
15-819: Resource Aware Programming Languages

Lectures 1 & 2: Traditional Complexity Analysis

Jan Hoffmann

September 1, 2020

1 Introduction

In the first part of this course, we are interested in determining the resource usage of a program
as an easily-understood function of the inputs. Such a resource analysis is a one of the most
classic problems of computer science. It has for instance been studied by Donald Knuth in his
book The Art of Computer Programming [Knu97].

In the The Art of Computer Programming programs are implemented in MIX assembly and
the resource cost of executing programs is defined by the MIX semantics. Today, resource
analysis is usually performed without a formally defined cost model (or cost semantics) and
without aid by computers. In particular, bounds are derived without automation or mechanical
correctness checks. Moreover, the derived bounds hold asymptotically only, that is, for large
inputs and with multiplicative constants. Indeed, it would not make a sense to talk about
constant factors without a precise cost modal.

That an asymptotic analysis (or “big-O” analysis) is meaningful at all in practice seems to
be largely a coincident. In most cases, the analyzed programs have a uniform behavior, that is,
the worst-case behavior can be described by a function like 20n2 +15n for every input of size
n. However, from a mathematically point of view, asymptotic analysis seems rather pointless
since it applies only to large inputs where large could mean larger than the number of atoms in
the universe. Additionally, to match existing software, many asymptotic analyses assume that
numeric operations have constant resource cost, which in turn, somewhat self-contradictory,
implies finite precision numbers. In most cases, we are instead interested in inputs of reasonable
size (i.e., inputs that are smaller than the known universe). Sometimes, we would also like to
compare algorithms with the same asymptotic behavior or within a given range of inputs. In
these cases, asymptotic bounds do not provide any information. Moreover, we have to precisely
determine the constant factors anyway in a formal asymptotic analysis.

For these reasons, we will calculate and prove non-asymptotic bounds with concrete con-
stant factors in this course. Interestingly, Donald Knuth does rarely use big-O notation in The
Art of Computer Programming but plays close attention to concrete and best possible values
of constants in the resource analyses for the MIX architecture. In this course, we operate at a
much higher-level functional programming language and with a formally defined cost semantics.
Our focus is also on automatically deriving bounds that come with efficiently checkable certifi-
cates. However, before we come to that, we want to remind ourselves how resource analysis is
performed without these techniques.

In this lecture, we review recurrence relations and asymptotic analysis, which are some of
the most popular ways to perform resource analysis. While recurrence relations are a powerful
and flexible mechanism, they also have shortcomings. For example, an analysis with recurrence
relations becomes cumbersome in the presence of more complex data structures (lists of trees,
etc.) and when analyzing sequences of operations (or function calls), which are both present in
many programs. For analyzing the worst-case resource usage of a sequence of operations, there
is the powerful idea of amortized analysis, which we will revisit throughout the course.

1

2 Recurrence Relations

A popular (and somewhat systematic) way of performing resource analysis is to use recurrence
relations. Most commonly, recurrence relations are used for manual complexity analysis but we
also look at them from the perspective of automatic and mechanized resource analysis.

First, we should define what a recurrence relation is. The textbook Introduction to Algo-
rithms [CSRL01] contains the following definition.

A recurrence is an equation or inequality that describes a function in terms of its
value on smaller inputs.

One could argue that this definition is a bit to broad because an input does not necessarily
have a unique order to which smaller can refer. The aforementioned book contains moreover
only recurrence relations where the inputs are natural numbers. The definition from Carnegie
Mellons’s algorithms course (15-451/651) reads as follows.

A recurrence relation is a description of the running time on an input of size n as a
function of n and the running time on inputs of smaller sizes.

Here, we have the mention of a size but it is not clear if multiple arguments are permitted and if
they all need to be abstracted to one size. The exact definition of the term recurrence relation is
probably not that important. For the purpose of this course, we use the following one.

Definition. A recurrence relation is a recursive function T of typeNk →N.

