
Lecture Notes on
Substructural Type Systems

Jan Hoffmann

Lecture 19
Thursday, November 12, 2024

1 Introduction

In the type systems we have studied so far, we have taken so-called structural
properties for granted. For example, consider the typing rule for variables.

Γ, x : τ ⊢ x : τ

In the rule, we view the context Γ′ = Γ, x : τ as a function from variables to
types, and are not interested in the position at which x appears in Γ′ if we
view it as a list. So we just assume that it appears in the right-most position
in the rule. Moreover, we are not interested in the domain of Γ. Of course,
the context sggΓ′ would be malformed if the variable x would appear in Γ
or if other variables would appear twice. However, we allow arbitrary other
variables in Γ in the variable rule.

In substructural type systems we are more precise about such structural
properties to control the use of variables. These type systems correspond to
substructural logics (such as linear logic). Substructural type systems find
applications in memory management, access control, concurrent program-
ming, and resource analysis.

2 Structural Properties

Before we discuss substructural type systems, we define some structural
properties that we are interested in. To this end, we are very precise about
type contexts. We define, as before

Γ ::= · | Γ, x : τ .

LECTURE NOTES THURSDAY, NOVEMBER 12, 2024



L19.2 Substructural Type Systems

However, we now take the definition literally and view Γ as list x1 :
τ1, . . . , xn : τn instead of a function from variables to types. In particu-
lar, we do not identify lists with the same variables and type assignments.
The only requirement, we still have is that variables appear at most once in
a given context. For example, we have

x : τ, y : τ ′ ̸= y : τ ′, x : τ

for well-formed contexts since x ̸= y.

Exchange We say that a type system allows for exchange if the following
rule is admissible.

Γ1, x : τ1, y : τ2,Γ2 ⊢ e : τ

Γ1, y : τ2, x : τ1,Γ2 ⊢ e : τ
(EXCH)

Intuitively, the rule states that the order of variables in type contexts does
not matter in type derivations. Type systems in which the exchange rule
is not admissible are called ordered. In this course, we will only study type
systems that enjoy exchange.

Weakening We say that a type system allows for weakening if the following
rule is admissible.

Γ ⊢ e : τ

Γ, x : τ ′ ⊢ e : τ
(WEAK)

From the conclusion of the rule, we know that the variable x does not
appear in the context Γ. And since Γ ⊢ e : τ , the variable x is not free in the
expression e. So the rule states that we can always add an unused variable
to a context in a type derivation. Type systems without weakening are called
relevant.

Contraction We say that a type systems allows for contraction if the follow-
ing rule is admissible.

Γ, x1 : τ, x2 : τ ⊢ e : τ ′

Γ, x : τ ⊢ [x, x/x1, x2]e : τ
′ (CNTR)

A difference in the rule CNTR in comparison with the rules WEAK and EXCH

is that the expression in the conclusion is different from the expression in the

LECTURE NOTES THURSDAY, NOVEMBER 12, 2024



Substructural Type Systems L19.3

Type system Intuition Weakening Contraction
structural no restriction on variable use yes yes
affine variables are used at most once yes no
relevant variables are used at least once no yes
linear variables are used exactly once no no

Table 1: Substructural Type Systems

premise. In the expression e′ = [x, x/x1, x2]e, we rename the occurrences of
both x1 and x2 to x. So if x1 and x2 appear free in e then x appears multiple
times (free) in e′. In this case, we also say that x is used multiple times.
Intuitively, the contraction rule states that it does not affect type judgments if
a variable is used more often. A type system that does not enjoy contraction
is called affine. A type system that does not enjoy contraction and weakening
is called linear.

3 Substructural Type Systems

The type systems we have studied so far in the course enjoy exchange,
weakening, and contraction. Consider a context Γ = x : τ1, y : τ2 in a typing
such as Γ ⊢ e : τ . In the previous type judgments, we have been able to

• use x once as in x : τ1, y : τ2 ⊢ ⟨x, ⟨ ⟩⟩

• use x multiple times as in x : τ1, y : τ2 ⊢ ⟨x, x⟩

• use x not at all as in x : τ1, y : τ2 ⊢ ⟨y, ⟨ ⟩⟩

In a substructural type system, we view variables as resources and control
how these resources are used. We focus on three types of substructural
type systems: linear type systems, affine type systems, and relevant type
systems. Another important class of substructural type systems are ordered
type systems. In ordered type systems, the order in which variables are
introduced and used is important. Linear, affine, and relevant type systems
can be characterized by weakening and contraction as in Table 1.

