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ABSTRACT
After years of boom, drones and their applications are now entering
indoors. Six-degree-of-freedom (6-DoF) pose tracking is the core
of drone flight control, but existing solutions cannot be directly
applied to indoor scenarios due to insufficient accuracy, low robust-
ness to adverse texture and light conditions, and signal obstruction
in indoor scenarios. To overcome the above limitations, we propose
Wi-Drone, a Wi-Fi standalone 6-DoF tracking system for indoor
drone flight control. Wi-Drone takes full advantage of both exte-
roceptive and proprioceptive measurements of Wi-Fi to estimate
the drone’s absolute pose and relative motion, and fuse them in a
tight-coupling manner to achieve their complementary benefits. We
implementWi-Drone and integrate it into a flight control system.
The evaluation results show that Wi-Drone achieves a real-time
performance with the average location accuracy of 26.1 cm and the
rotation accuracy of 3.8◦, which demonstrates its competency of
flight control, compared to visual-inertial-based flight control. Such
results also outperform existing Wi-Fi-based tracking solutions in
terms of both dimensionality and accuracy.
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1 INTRODUCTION
Recent years have witnessed the advent of a wide range of drone-
based indoor applications, such as home security [30], warehouse
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management [6, 42], and entertainment [23]. As a key enabler of
drone flight control, six-degree-of-freedom (6-DoF) tracking sys-
tems provide a drone with its real-time location and orientation in
3D space, realizing the drone’s self-balancing, speed adjustment,
and path planning.

Existing 6-DoF tracking solutions are various and tangled. To
start with, inertial measurement unit (IMU) is widely adopted for
drone flight control due to its low cost and ubiquity [36]. Many
on-drone 6-DoF tracking systems [24] cooperate the GPS module
with IMU and achieve delightful performance in outdoor scenarios.
Another prevalent method for drone 6-DoF tracking is to leverage
the fusion of vision and IMU [26, 29]. By jointly optimizing the
image feature matching and IMU motion estimation results, a high-
accuracy 6-DoF pose can be obtained.

Unfortunately, none of the aforementioned 6-DoF pose tracking
solutions can be directly applied for indoor drone flight control: 1)
Due to the narrow space and complex indoor layout, the tracking
error should be controlled within decimeter-level. However, IMU-
based solutions suffer from significant drifts due to the hardware
noise and the drone motor vibration [20], which are non-trivial to
be calibrated [43]. 2) The performance of visual-inertial systems is
highly dependent on the light (e.g., RGB cameras cannot work in
dark and RGB-D cameras fail with glare and strong illumination)
and texture conditions, restricting the working scenarios of indoor
drone applications. 3) Due to the obstruction by building walls or
other obstacles, the GPS signals and other ground station signals
suffer from severe attenuation in indoor environments, making all
the GPS-based and ground-station-based tracking unavailable.

The above-mention limitations inspire us to build a Wi-Fi stan-
dalone 6-DoF tracking system for indoor drone flight control. Com-
pared with existing methods, a pure Wi-Fi-based solution benefits
from the following aspects: 1) Free of cumulative drift. Wi-Fi-based
tracking system takes the access point (AP) as the anchor and thus
is free of the cumulative drift. 2) Robustness to visual interference.
Wi-Fi is agnostic to either illumination change or plain texture,
making it suitable for varying indoor environments. 3) Pervasive
indoor deployment. Nowadays, Wi-Fi infrastructures have been
pervasively deployed in indoor scenarios, making Wi-Fi a ubiqui-
tous solution for indoor device tracking. 4) Last but not least, a
pure Wi-Fi-based solution is considerably light-weight in terms of
computation overhead, hardware cost, and payload weight.

Although numerous Wi-Fi localization and tracking systems [19,
28, 43, 45] have been proposed, translating our intuition into a
6-DoF drone tracking system still faces significant challenges:

• Dimensionality insufficiency. Existing Wi-Fi-based localiza-
tion and tracking systems, even those that leverage large antenna
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array or multiple APs, only estimate the motion with no more
than 3 degrees of freedom (e.g., 3D location, 2D location with
azimuth). In short, there still lacks an algorithm to fully exploit
the high-dimensional spatial information hidden in Wi-Fi signals.

• Accuracy insufficiency. State-of-the-art Wi-Fi-based systems
achieve decimeter-level localization accuracy and millimeter-
level tracking accuracy over a short distance. However, their
performance degrades when tracking a flying drone due to the
following facts: 1) Wi-Fi-based localization systems experience
large errors when the target (i.e., drone) moving at a high speed;
2) Wi-Fi-based tracking systems are generally designed for track-
ing relatively short trajectories, and thus not competent for
long-distance tracking. To conclude, none of the existing Wi-
Fi-based solutions achieve enough accuracy for real-time and
long-distance drone tracking tasks.

To tackle the above challenges, we design and implement Wi-
Drone, the first pure Wi-Fi-based 6-DoF device tracking system for
drone flight control. The insight behindWi-Drone is that we find
Wi-Fi can provide both exteroceptive and proprioceptive measure-
ments of the drone’s absolute pose and relative motion, respectively.
These two distinct measurements can be integrated to achieve com-
plementary benefits.

Specifically, in Wi-Drone, to improve the Wi-Fi-based track-
ing dimensions, we propose the method of rigid-body coordinate
transformation and further derive two 6-DoF tracking algorithms:
single-link pose reconstruction algorithm for the exteroceptive pose
estimation module, and spatial dimension expansion algorithm for
the proprioceptive motion tracking module. To push the limit of
Wi-Fi tracking accuracy, the spatio-temporal phase sanitization al-
gorithm is proposed to reconstruct the accurate phase information
by digging deeper into different noise characteristics. Furthermore,
we design a joint optimization and fusion framework to fuse the two
modules in a tight-coupling manner to ensure tracking accuracy
over both short and long trajectories.

We fully design and implement Wi-Drone platform on an indus-
trial drone with commercial Wi-Fi network interface cards (NIC)
and further integrate it with ArduPilot [1], one of the most widely
used drone flight control systems. We also evaluate Wi-Drone’s
6-DoF pose tracking capability on various 3D trajectories with di-
verse rotation angles, pose transfer speeds, and path lengths. We
also compare Wi-Drone with an existing on-drone-deployed 6-DoF
tracking solution VINS-Mono [29], as well as state-of-the-art Wi-Fi-
based localization and tracking systems including mD-Track [45],
SpotFi [18], RIM [43], and MonoLoco [35]. The evaluation results
show that Wi-Drone achieves an average location accuracy of 26.1
cm and a rotation accuracy of 3.8◦, which is comparable to the
visual-inertial-based solution VINS-Mono, showing its capability to
serve as a part of the drone flight control system. The location track-
ing accuracy of Wi-Drone exceeds mD-Track and SpotFi by > 40%,
and its azimuth tracking accuracy exceeds RIM and MonoLoco
by > 45%, demonstratingWi-Drone’s superiority compared with
existing Wi-Fi-based systems.

In summary, our contributions are as follows:

• We propose Wi-Drone, as far as we are aware, the first Wi-Fi-
standalone 6-DoF device tracking system.Wi-Drone’s superior
performance allows it to be used for drone flight control and

other 6-DoF-pose-driven tasks, with any number of APs. