
Improving the Applicability of Visual Peer-to-Peer Navigation with Crowdsourcing

Erqun Dong∗, Jianzhe Liang∗, Zeyu Wang∗, Jingao Xu∗, Longfei Shangguan†, Qiang Ma∗ and Zheng Yang∗‡
∗School of Software and BNRist, Tsinghua University, Beijing, China

Email: doneq13@gmail.com, thss15 liangjz@163.com, ycdfwzy@outlook.com,
xujingao13@gmail.com, thumaq@mail.tsinghua.edu.cn, hmilyyz@gmail.com

†Microsoft Cloud&AI, Seattle, WA, USA
Email: longfei.shangguan@microsoft.com

‡Corresponding Author

Abstract—Visual peer-to-peer navigation is a suitable solu-
tion for indoor navigation for it relieves the labor of site-survey
and eliminates infrastructure dependence. However, a major
drawback hampers its application, as the peer-to-peer mode
suffers from a deficiency of paths in large indoor scenarios
with multifarious places-of-interest. Nevertheless, we propose
one with a profound crowdsourcing scheme that addresses the
drawback by merging the paths of different leaders’ into a
global map. To realize the idea, we further deal with entailed
challenges, namely the unidirectional disadvantage, the scale
ambiguity, and large computational overhead. We design a
navigation strategy to solve the unidirectional problem and
turn to VIO to tackle scale ambiguity. We devise a mobile-
edge architecture to enable real-time navigation (30fps, 100ms
end-to-end delay) and lighten the burden of smartphones
(35% battery life for 2h35min) while assuring the accuracy
of localization and map construction. Through experimental
validations, we show that P2P navigation, previously relying on
the abundance of independent paths, can enjoy a sufficiency
of navigation paths with a crowdsourced global map. The
experiments demonstrate a navigation success rate of 100%
and spatial offset of less than 3.2m, better than existing works.

I. INTRODUCTION

Indoor navigation has been exhibiting promising appli-
cations in scenarios like large shopping malls, warehouse
management, etc. The conventional way of indoor navigation
is to localize a user in a global map and navigate the user
therein. Techniques using Wi-Fi [1], [2], [3], RFID [4],
[5] and sound [6] have demonstrated efficacy. However,
these works require indoor radio maps, whose site-survey
procedure costs considerable effort and time; moreover,
they rely on indoor infrastructure either pre-existing or
dedicatedly installed. Therefore, although they are inspiring,
the dependency on site-survey and infrastructure makes their
application less-than-ideal.

In contrast to the conventional way, peer-to-peer (P2P)
navigation is free of site-survey cost [7]. It encourages a first
user, namely a leader, to record the information of a path
such as sensor readings at turning points. This information
is shared with a second user, namely a follower, who wants
to travel from the same origin to the same destination. The
follower simply needs to reproduce the recorded information

Figure 1: User Interface of the mobile side. On the left-
bottom, the current pose of the follower is shown by a small
red pyramid, the planned path is shown in green. On the
left-top lies the sensor information and the network status.
The current image the follower is looking at is on the right.
Visual navigation is user-friendly because the follower can
have a good understanding of his/her position and the path.

to follow the path. Several works leveraging wireless signals
and inertial sensors show that this P2P mode can also
successfully navigate [8], [9].

Now that the P2P mode solves the arduousness of site-
survey, researchers come to eliminate the dependency on
infrastructure, where computer vision methods seem rosy.
Based on multi-view geometry, visual simultaneous local-
ization and mapping (SLAM) endows navigation with a
more accurate trajectory and map construction. Plus, visual
navigation is more user-friendly, as images are richer in
semantics than wireless signal readings so that users can
easily understand the paths they are taking (See Figure 1).
Pair-navi [10] has incorporated visual SLAM into peer-to-
peer navigation. However, although Pair-navi works fine
with motivated leaders, it has a relatively small path archive
in large indoor scenarios. For example, shop owners would
like to build paths from the gate of the mall to their
shops, but paths between shops, much more essential to the
customer experience in the shopping mall, are insufficient.
This lack of paths largely vitiates the practicability of P2P
navigation, but is seldom studied.

