
15-819: Resource Aware Programming Languages

Lecture 17: AARA with Univariate Polynomial
Potential

Jan Hoffmann

November 1, 2020

1 Introduction

Linear automatic amortized analysis works well because of three reasons: it is compositional, it
computes precise bounds, and the type inference is based on efficient linear constraint solving.
The main shortcoming of the analysis is its limitation to linear bounds.

In this lecture, we see how to overcome this shortcoming while preserving the beneficial fea-
tures of the analysis system. We study an automatic amortized resource analysis that computes
univariate polynomial bounds [?, ?]. For simplicity, we return to our simple language with lists,
functions, and units. The typing rules are mostly identical to the one for linear AARA. The only
changes are in the definition of lists types and the type rules for introduction and elimination of
lists. In particular, the structure of soundness proof does not change. Moreover, we are still able
to reduce type inference to linear optimization.

2 Syntax and Dynamic Semantics

Like for linear AARA, we only introduce polynomial potential for lists. However, like linear
potential, polynomial potential can also be assigned to general inductive types in a similar
manner. Moreover, it is compatible with language features like recursive functions, sums, and
products. The typing rules for these constructs do not have to be altered.

e ::= . . .
nil [ ]
cons(x1; x2) x1 :: x2

matL{e0; x1, x2.e1}(x) case x {nil ,→ e0 | cons (x1, x2) ,→ e1}
. . .

Like before, we have list values.

v ::= . . .
[ ]
v1 :: v2

. . .

Similarly, the cost semantics defines the judgment V ` e ⇓ v | (q, q ′) using the same rules as
in linear AARA.

3 Resource Annotations

In linear AARA, we annotated list types with a single non-negative rational number q that defines
the potential function q ·n, where n is the length of the list. In this lecture, we use potential

1



functions that are non-negative linear combinations of binomial coefficients
(n

k

)
, where k is a

natural number and n is length of the list.
In (univariate) polynomial AARA, a resource annotation for lists is a vector ~q = (q1, . . . , qk ) ∈

(Q≥0)k of non-negative rational numbers.

τ ::= . . .
L~q (τ)
. . .

For two resource annotations ~p = (p1, . . . , pk ) and ~q = (q1, . . . , q`) I write ~p ≤ ~q if k ≤ ` and
pi ≤ qi for all 1 ≤ i ≤ k. If `≥ k then we define ~p +~q = (p1 +q1, . . . , pk +qk , qk+1, . . . , q`).

One intuition for the resource annotations is as follows: The annotation ~q assigns the
potential q1 to every element of the data structures, the potential q2 to every element of every
proper suffix (sublist or subtree, respectively) of the data structure, q3 to the elements of the
suffixes of the suffixes, etc. Another way of thinking about the potential is that q2 is assigned to
every ordered pair we can form with the elements of the lists, q3 is assigned to every ordered
triple we can form, and qk is assigned to every ordered k-tuple.

The Potential of Lists Let us now consider the construction or destruction of non-empty lists.
For linear potential annotations we can simply assign potential to the tail by using the same
annotations as on the original list. Using the same potential annotation for the tail would
however lead to a substantial loss of potential in the polynomial case. The reason is that the
difference p(n)−p(n −1) is not a constant like in the linear case. To assign this difference in
potential to the tail of the list, we use an additive shift operation.

Let ~q = (q1, . . . , qk ) be a resource annotation. The additive shift of ~q is

C(~q) = (q1 +q2, q2 +q3, . . . , qk−1 +qk , qk ) .

The definition of potential Φ(v : τ) of a value v of type τ is extended as follows.

Φ([ ] : L~q (τ)) = 0
Φ(v1 :: v2 : L~q (τ)) = Φ(v1 : τ)+q1 +Φ(v2 : LC~q (τ))

As usual, we assume ~q = (q1, . . . , qk ) in the definition.
To understand the potential functions for lists, we first consider some simple examples. Let

for instance `= [v1 . . . , vn] : L(1) be list of units. Then the following holds for all q1, q2, q3 ∈Q≥0.

