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1 Introduction

In the first lectures, we discussed that we would like to prove that a derived recurrence relation
actually corresponds to the resource usage of a given program. However, we defined our cost
models only informally, for example, as the number of multiplications executed. Such informal
cost models are common in the analysis of algorithms and often convenient to focus on the
main points of the analysis. Nevertheless, informal models of time are sometimes problematic
when comparing different algorithms with similar resource usage or when there are different
possibilities to implement certain operations. In any case, it is not possible to formally prove the
correctness of a resource bound without precisely defining a cost model.

In this course, our cost models are defined by an operational cost semantics and (optionally)
resource metrics. There are many ways of how to define a cost semantics and we explore
only the most common ones in this lecture. Which cost semantics to pick depends on the
resource of interest (time, stack space, clock-cycles, etc.) and the purpose of the cost semantics.
One approach can work well for proving the soundness of a resource bound and another for
implementing an interpreter that measures the resource usage according to the model or relating
a high-level cost model to the compiled code in a compiler. Fortunately, there are connections
between different cost semantics and the cost models defined by most variants are equivalent or
at least compatible. This makes it possible to easily use different cost semantics for different
purposes.

In this lecture, we only study a simple sequential evaluation model. However, there are cost
semantics for modeling other evaluation strategies like parallel evaluation [Har12] and complex
runtime features like garbage collection [NH18]. Such more advanced dynamic behavior is not
beyond the scope of automatic resource analysis but not discussed in this course.

2 ASimple Language and its Static Semantics

Syntax We study cost semantics using a simple language that is sufficient to discuss the most
interesting points: the simply-typed lambda calculus with fixed points and unit. Since we
consider strict evaluation, we restrict fixed points to function types instead of general fixed
points. The main properties that we later discuss carry over to other language features.

The types of the language are given by the following grammar. The role of unit in the language
is just to provide a base type so that the set of types is not empty. Like in PFPL [Har12], we define a
abstract syntax (using abstract binding trees) and a concrete syntax for each syntactic form. The
abstract syntax is the actual definition but we sometimes use concrete syntax if it is convenient.

T = arr(ry;72) T1— T2
unit 1

Expressions are defined as follows. We have variables x, function applications app(e;;e2),
recursive function abstraction fun{r, 7'} (f, x.e), and the unit value triv. The reason for including
recursive functions (instead of lambda abstraction) is that we can discuss issues that arise for
diverging computations.



Il'e:t “expression e has type 7 in context I'"”

Tx)=t
—— (T:VaR) —————— (T:UNIT)
I'kx:71 I' - triv: unit
Tte:t—1 Tle:t I,f:t—1,x:the:7
7 (T:ApPpP) ; 7 (T:FUN)
I'app(er;er):T I'+fun{r,t}(f,x.e):1—7
Figure 1: Type rules.

The types T and 7’ in the form for recursive function abstraction ensure that every expression
has a unique type (under a given type context). This is not a crucial property and we could drop
the type annotations. However, it is a desirable property to have a canonical type (in our case
even a unique type) for each expression that can be assigned a type.

e u= x x
app(er;ez) ei(e2)
fun{r,7'}(f,x.e) fun fx=e
triv O

Static semantics We now define a standard type system, the static semantics of our language.
The benefit of working with a typed language in this lecture is that we can avoid dealing with
failure in the dynamic semantics. Moreover, it is a good warm up for the more complex type
systems that we will study in the following lectures.

The rules in Figure 1 inductively define a type judgement

I'ke:t

that reads expression e has type 7 in type context I'. As usual, a context I is a finite mapping
from variables to types.
' == |ILx:7T

The order in which variables appear in a context is irrelevant. A well-formed context contains
each variable only once. In particular, if we write I’ =T, x: 7 then I (x) = 7.

We can show by induction on the type derivation that every expression has at most one type
under a given context.

Theorem 1. I[fT+e:7y andT'te: 1) thent) =15.

Abbreviations We can now define lambda abstraction lam{zt}(x.e), or A(x: 7) e in concrete
syntax, as syntactic sugar. We would like to define something like

lam{t}(x.e) £ fun{r, 7'}(f, x.e)

for a fitting 7’. However, the right choice of 7’ depends on the context, more precisely, the type
context. So the abbreviation lam{z}(x.e) stands for (potentially infinitely) many expressions.
However, we are only interested in well-typed expressions, that is, expressions e that come with
atyping derivationI'+e: 7.