In this paper, we seek to push the limit of visual P2P
navigation systems towards better applicability. Regrading
path deficiency, intuitively, if we splice the paths of different

978-1-7281-9074-7/20/$31.00 ©2020 IEEE

leaders into other paths, we will obtain a more compre-
hensive path coverage. FollowUs [11] first embodied the
idea of splicing paths in magnetic navigation. However, in
visual navigation, this idea entails several challenges. First,
monocular visual SLAM suffers from scale ambiguity, the
meaning of which is two-fold: (1) Different trajectories have
different unknown scales, making it impossible to splice
them together; (2) Even within one trajectory, the scale can
drift if the trajectory is very long without loop closure.
Nevertheless, we still have to use monocular navigation
because although some new smartphones are equipped with
dual cameras, the cameras have inconsistent lens types and
short baselines so that only monocular SLAM is usable.
We resort to the IMU for visual-inertial odometry (VIO)
to overcome scale ambiguity, as the IMU provides meter-
unit measurements, thus being able to unify all trajectories
within the same scale.

Second, visual paths has the unidirectional problem,
which means the trajectories and map construction can only
be reused in one direction, since the same spot has different
scenes in opposite directions. Thus, we cannot use the
spliced visual paths directly as in Pari-navi [10]. In order to
overcome the unidirectional problem, we design a navigation
strategy to track a user in a crowdsourced global map, in
both the forward and inverse directions.

A third challenge is entailed in the resort to VIO. As
VIO relies on high-dimensional matrix optimization, it can
hardly run on smartphones in real-time, unless sacrificing
accuracy, which should not be encouraged because to build
a consistent global map, each local map needs to be as accu-
rate as possible. Moreover, the battery consumption required
to continuously run the optimization is a heavy burden on a
smartphone. Therefore, reducing the computational overhead
on mobile clients is necessary. We achieve this goal with
a mobile-edge VIO architecture, carefully dividing the VIO
pipeline into mobile and edge-server sides and devising data
interaction to minimize both the overhead on the mobile side
and the communication bandwidth while assuring accuracy
and real-time response.

Based on the above ideas, we present a novel visual
peer-to-peer navigation system, GMPN (Global Map P2P
Navigation, the user interface shown in Figure 1). This paper
has the following contributions:

• We make visual P2P navigation more applicable by
boosting the abundance of paths with a profound
crowdsourcing scheme, which transforms visual P2P
navigation from the previously local-map-only, lacking-
in-paths version to that with global maps and a suffi-
ciency of navigation paths.

• We settle the unidirectional problem of visual paths
in crowdsourced visual P2P navigation by an effective
navigation strategy.

• We enable accurate real-time navigation on smart-
phones with lightened computational overhead by an

edge-assisted visual-inertial odometry architecture.
Experiments demonstrate that besides comprehensive path

coverage, our system can navigate with a navigation success
rate of 100%. The spatial offset of our system is less than
3.2m in environments like shopping malls, supermarkets,
teaching buildings, and office buildings, better than exist-
ing works. Plus, our mobile-edge architecture guarantees
a lightweight burden on the smartphone (35% battery life
for 2h35min) and real-time operation (30fps, as specified
in [12], [13], and 100ms end-to-end delay).

The rest of this paper is organized as follows: we in-
troduce the fundamentals of VIO in Section II; then we
expatiate the navigation workflow in Section III and the
mobile-edge architecture in Section IV; after that, we discuss
the experiments and conclude the paper.

II. PRELIMINARIES

Monocular VIO takes video frames and IMU readings
as input, and outputs real-time poses of the camera and a
local map of the 3D point landmarks. The system maintains
a sliding window and solves an optimization problem to
estimate the most recent camera poses and 3D landmarks
within it. In the process, some keyframes will be selected
from all the video frames, and collecting all the keyframes,
we acquire a leader’s trajectory associated with a local map,
we call the combination of them a ”sequence”. Note that a
sequence is denoted by two strings, its origin and destination
name, which suggests an inborn direction.

How does the system splice sequence? Suppose there is
already one sequence, which is regarded as the primitive
global map. When a new sequence is made, the system
will use relocalization to find out from existing sequences a
keyframe which is the most similar to a keyframe in the new
sequence. If relocalization succeeds, a pose transformation
between the new sequence and the global map will be
computed, and then we can transform the new sequence into
the global map.

III. NAVIGATION SYSTEM DESIGN

In this section, we show in detail how a global map is
constructed through crowdsourcing and how we navigate a
follower with our navigation strategy. Then we demonstrate
the planning of new navigation paths.

A. Global Map Construction through Crowdsourcing
We consider three major situations about how sequences

should be crowdsourced to form a global map, as illustrated
in Figure 3. The illustrations only shows the chances for
merging, regardless of the shapes of the sequences.