Φ(`:L(q1)(1)) = q1 ·n

Φ(`:L(0,q2)(1)) =
n−1∑
i=1

q2 · i = q2
n · (n −1)

2
= q2

(
n

2

)

Φ(`:L(0,0,q3)(1)) =
n−1∑
i=1

q3
i · (i −1)

2
= q3

n · (n −1) · (n −2)

6
= q3

(
n

3

)

In fact, the potential of a list can always be written as a non-negative linear combination of
binomial coefficients. This is proved by the following lemma. We define

φ(n,~q) =
k∑

i=1

(
n

i

)
qi .

Lemma 1. Let `= [v1 . . . , vn] : L(τ) be a list of type τ and let ~p = (p1, . . . , pk ) be a resource annota-
tion. Then

Φ(`:L~p (τ)) =φ(n,~p)+
n∑

i=1
Φ(vi :τ) .

Proof. We prove the statement by induction on n. If n = 0 then `= [] and we have Φ(`:L~p (τ)) =
0 =∑0

i=1Φ(vi :τ)+φ(0,~p).

2



Let n > 0. It then follows by induction that

Φ(`:L~p (τ)) = p1 +Φ(v1:τ)+Φ([v2, . . . , vn]: LC(~p)(τ))

= p1 +
n∑

i=1
Φ(vi :τ)+φ(n −1,C(~p))

But since (
n −1

i

)
+

(
n −1

i +1

)
=

(
n

i +1

)
(1)

it follows that

φ(n −1,C(~p)) =
k∑

i=1

(
n −1

i

)
pi +

k−1∑
i=1

(
n −1

i

)
pi+1

= (n −1)p1 +
k−1∑
i=1

((
n −1

i +1

)
+

(
n −1

i

))
pi+1

= (n −1)p1 +
k−1∑
i=1

(
n

i +1

)
pi+1 (by (1))

=
k∑

i=1

(
n

i

)
pi −p1 =φ(n,~p)−p1

It is essential for the type system that φ is linear in the sense of the following lemma that
follows directly from the definition of φ.

Lemma 2. Let n ∈N, α ∈Q and let ~p,~q be resource annotations. Then φ(n,~p)+φ(n,~q) =φ(n,~p+
~q) and α ·φ(n,~p) =φ(n,α ·~p).

The use of binomial coefficients rather than powers of variables has many advantages. In
particular, the identity

∑
i=1,...,k

qi

(
n +1

i

)
= q1 +

∑
i=1,...,k−1

qi+1

(
n

i

)
+ ∑

i=1,...,k
qi

(
n

i

)

gives rise to a local typing rule for cons and pattern matching, which naturally allows the typing
of both recursive calls and other calls to subordinate functions in branches of a pattern match.

It is a general pattern in functional programs to compute a task on a list recursively for the
tail of the list and to use the result of the recursive call to compute the result of the function. In
such a recursive function it is natural to assign a uniform potential to each sublist (depending
on its length) that occurs in a recursive call. In other words: one wants to use the potential of the
input list to assign a uniform potential to every suffix of the list. With this view, the list potential
α=φ(n, (p1, p2, · · · , pk )) can be read as follows: a recursive function on a list ` of length n that
has the potential α can use the potential φ(i , (p2, · · · , pk ) for the suffixes of ` of length 1 ≤ i < n
that occurs in the recursion. This intuition is proved by the following lemma.

Lemma 3. Let ~p=(p1, . . . , pk ) be a resource annotation, let n ∈N and define φ(n, ()) = 0. Then
φ(n, (p1, . . . , pk )) = n ·p1 +∑n−1

i=1 φ(i , (p2, . . . , pk )).