To study substructural type systems, we use the expressions and types
of the simply-typed lambda calculus with the unit type 1 as a base type.
Expressions are variables, function applications, function abstractions, or

LECTURE NOTES THURSDAY, NOVEMBER 12, 2024



L19.4 Substructural Type Systems

Γ ⊢ℓ e : τ “expression e has type τ in context Γ”

x : τ ⊢ℓ x : τ
(L:VAR)

· ⊢ℓ triv : unit
(L:UNIT)

Γ, x:τ ′ ⊢ℓ e : τ
Γ ⊢ℓ lam{τ ′}(x.e) : τ ′ → τ

(L:ABS)

Γ1 ⊢ℓ e1 : τ ′ → τ Γ2 ⊢ℓ e2 : τ ′

Γ1,Γ2 ⊢ℓ app(e1; e2) : τ
(L:APP)

Γ1, x : τ1, y : τ2,Γ2 ⊢ℓ e : τ
Γ1, y : τ2, x : τ1,Γ2 ⊢ℓ e : τ

(L:EXCH)

Figure 1: Linear type rules.

the unit value.
e ::= x x

app(e1; e2) e1(e2)
lam{τ}(x.e) λ(x : τ)e
triv ⟨⟩

A type is either an arrow type τ1 → τ2 or the unit type 1.

τ ::= arr(τ1; τ2) τ1 → τ2
unit 1

3.1 Linear Type Systems

Our goal is to design a linear type system, that is, a type system that ensures
that every variable is used exactly once. To this end, we define the rules in
Figure 1, which define the type judgment Γ ⊢ℓ e : τ .

As before, the rules L:VAR and L:UNIT are axioms (leaves in type deriva-
tions). To maintain the invariant that every variable is used once, we require
that the context in the rule L:VAR contains exactly the variable x. Similarly,
we require that the context is empty in L:UNIT since we do not use a variable
in the unit value. In the rule L:ABS, the premise Γ, x:τ ′ ⊢ℓ e : τ requires that
the variables in Γ and x have to be used exactly once in the function body

LECTURE NOTES THURSDAY, NOVEMBER 12, 2024



Substructural Type Systems L19.5

e. However, the function itself will be used exactly once in the program. In
the rule L:APP, we spit up the context Γ into Γ1 and Γ2. The two premises
ensure that every variable in Γ1 is used exactly once in e1 and every variable
in Γ2 is used exactly once in e2.

For example, we can derive the judgment f : 1 → 1 → τ, x : 1, y : 1 ⊢ℓ
app(app(f ;x); y) : τ as follows

f : 1 → 1 → τ ⊢ℓ f : 1 → 1 → τ
(L:VAR)

x : 1 ⊢ℓ x : 1
(L:VAR)

f : 1 → 1 → τ, x : 1 ⊢ℓ app(f ;x) : 1 → τ
(L:APP)

y : 1 ⊢ℓ y : 1
(L:VAR)

f : 1 → 1 → τ, x : 1, y : 1 ⊢ℓ app(app(f ;x); y) : τ
(L:APP)

Similarly we could derive the judgment

f : 1 → 1 → τ, x : 1 ⊢ℓ app(app(f ;x); ⟨ ⟩) : τ .

However, we can not derive

f : 1 → 1 → τ, x : 1, y : 1 ⊢ℓ app(app(f ;x); ⟨ ⟩) : τ

nor
f : 1 → 1 → τ, x : 1 ⊢ℓ app(app(f ;x);x) : τ .

Implicit Exchange In the following lectures, we will just assume the presence of
the exchange property without explicitly mentioning it or introducing a specific rule.
Instead, we simply identify contexts that contain the same variable-type
pairs, irrespective of their order. For example, we consider the linear type
system to only consist of the rules L:VAR, L:UNIT, L:ABS, and L:APP. With
this view, the linear type rules are syntax directed, that is, there is exactly
one type rule for each syntactic form.

