) e1(e2)

How can we define equality for the expressions of System T? We will
only consider programs, that is, closed well-typed expressions, in this lec-
ture. However, the concepts generalize to well-typed open expressions and
actually have to be generalized to prove the theorems that we will mention.
The generalizations rely on concepts such as closing substitutions that you
have worked with in the homework assignments.

Observational Equality The most basic definition of equality is called
observational equality or contextual equality. It states programs e and e′ are
equal if they can be interchanged in any program e0 without changing the
result of the evaluation of e0. This is idea is reflected in the following more
formal definition.

Definition 1 (Observational Equality) Two expression e and e′ are observa-
tionally equal, written e ∼= e′, if e : τ , e′ : τ , and for all expressions ec such
x : τ ⊢ ec : nat we have

[e/x]ec 7→∗ n iff [e′/x]ec 7→∗ n

Note that observational equality is symmetric, reflexive, and transitive.
The generalization to open expression is intuitive but requires a bit of work
and we are not going to discuss it. You can find it in Chapter 47.1 of PFPL.

Observational equality is not specific to System T but can be defined
for basically all programming languages in a similar way. It is agnostic to
the language features, which can include non-termination and other side
effects. The reason we are only considering contexts ec with result type nat

is that it allows us to reduce the notion of equality of programs, which is
complex, to equality of natural numbers, which is well understood and can
be inductively defined.

Logical Equality (Call-By-Value) Observational equality is both generic
and intuitive. It also has mathematical properties that make it a canonical
notion of equality (see PFPL). However, observational equality has the

LECTURE NOTES TUESDAY, OCTOBER 29, 2024



L16.4 Parametricity

disadvantage that it does not directly lead to a strategy for proving that
two programs e and e′ are equal. We would have to consider all possible
contexts ec and compare the programs [e/x]ec and [′e/x]ec. Instead, it would
be desirable to have an inductive definition of equality that we can apply to
obtain a derivation for the equality of two expressions. It turns out that it is
difficult (and probably impossible) to define such a notion of equality using
inference rules.

However, we can define a logical equality by induction on the type of the
expressions we compare. This approach is similar to the one we took to
show the canonicity theorem for System T. Logical equality is indeed also
considered a logical relation. However, there are some differences to the
candidate relation that we defined for canonicity. One difference is that we
work in a call-by-value setting in this lecture. As a result, we define two
separate relations for values and expressions.

e ≈ e′ : τ programs e and e′ of type τ are logically equal
v ∼ v′ : τ closed values v and v′ of type τ are logically equal

For values, we define v ∼ v′ : τ by induction on τ . Natural numbers
are logically equal if they are equal according to the standard equality for
natural numbers. Functions are logically equal if they map logically equal
expressions to logically equal results. Expressions are logically equal if they
evaluate to logically equal values.

Natural numbers: v ∼ v′ : nat if v = v′.

Functions: v ∼ v′ : τ1 → τ2 if v1 ∼ v′1 : τ1 implies v(v1) ≈ v′(v′1) : τ2 for
all values v1 : τ1 and v′1 : τ1.

Expressions: e ≈ e′ : τ if e 7→∗ v, e′ 7→∗ v′, and v ∼ v′ : τ .

We can show that logical equality coincides with observational equality.
This is the fundamental theorem of our logical relation, which means that
we defined it so that this theorem holds. The proof is not trivial and requires
a generalization of the definitions to open expressions. It can be found in
Chapter 46 (Equality of System T) of PFPL.

Theorem 1 (Fundamental Theorem) Let e : τ and e′ : τ . Then e ∼= e′ if and
only if e ≈ e′ : τ .

LECTURE NOTES TUESDAY, OCTOBER 29, 2024



Parametricity L16.5

Definition of Logical Relations During the lecture, the question arose
what exactly a logical relation is. The short answer is that it is not entirely
clear. An attempt at a definition is that it is a relation over expressions that
is defined inductively on the type structure. However, as we will see in the
next section, not even this general definition is entirely accurate.

It is probably best to think about logical relations as relations on expres-
sions that are defined to have some fundamental property or for which we
can prove a fundamental theorem. Logical relations are often defined on the
type structure but sometimes we need to extend the definition beyond types
(as in the next section).