Proof. The proof uses the following well-known equation.

n−1∑
i=1

(
i

k

)
=

(
n

k +1

)
for each k ∈N (2)

3



Let now k ≥ 0. Then

φ(n, (p1, . . . , pk+1)) =
k+1∑
j=1

(
n

j

)
p j

= n ·p1 +
k∑

j=1

(
n

j +1

)
p j+1

= n ·p1 +
k∑

j=1
(

n−1∑
i=1

(
i

j

)
p j+1)) (by (2))

= n ·p1 +
n−1∑
i=1

(
k∑

j=1

(
i

j

)
p j+1))

= n ·p1 +
n−1∑
i=1

φ(i , (p2, . . . , pk+1)) (by definition)

Note that the binomial coefficients are a basis of the vector space of the polynomials. Here,
however, we are only interested in non-negative linear combinations of binomial coefficients.
These admit a natural characterization in terms of growth: for f : N→ N define (∆ f )(n) =
f (n +1)− f (n). Call f hereditarily non-negative if ∆i f ≥ 0 for all i ≥ 0. One can show that a
polynomial p is hereditarily non-negative if and only if it can be written as a non-negative linear
combination of binomial coefficients. To wit, the coefficient of

(n
i

)
in the representation of p

is (∆i p)(0). Note that they include all non-negative linear combinations of the polynomials
(xi )i∈N.

4 Static Semantics

Like for linear potential functions, the static semantics defines a judgment

Γ; q ` e : A .

The rules of linear AARA remain unchanged except for the rules for the introduction and elimi-
nation of lists.

·;0 ` nil : 〈L~p (τ),0〉
(U:NIL)

x1 : τ, x2 : LC(~p)(τ); p1 ` cons(x1; x2) : 〈L~p (τ),0〉
(U:CONS)

Γ; q ` e0 : B Γ, x1 : τ, x2 : LC(~p)(τ); q +p1 ` e1 : B

Γ, x : L~p (τ); q ` matL{e0; x1, x2.e1}(x) : B
(U:MATL)

The rule U:NIL requires that the constant potential 0 and an empty context. It is sound to
attach any potential annotation ~p to the empty list since the resulting potential is always zero.
So not potential is gained or lost.

The rule U:CONS reflects the fact that we have to cover the potential that is assigned to the
new list of type L~p (~τ). We do so by requiring x2 to have the type LC(~p)(τ) and to have p1 resource
units available. It corresponds exactly to the recursive definition of the potential function Φ and
ensures that potential is neither gained nor lost.

The rule U:MATL defines how to use the potential of a list to pay for resource consumption.
It accounts for the fact that either e1 or e2 is evaluated. The cons case is inverse to the rule
U:CONS and allows us to use the potential associated with a list. For one thing, p1 resource
units become available as constant potential. For another thing, the tail of the list is annotated
with C(~p) rather than ~p, permitting for example a recursive call requiring annotation ~p and an
additional use of the tail with annotation (p2, . . . , pk ) (e.g., to cover the cost of a recursive call).

4



We still have the structural rules for subtyping and the sharing rule and need to extend the
subtyping and sharing relations to the new potential annotations.

τ.(τ1,τ2) Γ, x1 : τ1, x2 : τ2; q ` e : B

Γ, x : τ; q ` share(x; x1, x2.e) : B
(U:SHARE)

Γ; q ` e : 〈τ′, q ′〉 τ′ <: τ

Γ; q ` e : 〈τ, q ′〉 (U:SUB)

Γ, x : τ; q ` e : B τ′ <: τ

Γ, x : τ′; q ` e : B
(U:SUP)

Subtyping The subtyping relation is extended with the following rule.

τ<: τ′ ~q ≤ ~p

L~p (τ) <: L~q (τ′)
(SUB:LIST )

We can still show the following lemma.

Lemma 4. If v : τ and τ<: τ′ then Φ(v : τ′) ≤Φ(v : τ).

Sharing The sharing relation is extended with the following rule.

q = ~p +~p ′ τ.(τ1,τ2)

L~q (τ).(L~p (τ)1,L~p
′
(τ2))

(SH:POT )

We still have the following lemma.

Lemma 5. If v : τ and τ.(τ1,τ2) then Φ(v : τ) =Φ(v : τ1)+Φ(v : τ2).