For a given type context I' and an expression e that contains an abbreviated from e =
lam{7}(x.e’), we can find at most one type 7’ such that T F- e}, : 7o for some type 7o, where the
expression ey’ is ep in which ¢’ is replaced with fun{r, 7'} (f, x.€’). It is a good exercise to convince
yourself that at most one such 7’ exists. If such a 7’ does not exist then lam{z}(x.e) stands for
fun{r, 1}(f, x.¢’) (or some other arbitrary pick for 7’).



e val “expression e is a value” ‘

V:FUN)

V:U
funir, 7'} (f, x.e) val ( triv val (V:UNIT)

Figure 2: Values.

Another useful abbreviation is a let binding, which we define as follows.
let(er; x.e2) = app(lam{z}(x.e2); e1)

As before, the type 7 has to be picked correctly to match the type of e; in the current context.
The concrete syntax for let bindings is let x = e; in ez.

3 Structural Cost Semantics

The first cost semantics that we study is a structural dynamic semantics, sometimes also called
small-step semantics. As the latter name suggests, a structural dynamics defines a notion of
steps and these steps can used to define the cost of an evaluation. Before we can define the
semantics, we need to introduce substitutions.

Free Variables For an expression e, the set of free variables FV (e) is the set of variables that
appear unbound in e. Formally

FV(x) {x}
Fv(t(fl-ely-‘-;xn-en)) = Uisisn FV(e)\ {xil:-'wximi}

Note that a variable can appear both free and bound in an expression. Consider for example the
expression e £ (A(x:7) x)(x). The first appearance of x is bound but second appearance is not
bound. Thus we have x € FV (e).

An important concept is that the names of bound variables are not relevant as long as there
are no name clashes. As a result, we identify expressions that only defer in the names of bound
variables. Details can be found in PFPL [Har12].

Substitutions Let x be a variable and let e and ¢’ be expressions. Intuitively, a substitution
[¢'/ x]e replaces every free occurrence of the variable x in e with ¢’. We define

le'/x]x = ¢
e/ x]y =y ify#x
[e'/x]t(Xy1.e1,...,Xn.€n) = t(X1.€],...,%q.€;,) wherex;;¢FV(e')forallij

;| oe if 3j.x=x;;
and¢; = { [¢'/x]e; otherwise !
The condition x;;  FV(€') in the third case prevents name-capturing substitutions which would
have an unintended behavior. As a result, the substitution [e’/x]e is not defined for some
expressions. However, in the following we still assume that substitution is always defined. This is
justified since bound variables can be renamed without changing the meaning of an expression.
Similarly, we define the simultaneous substitution of multiple expressions, written as

ler,...,enlx1,...,x4]le.

Here, the free variable x; in the expression e are replaced by the expressions e; forall 1 <i < n.
Simultaneously, means that there substitution within the expressions e; are not performed. This
might happen if we would perform one substitution after another.



e— ¢ ‘“expression e steps to expression e'”

e1— ¢} erval  ex—ée)
S (S:Aprpr1) S (S:AprpP2)
app(ey; e2) — app(ey; e2) app(er; e2) — app(ey; e,)
e, val
(S:APPFUN)

app(fun{r, 7'}(f, x.e); e2) — [fun{r, 7'} (f, x.e),e2/ f, x]e

e—"¢ “expression e steps to expression ¢’ in n steps”

e—s e e” —sT e’

(N:STEP) — (N:BASE)

Figure 3: Vanilla structural dynamic semantics.

Values A valueis an expression that cannot be evaluated further. It is a result of a terminating
evaluation that does not go wrong. As we will see, the type system ensures that evaluations do
not go wrong. The values of our simple language are lambda abstractions and the unit value.
They are formally defined in Figure 2.

3.1 Vanilla Structural Dynamics

A structural dynamic semantics is a transition system. The states of the transition system are
expressions and transitions are inductively defined by transition rules. A transition corresponds
to a step in the evaluation of the expression. The evaluation of an expression consists of a
sequence of evaluation steps that is either infinite or ends with a value or a stuck state (i.e., a
malformed expression).