Situation 1. Leader 1 contributes seq1 from the Gate of
the mall to shop A, which is regarded as the primitive global
map. Leader 2 contributes seq2 from the Gate to shop B.
In this case, since seq1 and seq2 contain a common seg-
ment (Gate→C) with the identical direction, relocalization
happens and seq2 is merged into seq1.

Figure 2: Workflow of a leader and a follower. Leaders and followers all interact with the global map. Leaders builds a local
map and contributes it to the global map; followers use the global map to navigate, either by VIO in inverse directions or
by relocalization in identical directions, and can also contribute to the global map.

Figure 3: Three situations of the leader

Situation 2. Leader 1 remains the same. Leader 2 goes
from A to B. Without other measures, even though two
sequences share the same passage (AC), splicing is pre-
cluded because they are in opposite directions hence no
relocalization. To splice more sequences, our system requires
the leaders to face the camera towards the shopfronts at the
beginning and in the end. Owing to this requirement, the
paths will have co-vision at ends of the sequences and can
be spliced together.

Situation 3. Leader 1 remains the same, and leader 2 con-
tributes seq2 from shop D to shop B. Since no relocalization
occurs, they can not be merged. In this case, we simply store
seq2 because it may be merged into the global map through
future sequences. When leader 3 contributes seq3 from A to
B, it first detects relocalization with seq1 at A, and merges
itself into the global map. Then, at C, seq3 relocalizes with
seq2, and seq2 is merged in the global map at length.

In a nutshell, the three situations suggest that no matter
what shape a path is in, it can contribute to the global map
if: (1) it has relocalization with previous paths; (2) it has the
same origin or destination with previous paths; (3) it can be
connected with previous paths through future paths.

B. Navigation Strategy in Both Directions

For each video frame of the follower, Pair-Navi mainly
carries out relocalization to localize the follower in the
leader’s trajectory. However, in GMPN, this strategy is
not suitable because we need to support navigating in an

inverse direction. If the follower’s camera is facing towards
the opposite direction of the sequence, no relocalization
will happen. Therefore, we propose a VIO-based navigation
strategy for followers.

A typical workflow of navigation. Suppose a follower is
going from E to A (see Figure 2). He first selects the name
of A from the known places of interest and queries it to the
global map. Our system first instructs him to be relocalized
in the global map. Then he travels on the path E→F→C in an
inverse direction with the original path of leader 2 while our
system runs a full VIO to track him and compute navigation
paths accordingly. In practice, as VIO is in nature a dead-
reckoning method, it gradually accumulates drifting error,
however, if a relocalization is detected later, the location
of the follower can be bound to the global map, resetting
the drift to zero at that spot (here, a new cost term of the
relocalization is added to the sliding window optimization
problem).

When the follower turns right at C, his smartphone is
relocalized because now the camera is facing toward the
direction identical to the sequence. After this relocalization,
the drifting error of this frame is corrected to zero and begins
to accumulate from zero again. In a large global map, it is
often the case that a follower will meet several relocaliza-
tions, so the drifting error of VIO is bounded and the system
works fine. But although relocalization can correct drift, the
performance of navigation in inverse direction is still crucial,
which we will demonstrate in Section V.

In short, the navigation strategy is to carry out VIO
the whole time, and whenever a relocalization happens, it
corrects drift. After the navigation, the follower’s path is
fed back to the global map, just like a leader. In this way,
followers help enrich the global map.

A perspective of graph theory. From a perspective of
graph theory, since the sequences are innately directed,

Figure 4: Path proposal methods (left) peer-to-peer path
proposal; (right) active path proposal. The planned paths
are shown in green lines in both cases. In peer-to-peer path
proposal, a follower going from F to H needs to travel in
the order ”F→E→C→D→C→E→G→H”, which is a huge
detour; while in keyframe-level path proposal, the follower
takes the nearest path ”F→E→G→H”.

the navigation takes place in a directed graph, where each
path is supposed to be unidirectional. That being said,
we manage to navigate even in an inverse direction with
the slight disadvantage of VIO’s drift. Furthermore, once
the follower finishes walking in the inverse direction of a
passage, and feeds back his sequence to the global map,
this passage becomes undirected. In this way, the global
map becomes more accurate for navigation, because we have
more opportunities to relocalize rather than have to carry out
VIO for a long time.