Example 1. As example, let us consider a very expensive identity function. In the code, we
represent the typing x : L(q1,q2)(1) by writing x(q1,q2).

fun id1 l(1,0) =
match l(1,0) with
| [] → []
| x::xs(1,0) →

let _ = tick 1.0 in
let xs’(0,0) = id1 xs(1,0) in
(x::xs’(0,0))(0,0)

fun id2 l(0,1) =
match l(0,1) with
| [] → [](0,0)

| x::xs(1,1) →
share xs(1,1) as xs1

(1,0), xs2
(0,1) in

let _ = id1 xs1
(1,0) in

let xs’ = id2 xs2
(0,1) in

(x::xs’(0,1))(0,0)

We can derive the following typings.

id1 : 〈L(1,0)(1),0〉→ 〈L(0,0)(1),0〉
id2 : 〈L(0,1)(1),0〉→ 〈L(0,0)(1),0〉

5 Soundness

We can prove the same soundness theorem as for linear AARA. Given the extended lemmas for
sharing and subtyping, the change in the proof is limited to the cases that involve the syntactic
forms for lists.

5



Theorem 1 (Soundness of AARA). Let Γ; q ` e : A and V : Γ. If V ` e ⇓ v | (p, p ′) for some v and
(p, p ′) then Φ(V : Γ)+q ≥ p and Φ(V : Γ)+q −Φ(v : A) ≥ p −p ′.

The proof is by induction on the evaluation judgment and an inner induction on the type
judgment. The inner induction is needed because of the structural rules. Compared with the
soundness proof for linear AARA, the only change is in the handling of lists.

6 Resource-Polymorphic Recursion

In AARA with polynomial potential, it is often necessary to type recursive calls with a type that
has different resource annotations than the function type of the recursive functions. Consider
for example again the function id2. Let us assume we would like to type the function

fun f l = id2 (id2 l)

The outer call to id2 can be typed again with the following type.

id2 : 〈L(0,1)(1),0〉→ 〈L(0,0)(1),0〉

For the inner call, we would like to derive the typing

id2 : 〈L(0,2)(1),0〉→ 〈L(0,1)(1),0〉

which is sound in the sense of the soundness theorem: the initial potential 2
(n

2

)
is sufficient to

cover the cost
(n

2

)
and the potential

(n
2

)
of the result of the call. Below is a sketch a “derivation” of

this typing. However, we cannot derive this typing with our type rules.

fun id2 l(0,2) =
match l(0,2) with
| [] → [](0,1)

| x::xs(2,2) →
share xs(2,2) as xs1

(1,0), xs2
(1,1) in

let _ = id1 xs1
(1,0) in

let xs’(1,1) = id2 xs2
(1,2) in

(x::xs’)(1,0)

The problem is the recursive call. In the derivation we would need the typing

id2 : 〈L(1,2)(1),0〉→ 〈L(1,1)(1),0〉

which is different from the typing that we want to justify and that we have available in the
context. However, if we look at this type for id2 closely then we discover that it is intuitively
sound. If we have 2n +2

(n
2

)
potential units available then we can pay of the evaluation cost (

(n
2

)
)

and have 2n + (n
2

)
potential units left.

If we would try to derive a typing derivation for the type 〈L(1,2)(1),0〉→ 〈L(1,1)(1),0〉 of id2 the
we would need the following typing in the recursive call.

id2 : 〈L(2,2)(1),0〉→ 〈L(2,1)(1),0〉

This type is again intuitively sound but it seems like we are not making progress with the type
derivation since we need infinitely many types for id2. However, we can observe a pattern in the
different types we need for id2. They are all of the form

id2 : 〈L(n,2)(1),0〉→ 〈L(n,1)(1),0〉

So we have some linear potential n on the argument that we want to pass to the result. For id2
we can assign the same potential n to the result but this is only possible because the size of
the result is bounded by the size of the input in this case. In general, correctly passing linear
potential to the result is more complex.

6



The need of passing on potential of degree at most k −1 to the output of a function with
a resource consumption of degree k is quite common in typical functions. It is present in
the derivation of time bounds for most non-tail-recursive functions that we considered, for
example, quick sort and insertion sort. The classic (resource-monomorphic) inference approach
of requiring the type of the recursive call to match its specification fails for these functions.
Fortunately, there is an efficient solution to this problem.

