
15-819: Resource Aware Programming Languages

Lecture 12-13: Linear Automatic Amortized Resource
Analysis

Jan Hoffmann

October 16, 2020

1 Introduction

After the detour to implicit computational complexity, we now turn to resource bound analysis.
Given a program, we want to describe its resource usage—as defined by a cost semantics— as a
function of its inputs. So the goal is to get more fine-grained information than to just learn that
the function runs in polynomial time.

In this lecture, we study linear automatic amortized resource analysis (AARA), which has
been introduced by Hofmann and Jost in 2003 [HJ03]. Linear AARA is a type-based resource
analysis system. That means that bounds are implicitly defined by function types and type
derivations are certificates for the soundness of the bounds. The word linear in the title does not
refer to a linear type system (in fact, AARA is based on an affine type system) but to the kind of
bounds we can derive: Bounds are linear functions q0 +∑

1≤i≤q qi ni (roughly) of the sizes ~n of
the arguments of a function. In the following lectures, we will also discuss polynomial AARA,
which derives polynomial bounds. The word automatic refers to the fact that bounds can be
derived automatically, using type inference.

Linear AARA uses almost all concepts that we discussed in the course so far: amortized
analysis, cost semantics, an affine type system, implicit computational complexity (diamonds),
and constraint-based type inference.

2 Resource Bounds with LFPL

Linear AARA is inspired by LFPL. Assume we would like to implement a function double in LFPL
that takes a list and returns a list that is twice as long as the input. We are not able to implement
this function with type

double : L(bool)(L(bool)

since the function would be size increasing. However, we can implement the function with the
following type. Note that this is only possible since bool is a heap-free type and we can thus
duplicate Booleans.

double : L(♦⊗bool)(L(bool)

The function double can be implemented as follows.

λ(` : L(♦⊗bool))
iter ` {nil ,→ nil

| cons (d , x,_) with y ,→ letp〈d ′, x ′〉 = x in cons (d , x ′, cons (d ′, x ′, y))}

We add two elements x ′ to the result list in each iteration and thus need two diamonds d and
d ′ to “pay” for the use of cons . The computation is non-size increasing because the size of an
input ` : L(♦⊗bool) is 2|`| = |double(`)| where | · | is the length of a list.

The first observation we make is that the diamonds in the input—or,equivalently, the size
of the input as defined in the previous lecture—are an upper bound on the number of cons

1

operations that are performed during the evaluation. So the type derivation of double shows
that we do not perform more than 2|`| cons operations during an evaluation of double(`).

The second observation we make is that we can change LFPL to derive worst-case bounds
not only on the number of cons operations but on arbitrary resources. To achieve this, we
separate diamonds from lists and add a syntactic form tick that represents a cost of 1 when it is
executed. However, we require that we need to have a diamond available to pay for the cost of
tick . To simplify the use of ticks we also build in sequential composition and add the syntactic
form tick(e1;e2), which corresponds to evaluating a tick of cost 1 and then evaluating e2. The
expression e1 evaluates to the diamond that we need to cover the cost. So we have the following
type rules.

Γ1 ` e1 :♦ Γ2 ` e2 : τ

Γ1,Γ2 ` tick(e1;e2) : τ
(TICK)

Γ1 ` e1 : τ Γ2 ` e2 : L(τ)

Γ1,Γ2 ` cons(e1;e2) : L(τ)
(CONS)

Γ1 ` e : L(τ′) Γ2 ` e1 : τ x : τ′, y : τ` e2 : τ

Γ1,Γ2 ` iterL{e0; x,, y.e1}(e) : τ
(ITER)

Let us now derive a bound on the number of constructors we use in an inefficient identity
function for lists. In the function, we traverse the list and rebuild the same list step by step. So
id(`) performs |`|+1 constructor calls: 1 call of nil and |`| calls of cons . We can express this
bound in our modified LFPL as follows.

id : L(♦⊗bool)(♦(L(♦)
id ≡ λ(` : L(♦⊗bool))λ(d :♦)

iter ` {nil ,→ tick (d , nil)
| cons (x,,_) with y ,→ letp〈d ′, x ′〉 = x in tick (d ′, cons (x ′, y)))}

This is basically the idea of linear AARA. However, the are a few restrictions that make LFPL
inconvenient to use. LFPL uses an affine type discipline which prevents us from using some
variables multiple times in a program. For example, we cannot for every type τ implement a
function like

λ(` : L(τ)) 〈id(`), id(`)〉 .