In this course, you have so far seen two logical relations. On Homework
3, we defined a unary logical relation that related a single expression to
a realizer. We then showed that every expressions has a realizer, which
was the fundamental theorem. This was the key to our goal of proving
canonicity or termination of programs of type nat. Here, we defined a
binary logical relation that relates two expressions. We defined this relation
so that it coincides with observational equality. Our goal was to give an
inductive definition of equality so that we can use induction to show that
two expressions are equal.

3 Equality and Polymorphism: Parametricity

We now consider System F+, which is a combination of System T and System
F. We extend System T as follows.

Typ τ ::= nat

τ1 → τ2
t
∀(t.τ)

Exp e ::= . . .
Λ(t) e
e [τ ]

Observational Equality We work with System F+ instead of System F
because the base type nat enables us to use the exact same definition for
observational equality as for System T. In System F, we could attempt to use
the Church encoding for natural numbers as the base type. However, since
numbers are polymorphic functions in this encoding, we would not be able
to reduce equality to a well understood notion.

Logical Equality To define logical equality for System F+, let us attempt to
extend the definition of logical equality for System T. To this end, we have

LECTURE NOTES TUESDAY, OCTOBER 29, 2024



L16.6 Parametricity

to define v ∼ v′ : ∀(t.τ). Inspired by the definition for functions, we try to
following.

Attempt: v ∼ v′ : ∀(t.τ) if for all closed types σ v[σ] ≈ v[σ′] : [σ/t]τ .

However, because of the impredicativity of polymorphic types, this leads
to a cyclic definition. The problem is that we can substitute “large” types σ
for t. As a concrete example, consider v ∼ v′ : ∀(t.t). Then

v ∼ v′ : ∀(t.t) if . . . v ∼ v′ : [∀(t.t)/t]t

And since [∀(t.t)/t]t = ∀(t.t), this is cyclic definition.
Recall from our discussion of parametricity that a function f is para-

metric if it preserves relations between different types. Our solution for
avoiding a cyclic definition is to use such relations in the definition of logical
equality. For closed type τ and τ ′, we write

R : τ ↔ τ ′ if R ⊆ {(v, v′) | v : τ, v val, v′ : τ ′, v′ val}

Now, we define equality with respect to a relation R : τ ↔ τ ′ as follows.

Relations: v ∼ v′ ∈ [R] if v R v′

We lift this definition to closed types that can contain relations.

Typ τ ::= nat

τ1 → τ2
t
∀(t.τ)
R

The cases for natural numbers, functions, and expressions are similar to
the same cases for System T.

Natural numbers: v ∼ v′ ∈ [nat] if v = v′.

Functions: v ∼ v′ ∈ [τ1 → τ2] if v1 ∼ v′1 ∈ [τ1] implies v(v1) ≈ v′(v′1) ∈
[τ2] for all values v1 : τ1 and v′1 : τ1.

Expressions: e ≈ e′ ∈ [τ ] if e 7→∗ v, e′ 7→∗ v′, and v ∼ v′ ∈ [τ ].

For type abstraction, the issue with impredicativity is solved by only
substituting relations (a base case) for type variables. (It follows from the
definition of R : σ ↔ σ′ that σ and σ′ are closed types.)

Type abstractions: v ∼ v′ ∈ [∀(t.τ)] if for all relations R : σ ↔ σ′, we
have v[σ] ≈ v′[σ′] ∈ [[R/t]τ ].

LECTURE NOTES TUESDAY, OCTOBER 29, 2024



Parametricity L16.7

Parametricity We can now formulate the parametricity theorem.

Theorem 2 (Parametricity) If e : τ then e ≈ e ∈ [τ ].

For the proof, we have to generalize the theorem to open expressions.
The proof then proceeds by induction on the judgment Γ ⊢ e : τ .

One application of the parametricity theorem is the justification of the
definition of logical equality for System F+.

Theorem 3 (Fundamental Theorem) Let e : τ and e′ : τ . Then e ∼= e′ if and
only if e ≈ e′ : τ .

The proof can be found in Chapter 48 of PFPL. It requires a generalization
of equality to open expressions.

References

[Rey83] John C. Reynolds. Types, abstraction, and parametric polymor-
phism. In R.E.A. Mason, editor, Information Processing 83, pages
513–523. Elsevier, September 1983.

LECTURE NOTES TUESDAY, OCTOBER 29, 2024


	Introduction
	Equality for System T
	Equality and Polymorphism: Parametricity