The idea is that the arguments of T :Nk →N represent different sizes or measures that are
related in some way to the inputs of the program that is the subject of the resource analysis.
Resource analysis with recurrence relations proceeds in two steps. First, we derive a recurrence
relation that describes the resource usage of the program. Second, we find a closed (i.e., non-
recursive) form of the recurrence. In the context of automatic or mechanized analysis, the two
steps are often called extracting and solving of recurrences.

Both deriving and solving recurrence relations are non-trivial. To start with, it is sometimes
not straightforward to find the right size parameters for the analysis and an automatic approach
would likely settle for the most common ones like the size or height of a data structure. The
derivation of the recurrence is particularly difficult if we have higher-order functions, complex
data structures, or also require a proof that the derived recurrence correctly describes the
resource usage of the program. One of the difficulties is that it is often not obvious how to
describe the size of the data structures in the program is as a function of the inputs. For example,
data could be returned by a complex auxiliary function before being passed to a recursive call.
Finally, solving (i.e., finding closed forms for) recurrences is undecidable in general and also
difficult in practice. If we are looking for exact (non-asymptotic) solutions, we can only rely on a
few techniques from calculus (see below) and mainly have to guess and substitute solutions or
solution templates. As we will see, the situation looks slightly better for asymptotic solutions
and this is one of the reasons why asymptotic resource analysis is popular. However, even in the
asymptotic case, solution recipes cover only specific cases such as divide-and-conquer (Master
method).

2.1 The Substitution Method

We now perform a resource analysis for a simple program using recurrence relations in two
steps:

1. We derive a recurrence relation T (~n) from the description of the algorithm (or the pro-
gram).

2. We find a closed from for T (~n), that is, a non-recursive, easily-understood function f (n)
such that f (n) = T (n).

2

To find such a function f (n), we will use the substitution method, which is one of the simplest
and most general ways of solving recurrences.

Consider the factorial function fac that is implemented in OCaml below.

let rec fac n =
if n > 1 then

n * (fac (n-1))
else

1

Assume we are interested in the number of multiplications that are performed by fac. The first
question that arises is how to abstract an integer with a natural number. In this case, we can see
right away that the cost for negative inputs is 0 and focus on positive integers, which are simply
abstracted by their values. We can express the cost with the following recurrence.

Tfac(0) = 0
Tfac(1) = 0
Tfac(n) = Tfac(n −1)+1 if n > 1

If n = 0 or n = 1 then the program does not execute any multiplications. If n > 1 then fac(n)
performance a multiplication plus the multiplications performed by fac(n-1).

We now solve the recurrence relation with the substitution method. We guess the solution
f (n) for Tfac(n) is linear, that is, f (n) = c1n + c0 for constants c1 and c0. To verify that f (n) is a
correct solution and to determine the constants, we substitute f (n) into the recurrence relations.
We obtain

0 · c1 + c0 = 0
1 · c1 + c0 = 0

which implies c0 = c1 = 0. However, this doesn’t satisfy the remaining equality Tfac(n) = Tfac(n −
1)+1. We conclude that there is no linear solution for the recurrence relation.

We could now start looking for non-linear solution but the recurrence is so simple that we
can see that the problem originates from the base cases. So we simply drop Tfac(0) = 0 and only
focus on positive numbers. While this seems to be an insignificant detail in our manual analysis,
such issues make it difficult to automatically derive the right recurrence relations from code.

We again substitute our guess (or ansatz) into the remaining two equations.

c1 + c0 = 0
c1(n +1)+ c0 = c1n + c0 +1

Now we can solve for c1 and c0 and obtain c1 = 1 and c0 = −1. A sanity check shows that
f (n) = n −1 is indeed a solution of the recurrence.

Unfortunately, coming up with a candidate for a solution is not always straightforward.

2.2 The Recursion-Tree Method

A powerful method for finding an asymptotic solution (or candidate solution) for a recurrence
for particular divide-and-conquer algorithms is the recursion tree method (or master method).
Recall the following definitions for asymptotic notation.