Moreover, there is a lot of book-keeping in the code and we have to micro-manage which
diamond to use to pay for a particular tick . To alleviate these restrictions, we remove diamonds
from the expressions and only keep track of them in the types.

3 Linear AARA with Lists

Syntax We start the definition of AARA with a simple language with units and lists. We later
add sums, products, and recursive types. Expressions are defined as follows.

e ::= x x
triv 〈〉
app(x1; x2) x1(x2)
fun(f , x.e) fun f x = e
nil []
cons(x1; x2) x1 :: x2

matL{e0; x1, x2.e1}(x) case x {nil ,→ e0 | cons (x1, x2) ,→ e1}
tick{q} tick q
let(e1; x.e2) let x = e1 in e2

share(x; x1, x2.e) share x as x1, x2 in e

The elimination form for lists is standard pattern matching as opposed to iteration as in
LFPL. Instead, we add general recursive functions. So the only recursively defined expressions
are function abstractions. This is not a limitation of AARA but it simplifies the presentation and

2

technical development. We also have a syntactic from share for explicit contraction that we
discuss later.

Expressions are given in share-let-normal form, which means that subexpressions in syntac-
tic forms can only be variables whenever this does not expressivity. For example, applications
have the form app(x1; x2) where x1 and x2 are variables. Moreover, function abstractions and the
constructor nil are not annotated with types. As a result, we forgo unique typing of expressions,
which is a property that is not desirable in the context of AARA.

We also have explicit tick expressions tick{q} that define resource usage q ∈ Q as before.
If q < 0 then resources become available. As we have seen on Assignment 2, it is possible to
translate (arbitrary) expressions with resource metrics into equivalent expressions in let-normal
form with ticks.

We define the following syntactic abbreviations. We write

let f x = e in e ′ for let f = fun f x = e in e ′
λ(x)e for fun f x = e where f is fresh

Types and Potential Annotated types are defined by the following (mutually recursive) gram-
mar.

τ ::= unit 1
arr(A;B) A → B
L(A) Lq (τ)

A,B ::= pot(τ; q) 〈τ, q〉
We require q ∈Q≥0 in 〈τ, q〉 and call q a potential annotation. For a list type L(〈τ, q〉) we often
write Lq (τ).

One way to build an intuition about potential annotation is to think of them as the diamonds
of LFPL. So we have L(〈τ,1〉) instead of L(τ⊗♦) but lists of type L(〈τ,1〉) have elements of type τ.

Resource bounds are implicitly given by types in the form of potential, which maps values to
non-negative rational numbers. To define potential, we first sketch the definition of values. We
leave the definition of functions open until we define the dynamic semantics. Here, we do not
need details since the potential of a function is zero.

�1� = {〈〉}
�L(A)� = {[v1, . . . , vn] | n ∈N, vi ∈ �A�}
�〈τ, q〉� = �τ�
�A → B� = (defined later)

We now define the potential Φ(v : τ) of a value v under type τ. We have Φ(· : τ) : �τ�→Q≥0.