We denote a step from expression e to e’ by e— ¢’. Figure 3 defines the evaluation rules.
The only expressions that can take a step are function applications app(ej; e2). There are no
rules for values or variables. We never need to evaluate a variable because we only evaluated
closed expressions, that is, expressions that do not contain free variables. The rule S:ApP1 states
that the transition for the state (or expression) app(e;; e») is determined by the next transition of
the state e;. If e; is a value and thus does not have transitions then rule S:APP2 states that the
next transition is determined by expression e;. If both e; and e; are values and e is a function
then rule S:APPFUN is applicable and the next step is the substitution that is described in the
rule.

The judgement e —" ¢/, defined in Figure 3, denotes that expression e steps to ¢’ in n steps.
We write e —* ¢’ if there exists an n such that e —" ¢/. The number of steps n it takes for
an evaluation to step to a value is a natural measure of the time cost of the evaluation. It is
important to note that this cost (and the resulting value) is uniquely defined.

Lemma 1. Ife—™ v}, e—"2 vy, v; val, and v, val then vy = v, and n = n.

Type Safety We have mentioned that well-typed expressions do not get stuck. This fact is
known as type safety. A well-typed expression is an expression e for which we can find a context
I' and a type 7 such that I' - e: 7. When evaluating expressions, we are interested in well-typed,
closed expressions, that is, expressions - - e : 7 that can be typed with an empty context -. We
usually just write e: 7 instead of - - e: 7.

Structural dynamic semantics is a particularly convenient semantics for formulating and
proving type safety using progress and preservation.



Theorem 2 (Progress). Ife: T then either e val or there exists an expression €' such thate— e'.
Theorem 3 (Preservation). Ife:7 ande— €' thene':t.

We can prove progress by induction on the type judgment e : T and preservation by induction
on the evaluation judgment e— ¢'.
Now we can formally define the evaluation cost of well-typed closed expressions.

Definition 1. Lete: 1 be a closed expression. The evaluation cost of e is n ife—" ¢’ for some ¢’
and oo otherwise.

3.2 Resource Metrics

Our vanilla structural dynamics provides an adequate cost model for evaluation time. However,
we could criticize that it is not quite realistic to account the same cost for each evaluation step.
In particular, substitution and finding the right spot in an expression for preforming the next
step seem like they could be quite costly. Moreover, it seems questionable to assign cost 0 to
the evaluation of values. Don’t we have to at least look at the complete expression to decide if it
is a value? These issues could potentially be fixed by switching to a different transition system
(an abstract machine) that is more in line with an actual implementation. However, we are not
only interested in time but also in other resources like memory usage or specific metrics like
the number of function calls performed. Switching to a different transition system would not
directly address this.

To make the resource accounting more general, we introduce a resource metric that assigns a
cost to each evaluation step. This cost can be negative to model that resources become available
(like deallocation of memory) and depend on the current expression. However, in view of our
goal of performing a resource analysis, we require that a metric only depends on statically
available information such as the size of a tuple and not on dynamic information such as the
length of a list. However, you could also include dynamic information like number of substituted
variables in the metric if your main goal is to have a cost model that matches your evaluation
strategy.

To keep things simple, we work with a metric M that associates a single constant with each
syntactic form of the language.

M : {var,app,fun,trv} — Q

There are two ways of integrating the resource metric with the evaluation dynamics: resource
effects and resource safety.

3.3 Resource Effects

The idea of resource effects is to augment the dynamic semantics with additional information
about resource usage that is recorded during the evaluation but does not influence the transitions
that are taken.

Figure 4 defines the step transition of the form M - e — ¢’ | g, where e and ¢’ are expressions
and g € Q. The intended meaning is that e steps to ¢’ incurring cost ¢ under metric M. If q is
negative then —q resources become available. Like for the vanilla structural dynamics, we define
a many-steps judgement M + e —"* ¢’ | g where ¢ is the sum of the cost of the individual steps.

The following lemma shows that the resource metric does influence evaluation.

Lemma 2. Let M and M’ be two metrics. M+ e—¢é' | q then M' - e— ¢’ | g’ for some q'.
We can prove the following relations to the vanilla structural dynamics.
Lemma 3. There exists a q such that M~ e—* ¢'| q ifand only ife—* ¢'.