Type Rules for Resource-Polymorphic Recursion In general, we would like to state that id2
has the following set of types.

id2 : {〈L(q,2)(1),0〉→ 〈L(q,1)(1),0〉 | q ∈Q≥0}

In the declarative type system, we can simply assume that function types are sets T . This
sounds like a substantial change but only the rules for function application and abstraction are
affected.

(〈τ, q〉→ B) ∈ T
x1 : T , x2 : τ; q ` app(x1; x2) : B

(P:APP)

A = 〈τ, q〉 Γ= |Γ| ∀(〈τ, q〉→ B) ∈ T : Γ, f : T , x : τ; q ` e : B

Γ;0 ` fun( f , x.e) : 〈T ,0〉 (P:FUN)

The P:FUN looks slightly worrisome because it can have an infinite number of premises. However,
the soundness proof for AARA without resource polymorphism still goes through without major
changes. The reason is that the inversion lemma for function types that is applied in the proof
of the rule P:FUN is quite similar to the one that is needed for the proof without resource
polymorphic recursion.

Type inference for polymorphic recursion is more involved.

7 Type Inference

The basis of the type inference for the univariate polynomial system is type inference algorithm
for the linear system. A further challenge for the inference of polynomial bounds is the need to
deal with resource-polymorphic recursion, which is required to type many functions that are not
tail recursive.

It is a difficult problem to infer general resource-polymorphic types, even for the original
linear system. This is why we use a pragmatic approach to resource-polymorphic recursion
that works well and efficiently in practice but it is not complete with respect to the general
resource-polymorphic typing rules. At the end of this section is a somewhat artificial function
with a linear resource consumption that admits a resource-polymorphic typing that can neither
be inferred by the algorithm we present here nor in the classic linear system.

Resource-Monomorphic Inference First consider univariate polynomial AARA with resource-
monomorphic function types as defined in Section 4. The rules are formulated in a declarative
way that include similar structural rules as the declarative type system for linear AARA. To obtain
a type inference algorithm, we repeat the same two steps that we took to obtain a type inference
algorithm for linear AARA.

First, we turn the declarative rules into algorithmic type rules, which are syntax directed and
do not contain structural rules. Since we only changed the definitions of subtyping and sharing
but not the structural rules, we basically arrive at the same algorithmic rules, which only defer
in rules that involve lists. If we write again Γ; q à e : B for the algorithmic type judgment then

7



we have the following rules.

〈L~p (τ), q〉 <: A

Γ; q `a nil{L~p (τ)} : A
(A:NIL)

q ≥ p ′
1 +q ′ τ1 <: τ′ L~p (τ2) <: LC~p ′

(τ′)

Γ, x1 : τ1, x2 : L~p (τ2); q `a cons(x1; x2) : 〈L~p ′
(τ′), q ′〉

(A:CONS)

q ≥ q0 q +p ≥ q1

Γ; q0`a e0 : B0 Γ, x1 : τ, x2 : LC~p (τ); q1`a e1 : B1 B0 <: B B1 <: B

Γ, x : L~p (τ); q `a matL{e0; x1, x2.e1}(x) : B
(A:MATL)

Second, we turn the algorithmic type rules into constraint-based typing rules. Again, the
rules are very similar to the ones for linear AARA. The only change is that we have to take into
account that lists are now annotated with a vector of (initially unknown) potential annotations.
To ensure that we end up with the finite set of constraints, we can only have a finite number of
annotations on each lists. So we simply assume all annotations have the form (q1, . . . , qk ) for a
globally fixed k ∈N. This leads to potential functions that are polynomials of maximal degree k.

Now, we have to generate linear constraints that describe the relationships of the type
annotations. We extend the constraint generation for subtyping and sharing as follows. Eq(τ,)
and Z(τ) can be extended similarly.