Φ(〈〉 : 1) = 0
Φ([] : L(A)) = 0
Φ(v1 :: v2 : L(A)) = Φ(v1 : A)+Φ(v2 : L(A)
Φ(v : 〈τ, q〉) = Φ(v : τ)+q
Φ(v : A → B) = 0

So the only values that are carrying potential are lists and we have

Φ([v1, . . . , vn] : Lq (τ)) = q·n + ∑
1≤i≤n

Φ(vi : τ)

Example 1. Consider again the inefficient identity function.

fun id l =
match l with
| [] → []
| x::xs → let _ = tick 2 in

let ys = id xs in
x::ys

3

The evaluation cost of id ` is then 2|`|. We can reflect this bound by assigning the following type to
id.

id : 〈L2(1),0〉→ 〈L0(1),0〉
The potential of Φ(` : L2(1))+0 = 2|`| of the argument is identical to the cost of the evaluation.

Interestingly, we can justify a similar type for an arbitrary element type τ.

id : 〈L2(τ),0〉→ 〈L0(τ),0〉

The potentialΦ(` : L2(τ)) now includes the potential that is assigned by τ to the elements of the list.
The same potential appears in the result type of the function where it is assigned to the elements of
the result list. This potential can be used to pay the cost of another function that is applied to the
resulting list. This is sound because every element in the argument of id appears exactly once in
the output.

Similarly, we can assign more potential to the input list and pass it through to the result. For
example, we can assign the following type.

id : 〈L4(τ),5〉→ 〈L2(τ),5〉

This type is sound because the length of the result of id is bounded by the length of its argument. It
is useful to type the first call to id in the following program.

fun id2 x =
let y = id x in
let _ = tick 5 in
id y

Using the previously defined type of id we can justify the following typing.

id2 : 〈L4(τ),5〉→ 〈L0(τ),0〉

Static Semantics The typing judgment Γ; q ` e : A is defined by the rules in Figure 1. The
intuitive meaning of the judgment is that the potential given by Γ and q is sufficient to cover the
evaluation cost of e and the potential defined by A. We will formalize this intuition when we
discuss soundness.

The rules are formulated in a linear style with additional structural rules that relax the
judgment to treat potential in an affine way. In the rule L:APP, we require that we have the exact
potential annotations (x2 : τ and q) that are required by the argument. The resulting potential is
given by the result type B .

In the rule L:CONS, we have to provide potential p to account for the potential of the new list
element. Conversely, the potential of the head x1 of the list x : Lp (τ) becomes available in the
cons branch of the pattern match in the rule L:MATL. As a result, we have constant potential
p +q available when typing e1.

In the rule L:FUN for (recursive) function abstraction, we require that the potential of the
variables captured in the context Γ is zero. We write |Γ| for the context Γ in which every potential
annotation q is replaced by 0. This is formally defined below. The reason for this requirement
is that we allow functions to be used an arbitrary number of times (see the later definition of
sharing). If Γ would carry potential then we could use this potential multiple times to account
for cost, which is not sound. Since functions do not carry potential, we do not have to restrict
the type of the recursively defined function f in a similar way. An alternative would be to remove
the premise Γ= |Γ| and to treat functions in an affine way. Of course, we can also design a type
system with both, affine and unrestricted functions.

The formal definition of | · | for annotated types follows.

|unit| = unit
|L(A)| = L(|A|)
|A → B | = A → B
|〈τ, q〉| = 〈|τ|,0〉

4

Γ; q ` e : A “expression e has annotated type A under context Γ and potential q”

Syntax directed rules:

x : τ;0 ` x : 〈τ,0〉 (L:VAR) ·;0 ` triv : 〈unit,0〉 (L:UNIT)

A = 〈τ, q〉
x1 : A → B , x2 : τ; q ` app(x1; x2) : B

(L:APP)

A = 〈τ, q〉 Γ= |Γ| Γ, f : A → B , x : τ; q ` e : B

Γ;0 ` fun(f , x.e) : 〈A → B ,0〉 (L:FUN) ·;0 ` nil : 〈Lp (τ),0〉 (L:NIL)

x1 : τ, x2 : Lp (τ); p ` cons(x1; x2) : 〈Lp (τ),0〉 (L:CONS)