From Lemma 3, it follows that type soundness directly carries over if we replace the vanilla
dynamics with the version with resource effects.



MFe—¢|q “expression e steps to expression e’ with cost g”

MbEe—ellq erval MEe—e)lq
; (SE:ApP1) ; (SE:ApPP2)
M - app(ey;ex) — applej;e2) | g M - app(ey;ez2) — appler; e)) | g

e, val
M+ app(fun{z, 7'} (f, x.e); e2) — [fun{t, T’} (f, x.e), e2/ f, x]e | M(app)

(SE:APPLAM)

MEe—*e|q “expression e steps to expression e’ with net cost ¢”

MbFe—é€'|q MbEe —*e | g

_— (NE:STEP) ————— (NE:BASE)
MFe—"¢€|lq1+q2 MEe—"¢e|0

Figure 4: Structural dynamic semantics with resource effects.

Theorem 4. Let M(app) = 1. Thene—"¢' iff M+ e—"* €' | n.

We point out that the cost constants fun, trv, and var have no influence on the cost of the
evaluation and it is not immediately clear how to change this. However, as we will see, these
constants are relevant cost semantics for evaluation dynamics.

High-Water Mark If a metric defines non-negative cost for each step then the resource usage
is monotonic in the number of steps. If some cost are negative then this is not the case and we
are usually interested in the high-water mark resource usage, that is, the maximal amount of
resources that are used at some point during the evaluation.

Definition 2. Let e : T be a closed expression. The high-water mark resource usage of e under
metric M is defined as max{q | M - e—* €' | q} if the maximum exists and oo otherwise.

Note that the high-water mark can be finite for diverging computations that, for example,
alternate between allocating and freeing resources.

3.4 Resource Safety

Another way to model resource usage is by resource safety. Instead of resource usage being an
effect of the evaluation, we view resources as fuel that gets consumed during the evaluation.
If the fuel is not sufficient to cover the cost then the evaluation gets stuck. So in contrast to
resource effects, resources can influence the evaluation and type safety does only hold if we start
with a sufficient amount of resources.

Figure 5 defines the judgment M + (e| q) —* (¢’ | ¢, which states that, with g € Qx
available resources, expression e evaluates to expression ¢’ and g’ € Q¢ available resources.
The difference g — ¢’ of initial and remaining resources is the net cost of the evaluation. For
an expression, there are now many possible initial resources we can start the evaluation with.
However, the net cost of the evaluation is invariant. Note that Lemma 5 does not hold for ¢ < 0.

Lemmad4. IfMF{e|q)—"( | q"y, M+ {e|p)—"(e"|p'y. Thene' =e" andq—q' =p-p'.
Lemma5. IfM+(e|q)—"(e'|q"yandc=0then M\ (e| g+ c)—" (' | q'+ ).
Let us examine how the resource safety dynamics relates to the version with resource effects.

Theorem 5. Lete: T be a closed expression. fM (e | q) —* (€' | ') thenM+e—*e'|qg—¢'.



ME<elg)— (' | q" “with g = 0 available resources, e steps to ¢’ and ¢’ = 0 resources”
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Figure 5: Structural dynamic semantics with resource safety.

Theorem 6. Lete: T be a closed expression. If M - e—* €' | g then there exist p, p’' € Q¢ such
thatp—p' = qand M+ {e| p) —* (' | p').

You may have expected a stronger version of Theorem 6 in which we conclude M I (e | g) —*
(e’ | 0) (for g = 0). However, this only holds for metrics M without negative cost. A more general
version of this question is how two evaluations M - {e1 | g) —"* (e | ¢’ and M I {e, | p) —*
{e3 | p'y compose. We know that there exists r, 17’ € Qs such that M I (e | r) —* {e3 | ') but it
is not clear how we can express them in terms of g, ¢’, p, and p’. We will revisit this question in
Section 5.

As you can infer from the formulation of Theorem 6, type safety with the resource safety
semantics is slightly different from the vanilla version: If you do not have enough resources then
you can get stuck even if the expression is well typed. We could state progress as follows.

