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Abstract

In this paper we propose a generative model for
music generation focusing on self-repetition. We
use a Generative Adversarial Network formula-
tion to learn a model which can generate compo-
sitions with long term repetition structures similar
to those found in training data. We propose to
represent self-repetition in a composition using a
self-similarity matrix constructed by computing
similarity between pairs of measures. To avoid
optimization issues due to discrete nature of notes
in musical compositions, and to provide more
flexibility in identifying similarity between mea-
sure pairs, we propose to encode measures into
low dimensional measure embeddings — effec-
tively lifting the discrete observations to a contin-
uous space. Our model reasons about generating
structured sequences directly in this lifted space.
Preliminary experiments show promising results
from our proposed method.

1. Introduction

Musical compositions often demonstrate repetitions
(Pareyon, 2011; Walder & Kim, 2018), in terms of pat-
terns related to rhythm, pitch, and other musical properties.
Some prior works focus on modeling long term structures in
music generation (Eck & Schmidhuber, 2002; Huang et al.,
2018; Roberts et al., 2018). However, there are only few
works on explicitly representing self-repetition (Walder &
Kim, 2018). In this paper, we propose SSMGAN (Figure
1) - a generative adversarial network (Goodfellow et al.,
2014) for learning a neural model to generate monophonic
compositions with rich self-repetition structures by feeding
a measure-level self-similarity matrix representation to a
convolutional discriminator, which can be more informative
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than taking localized decisions with self-attention. Instead
of explicitly defining the notion of similarity between two
measures, we propose to encode a measure - a sequence
of notes - into a continuous representation, and compute a
self-similarity matrix using pair-wise cosine similarity of
measure representations/embeddings in the composition.

Prior works have often chosen to characterize repetition in
terms of rhythmic or other manually defined musical proper-
ties, and edit distances at note level (Walder & Kim, 2018).
However, musical similarity might go beyond such simple
formulations (Flexer et al., 2006; Prockup et al., 2015). By
representing measures in a continuous space, our model can
learn more complex notions of similarities between mea-
sure. Additionally, we feed a self-similarity matrix to a
discriminator Dg, which learns to identify repetition struc-
tures in existing compositions using multiple layers of 2D
convolution neural networks. Moreover, since we repre-
sent measures in a continuous space, loss from Dyg is fully
differentiable with respect to the measure representations.

2. Methodology

Measure and Self-repetition representations: We pro-
pose to encode a measure [N; consisting of a sequence of
notes N}, N2, .., NiIN"| to a low dimensional embedding
M;. We train a variational auto-encoder (Kingma & Welling,
2013) at measure level using a LSTM encoder, denoting the
last hidden state of encoder as corresponding measure em-
bedding M;. However, instead of having a decoder operate
on each measure embedding individually, we propose a de-
coder which has access to the last hidden state of previous
measure’s decoder (Figure 1). The proposed decoder can
lead to smoother transition across measure boundaries. We
define self-similarity matrix Sy € R7*7 such that S;; is
the cosine similarity score between pair of measures N; and
N;, while T' is the number of measures in the composition.

GAN formulation Generative Adversarial Networks
(GANs) employ two types of networks - generator and
discriminator, such that discriminator is trained to iden-
tify generated examples from training examples, and the
generator is trained to fool the discriminator.

Neural Generation Model We first sample a sequence of
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Figure 1. SSMGAN model: We sample a sequence of measure
embeddings from the generator, which are decoded to obtain se-
quences of notes. One of the discriminators operates on a self-
similarity matrix obtained via cosine similarity between pairs of
measure embeddings. The proposed architecture encourages the
model to identify useful notions of similarity between measures,
and identify overall self-repetition patterns from data.

measure embeddings M, .., M such that M; depends on
all M ; (Figure 1). We sample M; from a Gaussian distribu-
tion whose mean and variance are computed by feeding the
output h; of the LSTM to two feed-forward networks. We
use re-sampling trick to train the model end-to-end. There-
after, the decoder (same as the one used during training
measure representations) decodes the sampled sequence of
measure embeddings into the final sequences of notes.

Discriminators: We employ two discriminators operating
on 1) Self-similarity matrix 2) Sequence of measures.

Dg: The discriminator Dg(S) uses a multi-layer convolu-
tional encoder to encode a self similarity matrix S and is
trained to distinguish S of a generated composition from
that of a training data composition.

Dy,: We consider a convolutional neural network discrimina-
tor Dy, which looks at windows of K measure embeddings
at a time. We encode the sequence using a LSTM, followed
by a linear layer and a sigmoid to model this binary classifi-
cation discriminator. We experiment with multiple values
of K.