Γ; q ` e0 : B Γ, x1 : τ, x2 : Lp (τ); q +p ` e1 : B

Γ, x : Lp (τ); q ` matL{e0; x1, x2.e1}(x) : B
(L:MATL)

q ≥ 0

·; q ` tick{q} : 〈unit,0〉 (L:TICK1)

q < 0

·;0 ` tick{−q} : 〈unit, q〉 (L:TICK2)
Γ1; q ` e1 : 〈τ, p〉 Γ2, x : τ; p ` e2 : B

Γ1,Γ2; q ` let(e1; x.e2) : B
(L:LET)

τ.(τ1,τ2) Γ, x1 : τ1, x2 : τ2; q ` e : B

Γ, x : τ; q ` share(x; x1, x2.e) : B
(L:SHARE)

Structural rules:

Γ; q ` e : 〈τ′, q ′〉 τ′ <: τ

Γ; q ` e : 〈τ, q ′〉 (L:SUB)
Γ, x : τ; q ` e : B τ′ <: τ

Γ, x : τ′; q ` e : B
(L:SUP)

Γ; q ` e : B

Γ, x : τ; q ` e : B
(L:WEAK)

Γ; p ` e : 〈τ, p ′〉 q ≥ p q −q ′ ≥ p −p ′

Γ; q ` e : 〈τ, q ′〉 (L:RELAX)

Figure 1: Static semantics of linear AARA.

For arrow type, we do not have to recursively eliminate potential since the potential of a function
is already 0 for every arrow type.

The definition is lifted point-wise to annotated contexts Γ.

| · | = ·
|Γ, x : τ| = |Γ|, x : |τ|

The weakening rule L:WEAK is standard. However, there is another form of weakening: The
rule L:RELAX, states that, given a judgment Γ; p ` e : 〈τ, p ′〉, we can also have more potential q in
the context and give up some of the potential p ′. Additionally, the rule also covers the case in
which we pass through additional potential c ≥ 0 yielding the judgment Γ; p + c ` e : 〈τ, p ′+x〉.
Example 2. Below is the definition of an append function for lists.

fun append l1 = fun _ l2 =
match l1 with

| nil → l2
| x::xs → let _ = tick 1 in

let y = append xs l2 in

5

x::y

We would like to derive a type like

〈L1(unit),0〉→ 〈L0(unit),0〉→ 〈L0(unit),0〉

to append. However, the second function abstraction fun _ l2 = . . . would have to be typed in the
context Γ= l1 : L1(unit) and not l1 : L0(unit) as require by the rule L:FUN.

Subtyping The subtyping rules T:SUB and T:SUP enable us to relax the potential requirements
for potential in data structures in the same way as T:RELAX does for constant potential. The
subtyping relation for types is defined by the following rules.

unit <: unit
(SUB:UNIT)

A2 <: A1 B1 <: B2

A1 → B1 <: A2 → B2
(SUB:ARR)

q1 ≥ q2 τ1 <: τ2

〈τ1, q1〉 <: 〈τ2, q2〉
(SUB:POT)

A <: B

L(A) <: L(B)
(SUB:LIST)

Lemma 1. If v : τ and τ<: τ′ then Φ(v : τ′) ≤Φ(v : τ).

Example 3. For example we have

L10(L4(1)) <: L8(L3(1))
〈L4(1),2〉→ 〈L2(1),4〉 <: 〈L5(1),4〉→ 〈L0(1),0〉
〈L2(1),2〉→ 〈L0(1),0〉 6<: 〈L4(1),4〉→ 〈L2(1),2〉

Sharing The sharing relation τ.(τ1,τ2) specifies how potential in a type τ can be split between
two types τ1 and τ2. Note that function types can be shared freely.

unit.(unit,unit)
(SH:UNIT)

A → B .(A → B , A → B)
(SH:ARR)

A .(A1, A2)

L(A).(L(A1),L(A2))
(SH:LIST)

q = q1 +q2 τ.(τ1,τ2)

〈τ, q〉.(〈τ1, q1〉,〈τ2, q2〉)
(SH:POT)

We can prove the following lemma.