C. Path Planning

To plan navigation paths, we first need to find out if
the destination is reachable from the follower’s current
position. We use a disjoint-set data structure [14] as well
as a connected graph to manage the sequences. When a
follower chooses a destination, GMPN immediately gets the
destination sequence; and after relocalizing the follower in
the global map, the original sequence is also known. Then
GMPN carries out a disjoint-set search to determine the
reachability of the destination sequence from the original
sequence. If the destination sequence is reachable, then
the destination spot is reachable, thereupon, GMPN can
plan paths. It first searches for a sequence shifting order,
i.e., the series of sequences a follower should travel, then,
take relocalization keyframes between sequences as shifting
spots, GMPN puts the needed keyframes in order into a
navigation path, which is illustrated in Figure 4 (left). In
this way, GMPN plans a peer-to-peer path.

Unfortunately, peer-to-peer path planning is not always
efficient. Still in the example of Figure 4 (left), if two
sequences are merged at the ends, then the follower may
need to detour. Therefore, we add another active path
planning scheme that try to generate more efficient paths on
a keyframe level. We maintain a K-D tree of the positions
of all the keyframes. If the peer-to-peer path is longer than
3 times the line distance between the follower’s current
location and the destination keyframe, we search in the K-D

tree on a keyframe level to see if there exists a shorter path.
In the example of Figure 4 (right), the active path planning
yields a shorter path, while the peer-to-peer path planning
tells the follower to take a detour.

D. Comprehensiveness of Path Coverage by Crowdsourcing

In a pure P2P navigation system, the follower can be
navigated only if a leader has walked in the path that the
follower needs. In GMPN, this requirement is relaxed since
two POIs are mutually reachable if there exists a series of
intersections of sequences, regardless of the directions.

Suppose now we already have a global map, and one
wishes to go to shop B from shop A. Currently, there is no
leader’s sequence directly connecting A and B, but there are
2 intersecting sequences, each of which have either A or B
as its origin or destination. With our path planning scheme,
we can plan a path from A to B with the two sequences.
Furthermore, we can use more than 2 sequences to propose
a path as long as the A and B are connected through a series
of intersecting sequences.

IV. MOBILE-EDGE-STRUCTURED VIO

A. Design Insights

The main idea of our mobile-edge-structured VIO is
to perform data capture and light-weight preprocessing on
mobile devices while running heavy optimization on edge
servers. We also carefully control the rate of data trans-
mission to reduce computational overhead and minimize
bandwidth usage.

We modify and extend VINS-Mono [15] for our system. It
contains a vision frontend, a feature tracker which takes raw
video frames as input, extracts feature points and performs
optical-flow to track them. Meanwhile, the IMU preintegra-
tion module takes IMU readings and compute preintegra-
tions between each consecutive pair of video frames. Both
visual and IMU information are fed into a sliding window
module, which optimizes the current pose of the smartphone
as well as the 3D positions of the feature points, keeping
tracking of the latest position of a leader or a follower.
Finally, a sequence manager module takes charge of the
global map and the current sequence, detects whether there
is a relocalization of the current sequence and global map,
and merges them if possible. There have been works on
putting visual SLAM on the edge servers [10], [16], but
putting visual-inertial odometry on the edge is different.

The edge side. Though the original VINS-Mono provides
high accuracy for pose estimation and local map construc-
tion, it heavily depends on computation-intensive optimiza-
tion, thus difficult to run on ordinary smartphones of limited
computational ability and battery power. Furthermore, it also
has a relatively high demand for storage, because to detect
relocalization, the sequence manager first needs to construct
a keyframe database. It is easy to think of curtailing the
length of the sliding window and reducing the amount of

Figure 5: Architecture of edge-assisted VIO. We show the mobile side on the left and the edge side on the right. The mobile
side captures images and IMU and send them to the edge side, while the edge side processes the information, manages the
sequences and sends navigation information back to the mobile side.

keyframe in the database. While this may help mitigate the
burden on smartphones, it can take a toll on localization and
mapping accuracy, which is the worst for our system because
to build a globally consistent map, all local maps need to
be as accurate as possible. Thus, to truly ease the burden
of smartphones without losing accuracy, we put the sliding
window, sequence manager modules on the edge side.