Sub(L~q (τ1),L~p (τ2)) = Sub(τ1,τ2), q1 ≥ p1, . . . , qk ≥ pk

Share(L~q (τ),L~p (τ1),L~p
′
(τ2)) = Share(τ,τ1,τ2), q1 = p1 +p ′

1, . . . , qk = pk +p ′
k

Inspecting the new algorithmic type rules, we notice that we can also express all other constraints
with linear equalities. In particular, the equation ~q =C~p can be translated to constraints of the
form qi = pi +pi+1.

Cost-Free Types Our pragmatic approach to inferring type derivations with resource-polymorphic
recursion is the use of so-called cost-free types. A cost-free type derivation is a regular type deriva-
tion in AARA, except that we assume the evaluation cost is zero. In our case, we do not account
for the cost of tick expressions. A cost-free function type

f : A →cf B

then describes how to pass potential from x to f (x) without paying for resource usage. Any
concrete typing for a given resource metric can be superposed with a cost-free typing to obtain
another typing for the given resource metric. This is similar to the solution of inhomogeneous
systems by superposition with homogeneous solutions in linear algebra.

Example 2. Recall, the previously defined function id2. In the type system with resource-polymorphic
recursion, we can derive the following set of types.

id2 : {〈L(q,2)(1),0〉→ 〈L(q,1)(1),0〉 | q ∈Q≥0}

Since the length of the resulting list is bounded by the length of the argument, we can derive the
following cost-free type.

id2 : 〈L(1,0)(1),0〉→cf 〈L(1,0)(1),0〉
We do not need resource-polymorphic recursion in the type derivation and can use the monomor-
phic version of the type system to derive this type.

If we call the cost-free type τcf then the aforementioned set of types can be written as

{〈L(0,2)(1),0〉→ 〈L(0,1)(1),0〉+n ·τcf | n ∈ N }

Here, the addition and multiplication are considered to be point-wise operations on the potential
annotations.

8



Resource-Polymorphic Inference To infer the type of a function, we deal with recursive calls
by requiring them to match the type specification of the function and to optionally pass potential
to the result via a cost-free type. The cost-free type is then inferred resource-monomorphically.
This method cannot infer every resource-polymorphic typing with respect to declarative type
derivations with polymorphic recursion but works well in practice.

Incompleteness The inference algorithm with cost-free types is not complete with respect to
full resource-polymorphism. This would mean to start with a (possibly infinite) set of annotated
function types for each function and to justify each type with a type derivation that uses some
first-order types from the initial set.

For example, the inference algorithm does not compute a resource-annotated type for the
function round:L(unit) → L(unit) which computes a list of length max{2i −1 | 2i −1 ≤ n} if n is
the length of the input list. The function round is implemented in RAML as follows.

half l = match l with
| [] → []
| x1::xs → match xs with

| [] → []
| x2::xs’ → x1::(half xs’)

double l = match l with
| [] → []
| x::xs → x::x::(double xs)

round l = match l with
| [] → []
| x::xs → x::double (round (half xs))

The function half deletes every second element and the function double doubles every element
a list.

References

[GSS92] Jean-Yves Girard, Andre Scedrov, and Philip Scott. Bounded Linear Logic. Theoret.
Comput. Sci., 97(1):1–66, 1992.

[HH10a] Jan Hoffmann and Martin Hofmann. Amortized Resource Analysis with Polymorphic
Recursion and Partial Big-Step Operational Semantics. In 8th Asian Symposium on
Programming Languages (APLAS’10), 2010.

[HH10b] Jan Hoffmann and Martin Hofmann. Amortized Resource Analysis with Polynomial
Potential. In 19th European Symposium on Programming (ESOP’10), 2010.

[HJ03] Martin Hofmann and Steffen Jost. Static Prediction of Heap Space Usage for First-
Order Functional Programs. In 30th ACM Symp. on Principles of Prog. Langs. (POPL’03),
2003.

[Hof11] Jan Hoffmann. Types with Potential: Polynomial Resource Bounds via Automatic
Amortized Analysis. PhD thesis, Ludwig-Maximilians-Universität München, 2011.

9