Lemma 2. If v : τ and τ.(τ1,τ2) then Φ(v : τ) =Φ(v : τ1)+Φ(v : τ2).

Example 4. For example, we have

L10(L4(1)).(L5(L4(1)),L5(L0(1)))
L10(L4(1)).(L6(L2(1)),L4(L2(1)))
〈L4(1),2〉→ 〈L2(1),4〉.(〈L4(1),2〉→ 〈L2(1),4〉,〈L4(1),2〉→ 〈L2(1),4〉)

Example 5. Consider the following function double, which doubles the length of a list by copying
each element.

fun double l =
match l with

| nil → nil
| x::xs → let y = double xs in

share x as x1,x2 in
let y’ = x1::y in
x2::y’

6

Note that double does not contain any ticks and has thus cost 0 for all inputs. However, it is still
interesting to study the function to see how potential from the argument can be assigned to the
result. In a larger program, this potential could then be used to pay for the cost of a later function
call that takes the result of double as an argument. Using the typing rule for sharing, we can
derive the following judgments.

double : 〈L2(unit),0〉→ 〈L1(unit),0〉
double : 〈L2(L6(unit)),0〉→ 〈L1(L3(unit)),1〉

The first typing is sound because |double(`)| ≤ 2|`|. The second typing is sound because every list
element of the argument appears (at most) twice in the result list.

Example 6. Functions can be freely shared. As a result, we can give the following type to the map
function for lists.

map : (A → B) → L(A) → L(B)

The key for deriving the typing is that we can use the higher-order argument twice: once to apply
it to the head of the list and once in the recursive call. Not that this would not be possible if we
would treat functions in an affine way like in LFPL.

fun map f = fun _ l =
match l with

| nil → nil
| x::xs → share f as f1,f2 in

let x’ = f1 x in
let xs’ = map f2 xs in
x’::xs’

4 Dynamic Semantics

To define the resource usage of programs, we define a cost semantics that is based on an
evaluation dynamics. Since our expressions are in share-let-normal form, we use an evaluation
environment

V : Var → Val

that maps variables to values. To track the resource usage, we use the and a cost dynamics with
resource effects and the resource monoid that we have introduced in the cost dynamics lecture.
The evaluation judgment has the form

V ` e ⇓ v | (q, q ′) .

The intuitive meaning is that expression e evaluates to value v with high-water mark cost q and
net cost q −q ′.

Resource Monoid As a reminder, the pairs (q, q ′) in the evaluation judgments are elements of
monoid (Q≥0 ×Q≥0, ·). The neutral element is (0,0) and the operation (q, q ′) · (p, p ′) is defined as
follows.

(q, q ′) · (p, p ′) =
{

(q +p −q ′, p ′) if q ′ ≤ p
(q, p ′+q ′−p) if q ′ > p

If resources are never returned (as with time) then we only have elements of the form (q,0) and
(q,0) · (p,0) is just (q +p,0). We identify a rational number q ∈Qwith an element of Q as follows:
q ≥ 0 denotes (q,0) and q < 0 denotes (0,−q).

7

v : τ “value v is of type τ”

〈〉 : unit
(V:UNIT)

[] : L(A)
(V:NIL)

v1 : A v2 : L(A)

v1 :: v2 : L(A)
(V:CONS)

v : τ

v : 〈τ, q〉 (V:ANNO)
A = 〈τ, q〉 V : Γ |Γ|, f : A → B , x : τ; q ` e : B

clo(V ; f , x.e) : A → B
(V:FUN)

V : · (V:ENV-1)
V : Γ V (x) : τ

V : Γ, x : τ
(V:ENV-2)

Figure 2: Typing rules for values.