The mobile side. At first glance, a light-weight mobile
client should solely collect images and IMU data and send
them to an edge server. However, such a solution needs a
considerable amount of bandwidth due to frequent transmis-
sion of image data. For a VIO to be able to track, the frame
rate should be at least 10fps, which adds up to a prohibitive
bandwidth of 6.1MB/s. Luckily, the sliding window only
requires a set of feature points as visual measurements. With
a camera taking 640 × 480-resolution images at 30fps (for
better tracking and mapping accuracy under motion clutter)
and each frame containing at most 100 feature points, the
total bandwidth for transmitting feature points is 180KB/s,
outperforming 6.1MB/s at 10fps for raw image transmission.
Therefore, we extract the feature points on the mobile side
and transmit them to the edge side. The whole procedure
on the mobile side works in the following manner. First,
we extract feature points for every frame; after that, we
perform optical-flow tracking to match the points to those in
the previous frame, and further perform a culling procedure
using RANSAC with fundamental matrix model [17] (we
will refer to this as “fundamental culling”), which winnows
out the badly tracked points that plague the accuracy of VIO.
Then the feature points are transmitted to the edge side. After
that, we extract points again, to complement the total number
of points for doing optical-flow with the next frame (we will
refer to this as “complementary extracting”). Nevertheless,
though features points are sufficient for the sliding window
such that raw images are not needed here, we still need raw
images for relocalization, so we also send raw images back
to the edge-server at a low frequency, not to congest the
bandwidth.

As for the last module, the IMU preintegration module,
we notice that although an IMUs produce data at a rather
high rate (100˜300Hz), each entry contains only several

bytes of data, which means they account for only a minor
portion of the total bandwidth. Also, the raw IMU readings
are needed in the sliding window optimization: because the
preintegration should be recomputed after each optimization
iteration, so the IMU readings are repeatedly used on the
edge-server. Therefore, we transmit directly back to the edge
the raw IMU readings, which is comprised of accelerometer
and gyroscope readings firstly aligned through an IMU
generator.

Pushing the limit. With the basic architecture proposed
above, we can further push the limit of the system by some
more detailed tailoring strategies. We notice that pedestrians
usually move slowly (about 1.3m/s), so considering image
rate (≥ 30fps), the parallax between consecutive frames
is small. Therefore, we do not need to transmit back the
feature points in a frame-by-frame manner, but can rather
do it intermittently. Regarding the frames that we do not
transmit back to the edge server, we simply continue the
optical-flow tracking for them on the smartphone and do
not need to perform fundamental culling or complementary
extracting. This frugality of transmission also brings down
the frequency of fundamental culling, reducing image pre-
processing overhead; however, the reduction of fundamental
culling can also impair tracking accuracy due to poorer
feature quality. Therefore, we need to measure the influence
of feature transmission rate on tracking accuracy, image
processing time, and bandwidth usage, and choose a feature
transmission rate in different scenarios.

B. Implementation

We implement our mobile side on Android platform. The
mobile consists of 3 main threads, a feature tracker, an IMU
generator and a data transmitter. The feature tracker extracts
feature points from images and controls the transmission
rate for feature points (for VIO tracking) and raw images
(for relocalization). The IMU generator aligns measurements
from different sensors. Since Android provides accelerom-
eter and gyroscope measurements separately, they usually
have different timestamps. For each measurement entry, the
IMU generator finds its temporal neighbor and performs
interpolation to generate corresponding measurements. An-

1st Floor

2nd Floor

stairs

(a)

offices

offices
stairs

Inside a large room

(b)

Figure 6: Two global maps created in our experiment in two indoor scenarios: (a) two floors of a teaching building; (b) one
floor of an office building

other problem is that some devices have different clock
bases for IMU and camera (those not supported by Google
ARCore certification), so we also synchronize the two clock
bases by comparing them with system time for these devices.
Lastly, the data transmission thread serializes each data entry
into a lightweight ”type-length-data” format, and sent it to
the edge side through a single socket.

On the edge side, we build the system upon the ROS
platform. An adapter first deserializes the data from the
mobile side and sends each type of data (feature, IMU, raw
image) through respective ROS topics. Then the preintegra-
tion module, the sliding window and the sequence manager
receive the ROS topics and carry out their functions.

V. EXPERIMENTS

In this section, we evaluate the performance of our system
both in navigation and in edge-assisted communication.

We implement our system on the ROS platform. The
VIO module, modified and extended from VINS-Mono [15],
uses Ceres 1.14.0 for optimization, Eigen 3.3.4 for matrix
operation, and OpenCV 3.4.2 and OpenCV Android 3.4.2
for image processing on edge-server and smartphone respec-
tively.