Definition 1. Let f , g :N→R≥0 be two functions from natural number to non-negative reals. We
write

• f (x) ∈O(g (x)) if there exists C > 0 and N ∈N such that f (x) ≤C ·g (x) for all x ≥ N

• f (x) ∈Ω(g (x)) if there exists C > 0 and N ∈N such that f (x) ≥C ·g (x) for all x ≥ N

• f (x) ∈Θ(g (x)) if f (x) ∈Ω(g (x)) and f (x) ∈O(g (x))

3

cnk

c(n/b)k c(n/b)k· · ·

· · ·c(n/b2)k c(n/b2)k · · ·

· · · · · ·

c(n/blogb n)k c(n/blogb n)k

Figure 1: Recursion tree for T (n) = aT (n
b)+ cnk .

You may notice that these definitions only apply to functions with one argument. In the
homework, you will see that they cannot be directly generalized to multiple arguments.

Consider a divide-and-conquer algorithm that divides a problem of size n in a sub-problems
of size n/b, which are recursively solved. The solutions of the sub-problems are then combined
to a solution of the original problem of size n. Assume that the combination of the sub-solutions
and the division into sub-problems needs time cnk . The run time of such an algorithm can then
be expressed as a recurrence relation T (n) as follows where a,b,c, and k are positive constants.

T (1) = c
T (n) = aT (n

b)+ cnk if n > 1

Example 1. Consider for example the divide-and-conquer algorithm merge sort. Merge sort
divides a problem of size n into 2 sub-problems of size n

2 . Division and merging takes time cn for
some constant c. We thus have a = b = 2, k = 1 and Tms = 2Tms(n

2)+ cn.

The recurrence relation T (n) = aT (n
b)+cnk can be solved systematically using the recursion-

tree method. To see how, consider the recursion tree that arises when unrolling T (n) in Figure 1.
We will derive a closed form for T (n) by summing up the cost level by level. The cost for the top
level is cnk , the cost for the second level is ac(n

b)k , and the cost of the third level is a2c(n
b2)k . In

total, the sum of costs is

T (n) = cnk

(
1+ a

bk
+

(
a

bk

)2

+
(

a

bk

)3

+·· ·+
(

a

bk

)logb n
)

(1)

If we define r = a
bk then we have

T (n) = cnk
(
1+ r + r 2 + r 3 +·· ·+ r logb n

)
(2)

We now distinguish three cases.

Case r < 1. Then 1+ r + r 2 + r 3 +·· ·+ r logb n are the first logb n terms of a geometric series. So

1+ r + r 2 + r 3 +·· ·+ r logb n <
∞∑

i=0
r i = 1

1− r

and cnk ≤ T (n) ≤ cnk

1−r . Thus T (n) ∈Θ(nk) since r and c are constants.

Case r = 1 Then 1+ r + r 2 + r 3 +·· ·+ r logb n = logb n +1 and

T (n) = cnk (logb n +1) ∈Θ(nk logn) .

4

Case r > 1 Then we have still the first logb n terms of a geometric series and thus

1+ r + r 2 + r 3 +·· ·+ r logb n = 1− r logb n+1

1− r
= r logb n+1 −1

r −1
=Θ(r logb n) .

Thus
T (n) ∈ Θ(nk (a

bk)logb n)

= Θ(alogb n) since bk·logb n = nk

= Θ(nlogb a) since alogb n = b(logb a)(logb n) = nlogb a

In summary, the so called master method for solving recurrences for divide-and-conquer
algorithms is stated by the following theorem.

Theorem 1 (Master Theorem). Let T (n) = aT (n
b)+cnk be a recurrence relations and let a,b,c,k >

0 be positive constants. Then

T (n) ∈

Θ(nk) if a

bk < 1

Θ(nk logn) if a
bk = 1

Θ(nlogb a) if a
bk > 1

There are many variants and generalizations of the recursion tree method and more powerful
“master theorems” in which cnk is replaced with an arbitrary function f (n). However, they are
all limited to divide-and-conquer algorithms, derive asymptotic bounds only, have only one
parameter, and cannot be applied if the “split factors” a and b are not constants.