Values Previously, we defined values but left the definition of functions open. We now define
function values and use a syntactic approach that fits well with our evaluation dynamics and
the soundness proof. Continuing our denotational approach and defining a set �A → B� of
mathematical function would introduce complications that arise from the combination of
higher-order functions and divergence. Instead introduce a type judgment v : τ for values and
define

�τ� = {v | v : τ} .

Values are defined by the following grammar. Function values are function closures that
consist of an environment and a (recursive) lambda abstraction. The definition is mutually
recursive with the definition of environments.

v ::= 〈〉
[]
v1 :: v2

clo(V ; f , x.e)

V ::= ·
V , x 7→ v

In the value typing v : τ, which is defined in Figure 2, we ignore the potential annotations.
The most interesting rule is the rule for V:FUN for function closures. It matches the type rule
L:FUN for expressions and the context Γ is existentially quantified. The motivation for the rule is
that we require exactly the conditions that are needed to prove the soundness of the analysis.
This works because the preconditions are true for closure that are created in the evaluation of a
well-typed program.

The value typing is defined recursively with the typing V : Γ of environments. It states that
all variables x that are assigned a type in Γ must be mapped to a value of type Γ(x) in V , that is,
V (x) : Γ(x).

Evaluation Rules Figure 3 defines the evaluation judgment V ` e ⇓ v | (q, q ′). Like before,
(q, q ′) is an element of the resource monoid that we use to keep track of the high-water mark
(q) and the remaining resources (q ′). The main difference to the evaluation dynamics that we
discussed earlier is the evaluation environment V . With an evaluation environment, we do not
use substitution but instead keep variable-value bindings in V . The notion

V , x 7→ v

is interpreted differently as for contexts. The meaning is that the binding x 7→ v overwrites
existing bindings x 7→ v ′ that might already exist in V .

8

V ` e ⇓ v | (q, q ′) “in environment V , expression e valuates to value v with cost (q, q ′)”

V ` x ⇓V (x) | 0
(E:VAR)

V ` triv ⇓ 〈〉 | 0
(E:UNIT)

V ` fun(f , x.e) ⇓ clo(V ; f , x.e) | 0
(E:FUN)

V (x1) = clo(V ′; f , x.e) V (x2) = v2 V ′, f 7→ clo(V ′; f , x.e), x 7→ v2 ` e ⇓ v | (q, q ′)
V ` app(x1; x2) ⇓ v | (q, q ′)

(E:APP)

V ` nil ⇓ [] | 0
(E:NIL)

V (x1) = v1 V (x1) = v2

V ` cons(x1; x2) ⇓ v1 :: v2 | 0
(E:CONS)

V (x) = [] V ` e0 ⇓ v | (q, q ′)
V ` matL{e0; x1, x2.e1}(x) ⇓ v | (q, q ′)

(E:MATL-1)

V (x) = v1 :: v2 V , x1 7→ v1, x2 7→ v2 ` e1 ⇓ (v) | (q, q ′)
V ` matL{e0; x1, x2.e1}(x) ⇓ v | (q, q ′)

(E:MATL-2)

V ` tick{q} ⇓ 〈〉 | q
(E:TICK)

V ` e1 ⇓ v1 | (q, q ′) V , x 7→ v1 ` e1 ⇓ v | (p, p ′)
V ` let(e1; x.e2) ⇓ v | (q, q ′) · (p, p ′)

(E:LET)

V (x) = v V , x1 7→ v, x2 7→ v ` e ⇓ v ′ | (q, q ′)
V ` share(x; x1, x2.e) ⇓ v ′ | (q, q ′)

(E:SHARE)

Figure 3: Cost semantics with resource effects.

A consequence of using an evaluation environment is that we (in general) evaluate open
expressions (i.e., expressions with free variables). So we have an evaluation rule E:VAR for
variables that looks up the value of a variable in the environment V . In the evaluation of a
well-typed, closed expression e : A, the V always contains a value for x (see Theorem 1 below).

