
INTRODUCTION
Cardinality constraints appear frequently in 
automated reasoning (AR) problems. For example:

- “At least k packages need to be delivered.”
𝑃𝑎𝑐𝑘𝑎𝑔𝑒! + 𝑃𝑎𝑐𝑘𝑎𝑔𝑒" +	…	+	𝑃𝑎𝑐𝑘𝑎𝑔𝑒# 	> 	𝑘

- “At most b packages can be on a truck.”
𝑃𝑎𝑐𝑘𝑎𝑔𝑒! + 𝑃𝑎𝑐𝑘𝑎𝑔𝑒" +	…	+	𝑃𝑎𝑐𝑘𝑎𝑔𝑒# < 𝑏

- “At most m trucks can be scheduled.”
𝑇𝑟𝑢𝑐𝑘! + 𝑇𝑟𝑢𝑐𝑘" +	…	+	𝑇𝑟𝑢𝑐𝑘# < 𝑚

Problem: Cardinality constraints are not allowed as 
input to satisfiability (SAT) solvers. They must be 
encoded into many simpler constraints.

Consequences: Implementing a good encoding is 
error-prone, and encodings hide structural 
information about the problem from the solver. 

Proposed Solution: Extend the input of SAT solvers 
to include cardinality constraints, allowing solvers to 
handle constraints natively or reencode them.

DATA ANALYSIS
1. Extracting cardinality constraints from SAT 

Competition Anniversary Track benchmarks.

• Cardinality constraints are everywhere (in over 2/3 
of the benchmarks)

• Frequently using naïve encoding, known to be bad 
for larger constraints [1]

2. Solving extracted problems.

• Our configurations perform better than the default
• Configurations work well on different problems 

(satisfiable = problem has solutions, unsatisfiable = 
problem does not have solutions)

• Hybrid approaches middle ground between 
ReEncode and Native

3. Solving hard combinatorial problems.

• Native handling is necessary to scale for some 
hard problems

RESULTS

• Prevalence: Our extraction results show that many 
problems in both academia and industry contain 
cardinality constraints

• Extraction/Reencoding: Our extractor can find 
naïve encodings and reencode them with better 
encodings, improving performance on unsatisfiable 
problems

• Performance: The native cardinality handling 
performs well on satisfiable problems, and the 
hybrid approach solves many satisfiable and 
unsatisfiable problems

• Scaling: The native cardinality handling is effective 
on hard combinatorial problems

More details can be found in our accepted paper [1]

REFERENCES
[1] Magnus Bjork. Successful sat encoding techniques. Journal on 

Satisfiability, Boolean Modeling and Computation, 7(4):189–201, 2011.

[2] Joseph E. Reeves, Marijn J. H. Heule, and Randal E. Bryant. From 

clauses to klauses. In Computer Aided Verification (CAV), 2024. 

[3] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt. DRAT-

trim: Efficient checking and trimming using expressive clausal proofs. 

In Theory and Applications of Satisfiability Testing (SAT), volume 8561 

of LNCS, pages 422–429, 2014.

CONCLUSION
Our extraction tool showed cardinality constraints 
appear frequently in problems, yet they are not 
supported by most SAT solvers. Extending the input 
format to include cardinality constraints would both 
make encoding problems easier and improve solver 
performance. We demonstrate this through three 
proof-producing solving configurations that handle a 
cardinality-based input and outperform the default 
solver on several problems.

Anticipated Graduation Spring 2026 Email: jereeves@andrew.cmu.edu
Web: https://www.cs.cmu.edu/~jereeves/

METHODS
We sought to extract cardinality constraints from 
existing problems and improve solver performance 
using a cardinality-based input.

Extraction: we developed an extraction tool that,
- Heuristically selects a set of simple constraints
- Verifies that the simple constraints together form a 

cardinality constraint

Performance: modified we modified the SoTA SAT 
solver CaDiCaL to handle cardinality constraints 
natively (i.e., direct constraint propagation)

ReEncode: optimally reencode constraints
Native: natively handle cardinality constraints
Hybrid: combination of ReEncode and Native

Each solver configuration is proof-producing, 
meaning the output of the solver can be checked by 
a formally verified proof checker. 

BENEFITS TO DOD
• AR is used for software and hardware verification, 

theorem proving, etc.
• Verification efforts for safety-critical projects are 

enhanced by proof-producing tools 
• A proof is a certificate of a solver’s reasoning
• Proofs can be checked by independently verified 

tools called proof-checkers [3]
• Solvers may be buggy, so a verified proof is 

necessary to establish trust

Cardinality Constraints in Automated 
Reasoning
Improving State-of-the-Art Satisfiability Solving on Hard Problems

Fellowship Year: 2022

Sponsoring Agency: AFOSR

Advisor/Mentor: Daniel J. Zelik

JOSEPH E. REEVES
Carnegie Mellon University

Computer Science

200 250 300 350 400

Default

Native

Hybrid

Reencode

Solved Problems

Unsatisfiable Satisfiable

Cardinality Constraint Extraction 
(by encoding type)

Naïve Both Auxiliary No Card. Cons.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

5 6 7 8 9 10 11 12

Ti
m

e 
(s

)

Problem Size

Scaling on Magic Squares Problem

Native Hybrid ReEncode

Problem
Cardinality 
Extraction 
and Solving

Proof 
Checker Verified

Proof

Problem

Extractor

Encoder Solver

ReEncode

Cardinality 
Solver

Native

Encoder Cardinality 
Solver

Hybrid

Result

Result

Result

mailto:jereeves@andrew.cmu.edu