If e: 7 then e val or there exists ¢, g’, and e such that M (e | g) — (€' | g").

High-Water Mark With resource safety, the high-water mark is the minimal amount of re-
sources that we need to not run out of resources. The question is how to come up with a
definition that captures this idea. A first idea would be something like this

min{q|Vp,p’,e.MF(e|p)—"* (e | p)y = Iq' .M+ (e| q)—" (€' | ')}

However, this is not what we want since it would result in the high-water mark 0 for expressions
such as fun(f, x. f (x)) (triv), which steps to itself. We could fix this by adding the number of steps
to the judgment.

min{q |Vp,p',e¢ ,n.M+(e|p)—" (| p') = g’ .M+ (e| q)—" (| q')}

This works but is unsatisfactory since we have talk about the resource usage and the number of
steps, which is itself a notion of time usage. Another possibility would be to focus on terminating
evaluations only.

min{q |3v,q’.v valand M+ (e | q) —" (v| ')}



This is nice and simple but the downside is that we do not define a high-water mark for diverging
evaluations. The definition we pick directly captures our initial intuition about not running out
of resources.

Definition 3. Lete: 1 be a closed expression. The high-water mark resource usage hwmy(e) of e
under metric M is defined as the smallest q such that the following holds (or co if no such q exists).
Foralle',q', if(e| q)—" (€| q') and not &' val then (e’ | q'y— (" | q") for somee",q" .

Note that the definition is a generalization of the previous definition for values. Of course, we
expect the following theorem. However, it is not directly clear if the statement is indeed correct
and how we can prove it. So you need to prove it on the next homework assignment.

Theorem 7. Let e : T be a closed expression and M a metric. The maximum m = max{q | M +
e—"* &' | q} exists if and only if hwmyy(e) is finite. In this case hwmy(e) = m.

4 Cost Annotations

The simple lambda calculus that we studied in this lecture so far is a bit too simple to illustrate
some of the issues with high-water marks. The problem is that we only have one relevant
cost constant, which cannot be positive and negative at the same time. However, the previous
discussion and theorems still hold for more interesting language extensions.

A simple extension that is flexible enough to demonstrate most interesting resource behav-
iors are cost annotations that allow the use to define the cost of certain parts of the program. To
add cost annotations, we extend the expression with an additional syntactic form tick{q} where
qgeqQ.

e u=

tick{g} tick(q)

Ticks only influence the resource usage and do not have a computational effect. The type rule
for ticks is defined as follows.

———F X (T:TickK)
I' I tick{qg} : unit

We extend resource metrics to be functions
M : ({var,app, fun,trv} U {ticky | g€ Q}) — @

The rules of the dynamics semantics can be extended in a straightforward way. For example,
the structural dynamics with presource effects is extended with the following rule.

(SE:TICK)
M+ tick{q} — triv| M(q)

The rule for the vanilla structural semantics is simply

——— (S:TicK)
tick{g} — triv

and the structural dynamics with resource safety is extended with the following rule.

p’ = p—M(thkq) = 0
M + (tick{g} | p) — (triv| p")

(Ss:Tick)

All previously stated theorems and lemmas are still true with this extension.

Tick Metric The tick metric Mt is the metric with My (tick,) = g and M7(K) = 0 for K # tick,.
It only accounts for the cost annotations that have been inserted in the program by a user.



MFEe UZ, v “with g = 0 available resources, e valuates v and g’ = 0 resources remain”

qd=q-Mitrv)=0 q =q—-M(fun)=0
- — (Es:UNIT) p 7 - (Es:FuN)
M | triv ug, triv M - funiz, T'}(f, x.€) Y}, fun{r, 7'} (f, x.€)

Mk e UZ fun{r, 7'}(f, x.e)
MF e UZ, Vo Ml—[fun{T,T’}(f,x.e),vg/f,x]eU;, v r=p' -Mf(@pp) =0

7 (Es:App)
M- app(ey;en) Uq, v

Figure 6: Evaluation dynamics with resource safety.

5 Evaluation Dynamics

The second class of cost semantics we study is based on evaluation dynamics (or big-step
semantics). In contrast to structural dynamics, evaluation dynamics does not enjoy a notion of
steps, so the term big-step is somewhat misleading. The vanilla evaluation dynamics defines a
judgment e | v where e is an expression and v is a value. The judgment for values is same as for
the structural dynamics and defined in Figure 2.