Experiment settings. We asked 4 volunteers to act as
leaders and followers in turn, whose heights varied from
172cm to 189cm, and whose behaviors of holding phones
were varied, some holding steadily and others shakily.

The mobile phones we used were Samsung Galaxy S10+
and Huawei P10, and the edge server is Dell XPS 9560
with i7-7700HQ CPU of 2.8GHz main frequency and 16G
RAM, installed with Ubuntu 16.04 operating system and
ROS Kinetic.

We selected a shopping mall, a teaching building, a
supermarket and an office building as our experiment venue,
the area of which is about 2000m2, 1000m2, 500m2 and
400m2, respectively.

Path coverage. Examples of the final global maps are
shown in Figure 6. We can see all the places are connected
and mutually reachable in the global map, thus validating a
far more comprehensive path coverage. Specifically, inside
a large room with 4 POIs and 3 spliced sequences, the total
path number is 12 compared to 3 sequences(Figure 6b); In
a teaching building, where there are 8 POIs on the 2nd
floor and 3 POIs on the 1st floor, our system generates

110 available paths, much larger than 13, the number of
sequences. Thus, the path coverage grows considerably fast,
making GMPN much more applicable than the pure-P2P
visual navigation system Pair-navi.

Spatial offset. We measure the spatial offset between
the checkpoint and the follower’s current location when he
reaches the checkpoint. The spatial offset reflects the metric
error where a navigation event like turning should happen
and is suitable for measuring navigation performance. It is
measured directly in Rviz on the ROS platform.

We compare the spatial offset of our system with [9],
[11]. Note that in our system, after each relocalization,
the follower’s location is forcibly aligned to the leader’s
trajectory owing to the optimization. When this happens at a
checkpoint, the spatial offset there is zero. If our system re-
ceives more sequences, there might be more opportunities of
relocalization and more spatial offsets will become zero. So
we only conduct experiments on a freshly built map without
much trajectory overlapping or follower’s enrichment to the
map. The results are shown in Figure 7.

In normal environments with relatively rich texture, i.e.,
the shopping mall, the supermarket and the teaching build-
ing, our system outperforms others. In all cases, it has a
spatial offset of less than 3.2m, and in 90% of the cases,
the spatial offset is less than 1.1m. Comparing to magnetic
navigation methods FollowMe and FollowUs, our system
shows better accuracy. The spatial offset of Pair-Navi is not
shown here because the whole idea of Pair-Navi is based on
relocalization, and therefore it has zero spatial offset.

Extreme conditions We further experiment the navigation
accuracy in an extreme condition, namely inverse directions.
Again, we use spatial offset to measure system performance.
The result is shown in Figure 8.

We build several long sequences with checkpoints, from
30m to 150m, and ask followers to walk in the inverse
direction with the sequences and measure the spatial offset
at the checkpoints. Since there exist some textureless scenes,
the overall performance is plagued by large errors. But for
80% cases, the single way performance is comparative to
FollowMe and FollowUs. Considering in a mature global
map, 30m is a very large length for any passages, so the
overall performance in inverse directions is acceptable.

Comparing to Pair-Navi that is not able to work in inverse
directions, our system achieves far better applicability. Not

Figure 7: Spatial offset comparison
between GMPN and some others

Figure 8: Spatial offset on inverse
passages

Figure 9: Navigation success rate of
our system and several other systems

to mention that with our crowdsourcing strategy, the perfor-
mance will become better and better, for when more and
more paths are contributed to the global map, our system
will be able to detect more and more relocalizations rather
than accumulate drift.

Navigation success rate. We also test navigation success
rate, which is defined as the rate of successful arrival at the
checkpoints. We set 143 checkpoints in 40 navigation paths,
and let followers go to their destinations without apprising
of them the location of the destination or the checkpoints.
With the help of our system, all the followers arrive at their
destinations, and successfully pass 100% of the checkpoints,
which is better than Pair-navi (98.6%), Travi-navi (96%) and
FollowMe (92%). Even in textureless environments where
the spatial offsets were large, the followers managed to pass
the checkpoints because the textureless environments are
often long aisles or staircases that do not have option paths.
Here, we do need to point out some special cases in the
shopping mall where the upward and downward escalators
between two floors are placed in opposite sides such that
the follower cannot follow the same path when he travels
in the inverse direction. However, he passes the escalator
and continues on the right track anyway, and finally makes
it to the destination, because from the visualization of the
global map, he understands that he should take the escalator
on the opposite side. Therefore, these cases are counted as
successful passes of the escalator checkpoints.