Example 2. Consider again merge sort with recurrence Tms(n) = 2Tms(n
2)+ cn and a = b = 2,

and k = 1. Therefore a
bk = 1 and by Theorem 1 it follows that Tms(n) =Θ(n logn).

So how useful is the recursion tree method for finding an ansatz for exactly solving a recur-
rence relation? It is only partially helpful. Do not be deceived by the use of Θ in the theorem.
If T (n) ∈Θ(nk) does not mean that T (n) = cnk for some c. It’s probably worth trying an ansatz
with a polynomial of degree k. However, arbitrary functions like nk +n logn are members of
Θ(nk). So there is no guarantee that this approach will succeed.

2.3 Linear Recurrence Relations

One of the few techniques for obtaining exact solutions for recurrence relations is based on
calculating roots of characteristic polynomials. It applies to homogeneous linear recurrence
relations with constant coefficients. These are recurrence relations of the form

T (n) = c1T (n −1)+·· ·+cd T (n −d)

for constants ci with cd 6= 0. We call d the degree of the recurrence. To uniquely define the value
of the recurrence T we have to define the initial or base values T (0), . . . ,T (d −1).

We can find a closed form for a homogeneous linear recurrence relation by finding the roots
of the characteristic polynomial

P (x) = xd − c1xd−1 −·· ·−cd

which has d roots r1, . . . ,rd . There are two cases. If the roots are pairwise distinct then

T (n) = k1r n
1 + . . .+kd r n

d

for constants ki that can be determined using the initial values T (0), . . . ,T (d −1).
If the roots are not pairwise distinct then we add additional terms to the products in the

solution that are determined by the number of identical roots that occurred in the formula
already:

T (n) = k1nu1 r n
1 + . . .+kd nud r n

d

Here, ui is number of identical roots r j (j < i and r j = ri) that appeared before ri in the formula.
Note that this is a generalization of the formula for pairwise distinct roots.

5

let rec split l =
match l with

| [] → ([],[])
| x1::xs →

match xs with
| [] → ([x1],[])
| x2::xs’ →

let (l1,l2) = split xs’ in
(x1::l1,x2::l2)

Figure 2: The split function of merge sort.

Non-Homogeneous Recurrence Relations Recurrence relations that arise in resource analysis
usually not homogeneous because they have a cost component in addition to the cost of the base
cases. The form of such non-homogeneous linear recurrence relations with constant coefficients
is given by

T (n) = c1T (n −1)+·· ·+cd T (n −d)+P (n)

where P (n) is a function in n. If P (n) is a polynomial then we can reduce the problem of finding
a solution to the problem of finding a solution for a homogeneous linear recurrence relation.

This is best illustrated with an example. Let us consider the split function for merge sort in
Figure 2, which recursively splits a list into two lists of (almost) equal length. To this end, split
removes the first two list elements, recursively splits the remaining list, and adds one of the
removed elements to each of the returned lists. If we count the number of cons operations, the
cost can be described by the following recurrence relation.

Tsplit(0) = 0
Tsplit(1) = 1
Tsplit(n +2) = 2+Tsplit(n)

To convert the recurrence into a homogeneous recurrence that has the same closed-form
solution, we use the equality Tsplit(n+3) = 2+Tsplit(n+1) to subtract Tsplit(n+3) from both sides
of the original recurrence. We obtain Tsplit(n +2)−Tsplit(n +3) = 2+Tsplit(n)−2−Tsplit(n +1)
and thus

Tsplit(n) = Tsplit(n −1)+Tsplit(n −2)−Tsplit(n −3)

The characteristic polynomial for Tsplit(n) is

Psplit(x) = x3 −x2 −x +1

The roots of the characteristic polynomial are 1 and −1. The root 1 appears twice as we can write
Psplit(x) as (x − r)2q(x) for r = 1 and a polynomial q(x), namely q(x) = x +1.

Using the previously discussed formula we have

Tsplit(n) = k1(−1)n +k21n +k3n1n

= k1(−1)n +k2 +k3n

for yet undetermined constants ki . Since Tsplit(0) = 0 we have k1 +k2 = 0. Since Tsplit(1) = 1 we
have k2+k3−k1 = 1 and since Tsplit(2) = 1 we have k1+k2+2k3 = 2. Therefore k1 = k2 = 0, k3 = 1,
and Tsplit(n) = n.