We skip the inductive definition of e || v. You can obtain the rules by removing the resource
annotations for the rules in Figure 6. We can prove the following theorem.

Theorem 8. Lete: 1 be a closed expression then e |} v ifand only ife—" v and v val.

Note that it is not directly possible to formulate type safety with an evaluation dynamics
since there is no distinction between divergence and failure: there is no judgment for both.!

5.1 Resource Safety

We first study an evaluation dynamics that implements the idea of resources safety. Figure 6
inductively defines the judgment M |- e UZ, v with the following intended meaning. If g = 0

resources are available then expression e evaluation to value v and ¢’ resources are available
after the evaluation. Like for the structural dynamics, we can show that the net cost is invariant.

Lemma6. Lete:1 be a closed expression. f M - e UZ/ vand Mt e UZ, Vtheng—q'=p-p'.

+c v
"+c

Lemma?7. Lete:T and M+ eUZ, v. Then M eUZ

A particularly nice feature of an evaluation dynamics is that the shape of the rules matches
to the shape of the type rules. This simplifies inductive proofs of statements that involve an
evaluation judgment and a type judgment for the same expression.

With an evaluation dynamics we can also assign cost to values. In our simple language,
we do not have composed values likes lists. As we will see later in the course, an evaluation
dynamics naturally assigns non-constant cost to such values as the evaluation rules will evaluate
the subexpressions of the value. So for a list of values, this would lead to a cost that is linear in
the size of the value. In contrast, the structural dynamics assigns cost 0 to all values. This is not
realistic as an implementation would have to traverse the list to check if all elements are indeed
values.

When we relate the evaluation dynamics with resource safety to cost semantics based on
a structural dynamics then we have to assume a metric M that does not assign cost to value
evaluation.

170 distinguish divergence and failure, we could introduce another evaluation judgment for failures. However, this
would drastically increase the number of rules and diminish some of the benefits of evaluation dynamics.



Mbrelvi(q,q) “e valuates v with high-water mark ¢ = 0 and ¢’ = 0 remaining resources”
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Figure 7: Evaluation dynamics with resource effects.

Theorem 9. Let M be a metric such that M(trv) = M(fun) = 0 and let e : T be an expression. Then
MrE eUZ, vifandonlyif M (e|q)—* (v|q') and v val.

The high-water mark resource usage can only be defined for terminating evaluations. Let
e: 7 be a closed expression. The high-water mark resource cost is

min{g|3v,q'.vvaland M e UZ, v}

if the minimum exists and undefined otherwise. From Theorem 9, we derive the following
corollary.

Corollary 1. Let M be a metric such that M(trv) = M(fun) = 0 and let e : T be an expression. If
m=min{qg|3v,q'.vvaland M |- e UZ, v} exists then hwmp;(e) = m.

Downsides of Resource Safety There are a number of issues with using resource safety to
define the resource usage of programs. One issue is that the evaluation judgement is non-
deterministic, that is, for a given expression e, we have different evaluation judgements M
e UZ, vand M+ e U”Z , v where p # g. This is partially mitigated by the fact that there exists a
canonical judgement that has a minimal amount of initial resources. However, the evaluation
rules in Figure 6 do not help us to find this canonical judgement. Therefore, if we would like to
implement an interpreter based on the evaluation rules with resource safety then we cannot use
it to measure the high-watermark resource usage of programs. We rather have to start with some
fuel that we have to pick before we run the interpreter. Note that these issues equally apply to
resource safety in the evaluation dynamics and the structural dynamics.

5.2 Resource Effects

In this subsection, we develop an evaluation dynamics that uses resource effects. The first idea
that comes to mind is to define a judgment of the form M e |7 v, where g = 0 is the high-water
mark resource usage. But how would we compose the cost of two evaluation M - e; |9 v and
Mt e, %2 v in the rule for function application? Both, taking the sum q; + g» of the cost and
the maximum max(qi, q2) of the subexpressions is incorrect. The high-water mark depends on
the resources that are available after evaluating e;. If we have g, resources available after the
first evaluation, that is, M (e | q1) —" (v | q»), then g, seems reasonable for the high-water
mark. However, if we do not have any resources left, thatis, M - {(e; | q;) —"* (v | 0), then the
high-water mark is q; + g» because the resources needed for evaluating e, are used in addition
to the ones consumed by e;.