Battery consumption. We tested battery consumption on
smartphones. We use 2.4GHz Wi-Fi for data transmission,
set screen brightness comfortable to eyes, and run as less
applications in the background as possible. The Samsung
Galaxy S10+ ran for 2h35min, and the energy decreased
from 100% to 65%. The Huawei P10 ran for 2h9min, and
the energy decreased from 62% to 32%. Considering that
a typical indoor navigation takes about 10min, the battery
consumption on smartphones is acceptable.

Real-time Performance In our field experiment on nav-
igation performance, we observed that the IMU buffer size
(shown in top-left of Figure 1) on mobile client averages 30.
Note that the Samsung Galaxy S10+ we used generates IMU
data faster than 300Hz. We also found empirically that the
processing delay at the edge side is neglectable due to richer
computation resources. Ignoring data buffering at routers,

GMPN is able to perform localization and mapping with
end-to-end delay at 30

300 = 100ms, indicating it can navigate
users in real-time.

VI. RELATED WORK

Indoor P2P Navigation. Traditional indoor navigation
systems navigate users in a global map with a floor plan and
infrastructures (e.g., Wi-Fi [3], Bluetooth, RFID [4], etc.),
and recently some works try to solve the dependence on a
pre-existing floor plan using wireless methods [18], [2] or
surveillance cameras [19], [20]. On the contrary, P2P navi-
gation, such as Travi-Navi [8], FollowMe [9] and ppNav [7],
does not rely on a global map but rather navigates users in
relevant local maps contributed by followers. Pair-Navi [10]
exploits the power of vision, which is infrastructure-free
and efficient. FollowUs [11] first exploits the idea of splic-
ing trajectories, and obtained more trajectories. However,
its localization method may be less-than-ideal because a
follower first needs to walk for some distance to acquire
a segment of magnetometer readings for segment matching,
but, visual methods can perform immediate localization by
visual relocalization. Plus, the comprehensiveness of path
coverage, though seemingly fundamental at first glance, is
hardly discussed by previous works like [11] that adopt such
a scheme. In our work, we exploit the idea of merging local
maps with visual approaches, and give a theoretical proof
and experimental evaluation of the large path archive.

Visual-Inertial Odometry. Works on visual-inertial
odometry can be classified into two categories, the loosely
coupled [21] and the tightly coupled [22]. The loosely
coupled is comparatively lightweight and efficient, but the
accuracy may be unsatisfactory in our applications where
a global consistent map relies on the accuracy of each
local map. The tightly coupled have several prototypes,
including EKF-based approaches [23] and optimization-
based approaches [24]. With the advance of preintegration
methods [24], IMU observations can be optimized together
with visual observations, enabling complete systems to be
more accurate, among which VINS-Mono [15] is one of the
state-of-the-art systems. Though VINS-Mono [15] achieves
satisfactory accuracy, it can not run in most smartphones in
real-time without sacrificing accuracy, especially on Android

phones. We modify the system and extend it into a mobile-
edge structure to assure real-time performance without sac-
rificing accuracy.

VII. CONCLUSION

We present a visual peer-to-peer navigation system named
GMPN that achieves better applicability than existing peer-
to-peer navigation works in a more comprehensive path
coverage. It constructs a global map with a profound crowd-
sourcing scheme and navigates followers with an abundance
of spliced paths. To realize the idea, we further deal with
entailed challenges, namely the unidirectional disadvantage,
the scale ambiguity, and large computational overhead. We
design a navigation strategy to solve the unidirectional
problem and turn to VIO to tackle scale ambiguity. The
system is powered by a mobile-edge architecture of VIO.
Experiments show that besides better path coverage, the
navigation performance of our system is delightful. Future
works may include improving the VIO system for better
performance in textureless environments.

REFERENCES

[1] P. Bahl and V. N. Padmanabhan, “RADAR: an in-building
RF-based user location and tracking system,” in Proceedings
of the IEEE INFOCOM, 2000.

[2] C. Wu, Z. Yang, and Y. Liu, “Smartphones based crowdsourc-
ing for indoor localization,” IEEE Transactions on Mobile
Computing, vol. 14, no. 2, pp. 444–457, 2015.

[3] H. Liu, Y. Gan, J. Yang, S. Sidhom, Y. Wang, Y. Chen,
and F. Ye, “Push the limit of WiFi based localization for
smartphones,” in Proceedings of the ACM MobiCom, 2012.