We can also experiment with other cost. If we for example define Tsplit(1) = 0 then we get the
more interesting result Tsplit(n) = 0.5(−1)n −0.5+n.

2.4 Example: Quick Sort

Hoare’s quicksort algorithm is an example of a divide-and-conquer algorithm for which the
master method cannot be applied. Figure 3 shows an implementation of quicksort in OCaml.

6

let rec append l1 l2 =
match l1 with
| [] → l2
| x::xs → x::(append xs l2)

let rec partition f l =
match l with
| [] → ([],[])
| x::xs →

let (cs,bs) = partition f xs in
if f x then

(cs,x::bs)
else

(x::cs,bs)

let rec quicksort le = function
| [] → []
| x::xs →

let ys, zs = partition (le x) xs in
append (quicksort le ys) (x :: (quicksort le zs))

Figure 3: An implementation of quicksort in OCaml.

Our goal is to use recurrence relations to analyze the worst-case complexity of quicksort. The
cost model we consider is the number of function calls. The first challenge in the analysis is that
quicksort is higher-order function: It takes the comparison function le as its first argument. This
is not uncommon, even in languages like C which do not have first class functions such as OCaml.
In the C standard library, one of quicksort’s arguments is a pointer to a comparison function. We
ignore the issue of higher-order functions for now and just assume that all comparison functions
have a constant cost. The second challenge in the analysis is that quicksort is a curried function:
The call quicksort gt consumes a constant amount of resources and returns a function closure.
We will also ignore the issue of curried functions and will for now assume that quicksort is always
applied to both of its arguments.

Before we can analyze quicksort, we have to analyze the helper functions append and
partition. The recurrence relations that we obtain from the code are

Tapp(0,m) = 0
Tapp(n,m) = Tapp(n −1,m)+1 if n > 1

Tpar(0) = 0
Tpar(n) = Tpar(n −1)+2 if n > 1

For append (Tapp), n is the length of the first list in the argument and m is the length of the
second list in the argument. For partition (Tpar), n is the length of the second argument. In the
second equation of par we count the recursive call and the call to the function f . Similar as for
the recurrence Tfac, we can derive Tapp(n,m) = n and Tpar(n) = 2n.

We proceed to derive a recurrence relation Tqs for the function quicksort. When looking at
the code, the question arises what the size of the lists ys and zs in the recursive calls for quicksort
is. In fact, if |`| denotes the length of a list `, we have |ys|+ |zs| = |xs|. So we need to prove by
induction on xs that for every function f: if (ys,zs) = partition f xs then |ys|+ |zs| = |xs|.

Before, we can state the recurrence for quicksort, we also have to show that |quicksort le xs| =
|xs|. However, we omit this step for brevity.

Tqs(0) = 0
Tqs(n +1) = max0≤i≤n

(
Tqs(i)+Tqs(n − i −1)+ i

)+2n +4

7

Let us first assume that the array is always split in the middle, that is, i = bn/2c. We then have

Tqs(n) = 2Tqs(n/2)+Θ(n)

and can use case a/bk = 1 of the master method to infer Tqs(n) ∈Θ(n logn).
Let us now assume that the list is always split in the most imbalanced way, that is, i = 0. Then

Tqs(n) = Tqs(n −1)+Tqs(0)+Θ(n)
= Tqs(n −1)+Θ(n)

In this case, We can show with the substitution method that Tqs(n) ∈Θ(n2).
We conjecture that in general Tqs(n) ≤ cn2 for a constant c and use the substitution method

to prove it.
Tqs(n) ≤ max0≤i≤n−1(ci 2 + c(n − i −1)2))+Θ(n)

= max0≤i≤n−1 c(i 2 + (n − i −1)2))+Θ(n)

For a fixed n, the polynomial i 2 + (n− i −1)2) takes maximums in the range 0 ≤ i ≤ n−1 for i = 0
and i = n −1. To verify this claim observe that the second derivation with respect to i is positive.
Thus we have

max
0≤i≤n−1

i 2 + (n − i −1)2) ≤ (n −1)2 = n2 −2n +1

and conclude
Tqs ≤ cn2 −2cn + c +Θ(n) ∈O(n2) .