The most interesting rules are the rules E:FUN and E:APP for (recursive) function abstraction
and function application. In the rule E:FUN, we have to store the current environment together
with the function to record the current values of the free variables in the function body. This is
usually take care of by substitution. Here, since variables might later be overwritten, we have
to store V in alongside with the function definition in a so-called function closure. The self-
reference inherent in the function abstraction is not resolved when creating a closure (we just
store V and do not create a binding that maps f to some value) but during function application.

In the rule E:APP, x1 maps to a function closure clo(V ′; f , x.e). We evaluate the function body
e under the stored environment V ′ with added bindings for the argument x and the recursive
reference f . We get the value for x by from the value of the concrete argument x2. The value for
f is simply the closure clo(V ′; f , x.e) again, which introduces the self reference.

The type soundness theorem is given below. It makes a statement about terminating evalua-
tions only. Using partial evaluations, we can state and prove a stronger version of the theorem
that distinguishes between diverging and failing evaluations.

Theorem 1 (Type Soundness). Let Γ; q ` e : A and V : Γ. If V ` e ⇓ v | (p, p ′) for some v then v : A.

We can prove the theorem by induction on the evaluation judgment V ` e ⇓ v | (q, q ′).

9

V ` e ⇓ ◦ | q “in environment V , expression e uses q at some point during the evaluation”

V ` e ⇓ ◦ | 0
(P:STOP)

V (x1) = clo(V ′; f , x.e) V (x2) = v2 V ′, f 7→ clo(V ′; f , x.e), x 7→ v2 ` e ⇓ ◦ | q

V ` app(x1; x2) ⇓ v ⇓ ◦ | q
(P:APP)

V (x) = [] V ` e0 ⇓ ◦ | q

V ` matL{e0; x1, x2.e1}(x) ⇓ ◦ | q
(P:MATL-1)

V (x) = v1 :: v2 V , x1 7→ v1, x2 7→ v2 ` e1 ⇓ ◦ | q

V ` matL{e0; x1, x2.e1}(x) ⇓ ◦ | q
(P:MATL-2)

V ` e1 ⇓ ◦ | q V , x 7→ v1 ` e1 ⇓ v | (p, p ′)
V ` let(e1; x.e2) ⇓ ◦ | q

(P:LET-1)

V ` e1 ⇓ v1 | (q1, q ′
1) V , x 7→ v1 ` e1 ⇓ ◦ | q2 (p, p ′) = (q1, q ′

1) ·q2

V ` let(e1; x.e2) ⇓ ◦ | p
(P:LET-2)

V (x) = v V , x1 7→ v, x2 7→ v ` e ⇓ ◦ | q

V ` share(x; x1, x2.e) ⇓ ◦ | q
(P:SHARE)

Figure 4: Partial cost semantics with resource effects.

5 Soundness

The soundness theorem makes our intuition about the type system precise. Before we can state
the theorem we need to extend the definition of potential to contexts and environments. Let
V : Γ. We define

Φ(V : Γ) = ∑
x∈dom(Γ)

Φ(V (x) : Γ(x))

Theorem 2 (Soundness of AARA). Let Γ; q ` e : A and V : Γ. If V ` e ⇓ v | (p, p ′) for some v and
(p, p ′) then Φ(V : Γ)+q ≥ p and Φ(V : Γ)+q −Φ(v : A) ≥ p −p ′.

If we would only have the syntax directed rules then we could prove the theorem by rule
induction on the evaluation judgment. However, the structural rules and give us only a weak
inversion lemma for the type judgments. This is why we have to also do an inner induction on
the type judgment.

6 Partial Evaluation

A shortcoming of Theorem 2 is that it only makes a statement about terminating evaluations.
For one thing, diverging evaluations can also have interesting (i.e., finite) resource behaviors if
resource can become available. For another thing, we would like to be able to show that resource
bounds on resources like time imply termination.