[4] J. Wang and D. Katabi, “Dude, where’s my card? RFID
positioning that works with multipath and non-line of sight,”
in ACM SIGCOMM, 2013.

[5] L. Shangguan, Z. Yang, A. X. Liu, Z. Zhou, and Y. Liu, “Stpp:
Spatial-temporal phase profiling-based method for relative
rfid tag localization,” IEEE/ACM Transactions on Networking,
vol. 25, no. 1, pp. 596–609, 2017.

[6] M. Azizyan, I. Constandache, and R. Roy Choudhury, “Sur-
roundsense: mobile phone localization via ambience finger-
printing,” in Proceedings of the ACM MobiCom, 2009.

[7] Z. Yin, C. Wu, Z. Yang, and Y. Liu, “Peer-to-peer indoor
navigation using smartphones,” IEEE Journal on Selected
Areas in Communications, vol. 35, no. 5, pp. 1141–1153,
2017.

[8] Y. Zheng, G. Shen, L. Li, C. Zhao, M. Li, and F. Zhao,
“Travi-navi: Self-deployable indoor navigation system,” in
Proceedings of the ACM MobiCom, 2014.

[9] Y. Shu, K. G. Shin, T. He, and J. Chen, “Last-mile navigation
using smartphones,” in Proceedings of ACM MobiCom, 2015.

[10] E. Dong, J. Xu, C. Wu, Y. Liu, and Z. Yang, “Pair-navi:
Peer-to-peer indoor navigation with mobile visual slam,” in
Proceedings of the IEEE INFOCOM, 2019, pp. 1189–1197.

[11] Y. Shu, Z. Li, B. Karlsson, Y. Lin, T. Moscibroda, and
K. Shin, “Incrementally-deployable indoor navigation with
automatic trace generation,” in Proceedings of the IEEE
INFOCOM, 2019, pp. 2395–2403.

[12] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object
detection for mobile augmented reality,” in Proceedings of the
ACM MobiCom, 2019.

[13] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Bal-
akrishnan, “Glimpse: Continuous, real-time object recognition
on mobile devices,” in Proceedings of ACM Conference on
Embedded Networked Sensor Systems, 2015, pp. 155–168.

[14] B. A. Galler and M. J. Fisher, “An improved equivalence
algorithm,” Communications of the ACM, vol. 7, no. 5, pp.
301–303, 1964.

[15] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile
monocular visual-inertial state estimator,” IEEE Transactions
on Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.

[16] J. Xu, H. Cao, D. Li, K. Huang, C. Qian, L. Shangguan,
and Z. Yang, “Edge assisted mobile semantic visual slam,” in
Proceedings of the IEEE INFOCOM, 6-8 July 2020.

[17] R. Hartley and A. Zisserman, Multiple view geometry in
computer vision. Cambridge university press, 2003.

[18] G. Shen, Z. Chen, P. Zhang, T. Moscibroda, and Y. Zhang,
“Walkie-Markie: indoor pathway mapping made easy,” in
Proceedings of USENIX NSDI, 2013.

[19] L. Dong, J. Xu, G. Chi, D. Li, X. Zhang, J. Li, Q. Ma,
and Z. Yang, “Enabling surveillance cameras to navigate,”
in Proceedings of the IEEE ICCCN, 3-6 Auguest 2020.

[20] J. Xu, H. Chen, K. Qian, E. Dong, M. Sun, C. Wu, L. Zhang,
and Z. Yang, “ivr: Integrated vision and radio localization
with zero human effort,” in PACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, Sep 2019.

[21] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart,
“A robust and modular multi-sensor fusion approach applied
to mav navigation,” in Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2013,
pp. 3923–3929.

[22] S. Leutenegger, P. Furgale, V. Rabaud, M. Chli, K. Konolige,
and R. Siegwart, “Keyframe-based visual-inertial slam using
nonlinear optimization,” in Proceedings of Robotis Science
and Systems (RSS), 2013.

[23] A. I. Mourikis and S. I. Roumeliotis, “A multi-state con-
straint kalman filter for vision-aided inertial navigation,” in
Proceedings of IEEE International Conference on Robotics
and Automation (ICRA), 2007, pp. 3565–3572.

[24] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-
manifold preintegration for real-time visual–inertial odome-
try,” IEEE Transactions on Robotics, vol. 33, no. 1, pp. 1–21,
2016.