To define a precise composition operation, we need to keep track of both the high-water mark
and the remaining resource. Figure 7 defines the judgement M - e |} v| (g, q’). The intended
meaning is that under metric M, expression e evaluates to value v, the high-water mark resource
usage is ¢ € Q¢ and after the evaluation there are g’ € Q¢ resource units available. The net
resource consumption is then g — ¢’. This difference is negative if resources become available
during the execution of e.
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Resource Monoid It is handy to view the pairs (g, ¢') in the evaluation judgments as elements
of a monoid Q = (Qx¢ x Qx0, ). A monoid has an associative operation - and a neutral element.
The neutral element is (0,0), which means that resources are neither needed before the eval-
uation nor returned after the evaluation. The operation (g, ¢') - (p, p’) defines how to account
for an evaluation consisting of a sequence of two evaluations whose resource consumption are
defined by (g, q') and (p, p'), respectively. We define

(g+p—q', p) ifq<p

l N —
(g,9) (P»P)—{ (q, p+q-p ifqg>p

If resources are never returned (as with time) then we only have elements of the form (g, 0) and
(q,0)- (p,0) is just (g + p,0).
We identify a rational number g € Q with an element of Q as follows: g = 0 denotes (¢g,0) and
g <0 denotes (0, —¢g). This notation avoids case distinctions in the evaluation rules in Figure 7.
Another way to define the resource monoid is given in the following lemma, which shoes
that the resource monoid on natural numbers (instead of non-negative rationals) is the bicyclic
semigroup.

Lemma8. (q,q)-(p,p’)=(q+p—-min(q,p), p'+q' —min(q, p))
Lemma9. Let(q,q") = (r,r')-(s,s'). We can prove the following statements.
1.g=zrand q—q'=r—r'"+s-+
2. If(p,p)=(Fr)-(s,s)andF=r thenp=qandp' = q'
3. If(p,p)=(rr)-G5,s)ands=sthenp=qgandp' <q
4. (1) ((s,8)- (6,69 = ((1r,7) - (5,8) - (£, 1)
Properties of the Dynamics A beneficial feature of the evaluation dynamics with resource

effects is that the judgment is deterministic in the sense of the following lemma. So the rules are
suitable to implement an interpreter that keeps track of the resource usage.

Lemma10. Lete: 1 bea closed expression. FMFel v|(q,q)and M+el V' | (p,p') thenv="1'
and (q,q") = (p,p").

We can show the following relations to the evaluation dynamics with resource safety.

Theorem 10. Lete: 1 be a closed expression. If M+ e UZ, vthenMtzel v|(p,p') forsomep,p'
withp<qandp-p' =q-4q'.

Theorem 11. Lete: 1 be a closed expression. fMFe | v|(q,q') then M+ e UZ, v.

Theorem 10 and Theorem 11 show that the high-water mark defined by resource monoid is
identical to the high-water we defined using resource safety.

Corollary 2. Lete:1 be a closed expression. We have M- e | v| (p, p') for some p' if and only if
p=min{q|3v,q'.vvaland M - e UZ, v}

5.3 Partial Evaluations

A remaining disadvantage of the evaluation dynamics (in both versions) is that the high-water
mark resource usage is only defined for terminating evaluations. To extend the evaluation
dynamics to diverging computation, we define the judgment M |- e |} o | g in Figure 8. It states
that under metric M, the partial evaluation of expression e leads to high-water mark resource
usage g. The idea is that the rule EP:STOP can be used to derive the resource usage for a starting
fragment of a (possibly diverging) evaluation. So we can show that the high-water mark of a
terminating evaluation always exceeds the high-water mark of a partial evaluation of the same
expression.
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MFEelo|lg  “eneedsq=0resources at some point in the evaluation”

MEFe Jvig
———  (EP:STOP) (Ep:APP1)
MbEelo|0 MF app(ej;ex) Yol g

MrEeYvi(q,q) Mrelolgs (p,p)=(q1.9) ¢ (
Mt app(ej;e) Jolp

EP:ApPP2)

Mt e | fun{t, 7} (f, x.e) | (q1,9]) MbEex|v2l(gz, q2)
Mt [fun{r, 7} (f, x.e), v2/ f,xlelol g (p,p)=(q1,9)) (g2, g5) - M(app) - q

Mt-app(ej;ez) yolp

(Epr:APP3)

Figure 8: Partial evaluation dynamics with resource effects.