Fortunately, we can use the idea of partial evaluations to extend the Theorem 2 to diverging
computations. Like in the lecture on cost semantics, we define the judgment

V ` e ⇓ ◦ | q

10

which states that e uses q resources at some point during its evaluation. The rules of the
judgment are defined in Figure 4.

Theorem 3 (Soundness of AARA). Let Γ; q ` e : A and V : Γ. If V ` e ⇓ ◦ | p for some p then
Φ(V : Γ)+q ≥ p.

The proof of Theorem 3 is similar to the proof of Theorem 2 but uses Theorem 2 in the case
of the rule P:LET-2. The following corollary is an immediate consequence of Theorem 3.

Corollary 1. If Γ; q ` e : A and V : Γ then Φ(V : Γ)+q ≥ max{p |V ` e ⇓ ◦ | p}.

Termination We would like to prove a theorem for programs that add a tick to every function
application. Instead of defining such programs we remove ticks from the language and change
the cost semantics to account cost 1 for applications and cost 0 for all other syntactic forms. Since
we do not have negative cost, we only need to keep track of one number. We write V s̀ e ⇓ v | n
and V s̀ e ⇓ ◦ | n for the resulting judgments. The rules for function applications change as
follows.

V (x1) = clo(V ′; f , x.e) V (x2) = v2 V ′, f 7→ clo(V ′; f , x.e), x 7→ v2`s e ⇓ v | n

V `s app(x1; x2) ⇓ v | 1+n
(E:APP’)

V (x1) = clo(V ′; f , x.e) V (x2) = v2 V ′, f 7→ clo(V ′; f , x.e), x 7→ v2`s e ⇓ ◦ | n

V `s app(x1; x2) ⇓ v ⇓ ◦ | 1+n
(P:APP’)

The other rules remain basically unchanged.
The key property that we need is stated by Lemma 3, which can be seen as a progress

theorem.

Lemma 3. Let Γ; q ` e : A and V : Γ. Then either V s̀ e ⇓ v | m for some v and m ∈ N, or
V s̀ e ⇓ ◦ | n for every n ∈N.

Similarly, we modify the type system by changing the rule L:APP as follows.

A = 〈τ, q〉
x1 : A → B , x2 : τ; q +1`s app(x1; x2) : B

(L:APP’)

Like in the general case, we can then prove the following theorem.

Theorem 4. Let Γ; q s̀ e : A and V : Γ. If V s̀ e ⇓ ◦ | n for some n then Φ(V : Γ)+q ≥ n.

From Theorem 5 and Lemma 3 we can derive the desired termination proof.

Theorem 5. If Γ; q s̀ e : A and V : Γ then V s̀ e ⇓ v | n for some v and p with Φ(V : Γ)+q ≥ n.

7 Mutually Recursive Functions

AARA has been introduced [HJ03] for a first-order language (i.e., a language without higher-
order functions) with mutually recursive functions. Extending linear AARA as introduced here
to mutually recursive function does not introduce any challenges. We just illustrate this by
extending our language with a construct for defining two mutually recursive functions. Since we
do not have pairs, we combine the (recursive) function definition with a let binding.

e ::= . . .
letrec f1(x1) = e1 and f2(x2) = e2 in e

The static semantics of this construct can be defined as follows.

Γ′ = Γ, f1 : A1 → B1, f2 : A2 → B2 A1 = 〈τ1, q1〉 A2 = 〈τ2, q2〉
Γ= |Γ| Γ′, x : τ1; q1 ` e1 : B1 Γ′, x : τ2; q2 ` e2 : B2 Γ′, q ` e : 〈τ, q ′〉

Γ; q ` letrec f1(x1) = e1 and f2(x2) = e2 in e : 〈τ, q ′〉 (L:FUN)

11

References

[HJ03] Martin Hofmann and Steffen Jost. Static Prediction of Heap Space Usage for First-Order
Functional Programs. In 30th ACM Symp. on Principles of Prog. Langs. (POPL’03), 2003.

12