3.2 Affine Type Systems

An affine type system ensures that every variable is used at most once. There
are two possibilities to turn the linear type system in Figure 1 into an affine
one.

The fist option is to leave the existing type rules unchanged and add an
additional weakening rule. We write Γ ⊢a e : τ for the judgment that we
derive with these rules.

Γ ⊢a e : τ

Γ, x : τ ′ ⊢a e : τ
(WEAK)

LECTURE NOTES THURSDAY, NOVEMBER 12, 2024



L19.6 Substructural Type Systems

As discussed earlier, the idea of the rule WEAK is that we can add an unused
variable x to the context of a type judgment.

Using the rule WEAK and the linear rules, we can derive the judgment
f : 1 → 1 → τ, x : 1, y : 1 ⊢a app(app(f ;x); ⟨ ⟩) : τ .

f : 1 → 1 → τ ⊢a f : 1 → 1 → τ
(L:VAR)

x : 1 ⊢a x : 1
(L:VAR)

f : 1 → 1 → τ, x : 1 ⊢a app(f ;x) : 1 → τ
(L:APP)

· ⊢a ⟨ ⟩ : 1
(L:UNIT)

y : 1 ⊢a ⟨ ⟩ : 1
(WEAK)

f : 1 → 1 → τ, x : 1, y : 1 ⊢a app(app(f ;x); ⟨ ⟩) : τ
(L:APP)

We can show that every linear typing is also an affine typing. As the
previous example shows, the converse is not true.

Theorem 1 Let e be an expression. If Γ ⊢ℓ e : τ then Γ ⊢a e : τ .

A disadvantage of this extension of the linear rules is that the rule
WEAK is not syntax-directed, which means that it can be applied to every
syntactic form. In contrast, the type rules in the linear type system are
syntax directed and there is exactly one rule for every syntactic form (if
we view the exchange rule as an implicit rule as discussed earlier). Such
a syntax-directed type system makes type checking straightforward and
simplifies type inference.

The second option is to not add additional rules but to replace the
axioms L:VAR and L:UNIT with the rules A:VAR and A:UNIT defined below.
The intuition is that we allow to an implicit weakening of all variables in
the context Γ. The advantage of this approach is that the rules are syntax
directed. A disadvantage is that we have to incorporate implicit waking
into multiple rules and that we restrict derivations to have a specific form.

Γ, x : τ ⊢as x : τ
(A:VAR)

Γ ⊢as triv : unit
(A:UNIT)

We write Γ ⊢as e : τ for the judgment that we derive with these rules.
Using the rule A:UNIT, we can derive the previous type judgment as follows.

f : 1 → 1 → τ ⊢as f : 1 → 1 → τ
(L:VAR)

x : 1 ⊢as x : 1
(L:VAR)

f : 1 → 1 → τ, x : 1 ⊢as app(f ;x) : 1 → τ
(L:APP)

y : 1 ⊢as ⟨ ⟩ : 1
(A:UNIT)

f : 1 → 1 → τ, x : 1, y : 1 ⊢as app(app(f ;x); ⟨ ⟩) : τ
(L:APP)

We can show that the syntax-directed and declarative approaches are
equivalent as formalized by the following theorem.

Theorem 2 Let e be an expression. Then Γ ⊢a e : τ if and only if Γ ⊢as e : τ .

LECTURE NOTES THURSDAY, NOVEMBER 12, 2024



Substructural Type Systems L19.7

3.3 Relevant Type Systems

In a relevant type system, we want to ensure that each variable is used at
least once. This is of course the case in the linear type system but we can be
a bit more permissive. Like for the affine type system, we can simply leave
the (syntax-directed) linear type rules unchanged and add a structural rule
for contraction.

Γ, x1 : τ, x2 : τ ⊢r e : τ ′

Γ, x : τ ⊢r [x, x/x1, x2]e : τ ′
(CNTR)

We write Γ ⊢r e : τ for the resulting judgment. With the contraction rule we
can derive the judgment f : 1 → 1 → τ, x : 1 ⊢ℓ app(app(f ;x);x) : τ . We
simply apply contraction and then use the derivation linear of the linear
judgment as before

· · ·
f : 1 → 1 → τ, x : 1, y : 1 ⊢ℓ app(app(f ;x); y) : τ

(T:APP)

f : 1 → 1 → τ, x : 1 ⊢ℓ app(app(f ;x);x) : τ
(CNTR)

Clearly, every linear type derivation is also a relevant derivation.