Theorem 12. Lete: 1 be a closed expression. fM e v|(q,q) and M+ el o|p thenp<gq.

But what can we say about diverging computations? Let us first define the high-water mark
resource usage with partial evaluations.

Definition 4. Let e : 1 be a closed expression. The high-water mark resource usage of e under
metric M is defined as

e gifMtelv|(q,q) forsomev and q', or otherwise
* max{q| Mt el o| q} if the maximum exists, or otherwise
* oo

The following lemmas relates partial evaluation to the structural dynamics with resource
effects.

Lemmall. Lete:1. [fMF el o| q for some q then there exists ¢’ such that M+~ e— ¢’ | q.
Lemmal2. Lete:1 andneN. If g, =max{q|3e’,m<n.Mte—"¢e | gl then MFe|o| qn.

From Lemma 11 and Lemma 12 we obtain the following theorem. Note that we do not have
to require any restrictions on the metric. However, this is only the case because the values in our
simple language are atomic. If we were to add lists and respective cost to the language then the
theorem would only hold if the cost of evaluating values would always be 0.

Theorem 13. Lete: T be a closed expression. The m =max{q | M\ e |} o| g} exists if and only if

n=max{q| M+ e—"* ¢'| g} exists. In this case n = m.

Evaluation-Step Metric Interestingly, we can use our partial evaluation dynamics, to formulate
and prove type safety. To this end, let Mg be the step metric, that is, Mg(trv) = Mg(fun) = 0 and
Ms(app) = 1. Then we can show that g’ = 0 for every judgment Mg+ e | v| (g, q"). Additionally,
we can prove the following corollary.

Corollary 3. Fore:1, we have Mgt e o| n ifand only ife—" ¢’ for some n.

If for a terminating evaluation of cost n we can derive partial evaluations for every m < n.
Lemma13. Lete:1. I[fMste| v|(n0) andm<nthen Mstel|o|m.

We can formulate progress and preservation as follows.
Theorem 14 (Preservation). Ife:7 and Mgt el v|(n,0) thenv:t.

Theorem 15 (Progress). Ife:1 and Mgt e |} o | n then either Mgt e |} v | (n,0) for some v or
Mgtelo|n+1.
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6 Compiling Resource Metrics to Cost Annotations

Resource metrics are a flexible and general method to define the resource usage of a program.
However, to study and implement resource analysis, it is simpler to rely on cost annotations only.
For one thing, you can imagine that you would like to enable a programmer to define the cost of
a program. For another thing, cost annotations can be added to an intermediate language to
match the cost that is defined by a resource metric at the source level.

On the second homework assignment, you will define a translation from expressions in our
simple language to expression in let-normal form with cost annotations, which can be seen
as an intermediate language. For a fixed metric M, the resulting expression is equivalent to
the source expression in the sense that it evaluates to the same value (if the source expression
terminates) and the cost annotations reflect the resource consumption of the source expression
under metric M.

In the remainder of the course, we will not consider resource metrics anymore. The trans-
lation you carry out in the homework shows that we can do so without loss of generality. For
example, the resource effects evaluation rules for the language in this lecture can be defined as
follows. Note that the resource metric M is missing from the rules.

——— (E:UNIT) (E:FUN)
triv | triv| 0 fun{z, 7}(f, x.e) | fun{z, 7} (f, x.e) | 0
e1 U fun{r, 7'}(f, x.e) | (q1,9))
ex U v2 (g2, q5) fun{z, 7'}(f, x.e), v2/ f, xle Y v1(q,9")
2 U v21(g2, 4, (fun{r, 7 ]/“ 2/f ] /U 1(g,q9 (E:APD) —  ETIw
app(es;e2) Y v (g1, q1)-(q2,9,) - (q,q) tick{g} § triv] g
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