Training: The generator and the discriminators are trained
simultaneously. We run the encoder on training data com-
positions to obtain a sequence of real measure embeddings,
while we sample from the generator to get synthetic com-
positions. We note that training the full model end-to-end
can become problematic as the measure encoder can work
with the generator to fool the structure discriminator at the
cost of generating good measure representations. So instead
we pre-train and then freeze the parameters of the measure
encoder-decoder. Thereafter, we use GAN framework to

train the LSTM Gaussian model while keeping the measure
encoder decoder fixed.

3. Experiments and Results

We work with Nottingham dataset (GOLD) (Shlien;
Boulanger-Lewandowski et al., 2012) which is a collec-
tion of 1200 British and American folk tunes, with over 7
hours of music with a total of over 176K notes. We identify
the measure boundaries in every composition. Following
prior works, we perform listening tests with human anno-
tators on Amazon Mechanical Turk. Annotators rate the
generated samples on overall quality O on a 1-5 Likert scale,
(with 5 being the most favorable score), and a binary yes/no
question about presence of repetition R (Table 1).

Model R (% yes) Overall (O)
SSMGAN 63% 4.28
SSMGAN (-Dg) 26% 3.84
NOTE 27% 4.02
GOLD 64% 4.64

Table 1. Human evaluation results with 108 samples of each
method on 1) self-repetition (R) 2) overall musical quality for
our method SSMGAN, a note level LSTM baseline (NOTE), and
samples from Nottingham data (GOLD). SSMGAN (-Dys) denotes
our method without Dg discriminator.

Measure Embeddings and Self-Similarity: We use
LSTM cells with hidden size of 128 as measure encoder and
decoder, with note embedding size of 128. As discussed,
during pre-training phase we only train measure encoder-
decoder, and observe 1.137 note-level perplexity on test split
of the Nottingham data. Additionally, we observe similar
measures are close-by in embedding space. (Some relevant
visualizations in Appendix B). We observe that our model
learns to generate sequences with rich repetition structures
(Some relevant visualizations in Appendix A). Moreover, we
observe that cosine similarity between pairs of measure em-
beddings is correlated with a note level edit distance of pitch
as well as rhythm between measures (Pearson correlation
coefficients of 0.40 and 0.35 respectively), demonstrating
that proposed self-similarity matrices encode repetition in
terms of meaningful musical properties.

Other Related Works: Dong et al. (2018) and Yang et
al. (2017) propose GAN based methods for music genera-
tion, with latter using a 2D convolutional discriminator on
sequence of generated bars. Widmer et al (2018) use a con-
volutional restricted boltzmann machine to generate music
while imposing a given repetition structure of a piece. In
contrast to such earlier works, we have proposed to encode
measures in a low dimensional embeddings space, and use a
discriminator on self-similarity matrix - enabling our model
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to automatically learn useful notions of similarity between
measures, and identify meaningful self-repetition patterns
from data.
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Appendix
A. Visualizing self-similarity matrices

Figure 2 visualizes SSM (self-similarity matrices) of some
generated compositions.

B. Visualizing measure embeddings

Figure 3 visualizes sequence of measure embeddings for a
composition. Many of the measure embeddings seem to be
falling into groups. For example, M4, M5 and Mg seem
very close in the t-SNE space. In fact on inspecting the
corresponding sequence of notes, we observe that N4, N5
and Ny are indeed very similar.

Notation: Sequence of notes where each note is represented
by a tuple of key and quarter length).

N4y = [(D5, 0.5), (C5, 0.25), (B4, 0.25),
(A4, 0.25), (B4, 0.25), (C5, 0.25), (B4,
0.25)]

Ns = [(C5, 0.25), (D5, 0.25), (E5, 0.5),
(G4, 0.25), (F4, 0.25), (E4, 0.5)]

Ng = [(D5, 0.5), (C5, 0.25), (B4, 0.25),
(A4, 0.25), (B4, 0.25), (C5, 0.5)]

C. Generated Samples

Some generated musical composition
samples can be found at https://
drive.google.com/drive/folders/
1T10rbYAm7vGUVRrxa—-uiHl7bP-4N4e9z?usp=
sharing.

D. Pre-training Measure Embeddings

We pre-train our measure embeddings using a variational
autoencoder (Figure 4).
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Figure 2. APPENDIX A: SSM (Self-similarity matrix) visualizations for some generated music compositions. Rows and columns are
numbered with measure numbers starting with 0. Higher values represents higher similarity between pair of corresponding measures.
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Figure 3. APPENDIX B: t-SNE visualization of a sequence of 25 measure embeddings in a Nottingham composition (Subplots are
arranged in row-major style). Groups of measures can be observed in t-SNE space which is in sync with the observation that measures are
repeated with small changes.
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Figure 4. APPENDIX D: We pre-train our measure embeddings using a variational autoencoder.