Theorem 3 Let e be an expression. If Γ ⊢ℓ e : τ then Γ ⊢r e : τ .

As the examples show, the converse is not true and relevant and affine type
systems are incomparable.

There is also a syntax directed version of the relative type system. If
we start again with the linear type rules, a good idea is to modify the rule
L:APP for function applications. However, the standard rule

Γ ⊢ℓ e1 : τ ′ → τ Γ ⊢ℓ e2 : τ ′

Γ ⊢ℓ app(e1; e2) : τ
(L:APP)

is not quite what we want. It would result in a type system in which we
have to use each variable in Γ in both, e1 and e2. Instead, have to define a
sharing judgment Γ.(Γ1,Γ2) that states that the variables in Γ have to be
used in Γ1, Γ2, or in both. The idea is formalized in Figure 2.

We can then define the syntax-directed relevant type system by replacing
the rule L:APP in the linear type system with the rule R:APP below, define
the judgment Γ ⊢rs e : τ .

Γ1 ⊢rs e1 : τ
′ → τ Γ2 ⊢rs e2 : τ

′ Γ.(Γ1,Γ2)

Γ ⊢rs app(e1; e2) : τ
(R:APP)

We can show that this rule is equivalent to adding the contraction rule.

LECTURE NOTES THURSDAY, NOVEMBER 12, 2024



L19.8 Substructural Type Systems

Γ.(Γ1,Γ2) “context Γ is shared as Γ1 and Γ2”

·.(·, ·)
(SHARE0)

Γ.(Γ1,Γ2)

Γ, x : τ .(Γ1, x : τ,Γ2)
(SHAREL)

Γ.(Γ1,Γ2)

Γ, x : τ .(Γ1,Γ2, x : τ)
(SHARER)

Γ.(Γ1,Γ2)

Γ, x : τ .(Γ1, x : τ,Γ2, x : τ)
(SHAREB)

Figure 2: Sharing rules.

Theorem 4 Let e be an expression. Then Γ ⊢r e : τ if and only if Γ ⊢rs e : τ .

A less elaborate way of obtaining a syntax-directed contraction rule is to
introduce a syntactic form that makes multiple uses of a variable explicit in
the syntax.

e ::= . . .
share(e1;x1, x2.e2) share e1 as x1, x2 in e2

The syntactic form share(e1;x1, x2.e2) is like a let binding that binds the
result of e1 to both x1 and x2. The rule of evaluation dynamics is as follows.

e1 ⇓ v1 [v1, v1/x1, x2]e2 ⇓ v

share(e1;x1, x2.e2)
(E:SHARE)

The type rule that encodes contraction is as expected.

Γ1 ⊢rs e1 : τ
′ Γ2, x1 : τ

′, x2 : τ
′ ⊢rs e2 : τ

Γ1,Γ2 ⊢rs share(e1;x1, x2.e2) : τ
(E:SHARE)

3.4 Controlling Structural Properties

In the remainder of this course, we will often use a linear type system that
is extended with both weakening and contraction. This leads to a “standard”
structural type discipline but it enables us to precisely control the structural
properties. For example, we can mix linear and unrestricted types in the
same context by allowing sharing and weakening for some types only.

LECTURE NOTES THURSDAY, NOVEMBER 12, 2024



Substructural Type Systems L19.9

If we write Γ ⊢ e : τ for the regular typing judgment from the cost-
semantics lecture and Γ ⊢u e : τ for the judgment we obtain by extending
the linear rules from Figure 1 with the rules WEAK and CNTR then we can
prove the following theorem.

Theorem 5 Let e be an expression. Then Γ ⊢ e : τ if and only if Γ ⊢u e : τ .

LECTURE NOTES THURSDAY, NOVEMBER 12, 2024


	Introduction
	Structural Properties
	Substructural Type Systems
	Linear Type Systems
	Affine Type Systems
	Relevant Type Systems
	Controlling Structural Properties