We have now performed only an asymptotic analysis. To determine the exact constants is even
more tedious. It is not even clear how an exact solution to the recurrence could look like since,
as we have seen, the resource usage varies based on the choices of the pivot element. However,
we have abstracted away the elements of the input list and it seems impossible to recover from
that abstraction. So we stop here as the previous calculations already illustrate the difficulties
with automating and mechanizing recurrence solving.

3 Amortized Analysis with the Potential Method

Amortized analysis is a technique to derive a worst-case resource bound for a sequence of oper-
ations (or function calls). For many data structures, the amount of resources that an operation
consumes can vary substantially depending on the state of the data structure. Nevertheless,
high cost (e.g., reorganizing the data structure) will occur with some predictable frequency;
they amortize over time. Summing up the worst-case costs of operations in such a sequence
of operations would lead to gross over-approximations of the cost. In these cases, amortized
analysis provides a much tighter resource bound.

Remark. You will sometimes hear that amortized analysis is a way of determining the amortized
or even average cost of an operation. However, the goal of an amortized analysis is to determine
the worst-case cost of a sequence of operation. As a means to an end, we sometimes define the
amortized cost of an operation but this is not the final result of the analysis.

Potential Functions To amortize the cost of different operations, we introduce a potential
function

Φ : State →Q≥0 .

The idea is that an operation o : State → State that is executed in state S can use the potential
Φ(S) to pay for the cost of the operation. More specifically, we say that the amortized cost of
operation o with respect toΦ is

acost(o) = max
S∈State

cost(o)+Φ(o(S))−Φ(S)

where cost(o) is the actual resource consumption of o.

8

Theorem 2. Given starting state S0 and operations o1, . . . ,on , we have∑
1≤i≤n

cost(oi) ≤ ∑
1≤i≤n

acost(oi)+Φ(S0) .

Proof. Let Si = oi (Si−1) be the intermediate states. Then∑
1≤i≤n acost(oi)+Φ(S0) ≥ Φ(S0)+∑

1≤i≤n cost(oi)+Φ(Si)−Φ(Si−1)
= Φ(S0)+Φ(Sn)−Φ(S0)+∑

1≤i≤n cost(oi)
= Φ(Sn)+∑

1≤i≤n cost(oi)
≥ ∑

1≤i≤n cost(oi)

The challenge in performing an amortized analysis is to choose the right potential function
Φ. The goal is to choseΦ so that the amortized cost cost(o)+Φ(o(S))−Φ(S) is similar for every
state S.

Example: Stack Given is an implementation of a stack with operations push and pop. We
assume that cost(push(S,x)) = 1 and cost(pop(S)) = min(|S|,1). Consequently, the cost of a
sequence of n push and pop operations is less or equal to n.

Consider the additional operation multipop(S,k) that pops k elements from the stack. If
multipop(S,k) is executed for a stack S with less than k elements then all elements of S are
popped. Similarly, if pop(S) is applied to an empty stack S then S is unchanged and some error
message is returned. The cost of multipop(S,k) is min(|S|,k).

What is the worst-case cost of a sequence of n push, pop, and multipop operations? In a
conservative analysis we would first establish the worst-case cost of each operation. So we
would argue that the worst-case cost for multipop is n −1 since there are n −1 elements on the
stack in the worst-case. Consequently, the cost of n operations can only be bounded by n2. This
is a very loose bound since every element on the stack can only be popped once.

Using the potential method, we can perform a much more precise analysis. For a stack S we
define the potential

Φ(S) = |S|
to be the height of the stack. The amortized cost of push is then

acost(push) = 2

since Φ(push(S, x))−Φ(S) = 1 for every stack S and cost(push(S)) = 1. Furthermore, we have
Φ(pop(S))−Φ(S) =−min(|S|,1) and cost(pop(S)) = min(|S|,1) for every S and thus

acost(pop) = 0 .

Similarly, Φ(multipop(S,k))−Φ(S) =−min(|S|,k) and cost(multipop(S,k)) = min(|S|,k) for ev-
ery S and thus

acost(multipop) = 0 .

Therefore it follows from Theorem 2 that the cost of n operations is at most 2n. It is also easy
to see that the cost is actually bounded by 2m, where m is the number push operations in the
sequence.

Example: Binary Counter Consider a binary counter b = bk , . . . ,b0, which is implemented
using a list or an array of bits of fixed length. The binary counter only has an operation inc(b),
which increments b by 1. The cost of inc(b) is defined as number of bits that have to be flipped
for the update. We observe that at most one 0 is flipped to a 1 in an increment. However, multiple
1s can be flipped to 0s. Let |b|1 be the number of 1s in the counter. Then |b|1 +1 is an upper
bound on the number of bits that are flipped by one increment.

9

We are interested in the cost of n increment operations. To derive a worst-case bound, we
use the potential method of amortized analysis. We define the potential

Φ(b) = |b|1
To determine the amortized cost of acost(inc), assume that the operation inc(b) modifies ti bits.
As discussed earlier, ti −1 flips are from 1 to 0 and at most one flip (zero can happen during
overflow) is from 0 to 1. So we have

cost(inc(b))+Φ(inc(b))−Φ(b) = ti +Φ(inc(b))−Φ(b)
≤ ti + (Φ(b)− (ti −1)+1)−Φ(b)
= 2

It follows thatΦ(b0)+2n is an upper bound on the number of flips in a sequence of n increment
operations. Here b0 is the initial counter.

Example: Dynamic Table Another standard example of amortized analysis is a dynamic ta-
ble T that is implemented with an array. Assume first that we only have an insert operation
insert(T,x), which inserts a new element x into the table. We simply insert the new elements
successively until the array is full. In this case, we allocate a new array of double the size of the
current array and copy the elements over. Our cost model in this example is to count the number
of writes to an array. So the worst-case cost of one operation insert(T, x) is |T |+1. However, we
are again interested in a sequence of n insert operations.

Let |T |elm be the number of stored elements in T . We define the potential function

Φ(T) = 2|T |elm −|T |

If we always start with an empty array then the load factor is never smaller than 1/2 and
Φ(T) ≥ 0. If we consider arbitrary load factors at the beginning, we can instead defineΦ(T) =
max(0,2|T |elm −|T |).

We now determine the amortized cost. There are two cases. Assume first that |T |elm = |T |.
Then

cost(insert(T, x))+Φ(insert(T, x))−Φ(T) = |T |+1+Φ(insert(T, x))− (2|T |elm −|T |)
= |T |+1+Φ(insert(T, x))−|T |
= |T |+1+ (2(|T |+1)−2|T |)−|T |
= 3

Assume now that |T |elm < |T |. Then

cost(insert(T, x))+Φ(insert(T, x))−Φ(T) = 1+Φ(insert(T, x))− (2|T |elm −|T |)
= 1+ (2|T |elm +2−|T |)− (2|T |elm −|T |)
= 3

As a result, we have acost(insert) = 3.
We now add another operation remove(T, x) that deletes the element x from the table T .

Similar, the expansion now also want to contract the table if the load factor is equal to a constant
0 ≤ c ≤ 1. You might have the intuition to pick c = 1/2. However, this is not a good choice
since a sequence of alternating inserts and deletes can cause quadratic cost in the length of the
sequence.

A better choice is c = 1/4. Now we define the potential to be

Φ(T) =
{

2|T |elm −|T | if |T |elm/|T | ≥ 1/2
|T |/2−|T |elm if |T |elm/|T | < 1/2

The amortized costs are then acost(insert) = 3 and acost(remove) = 3.

10

References

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Intro-
duction to Algorithms. McGraw-Hill Higher Education, 2001.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd ed.): Fundamental
Algorithms. Addison Wesley, Redwood City, CA, USA, 1997.

11

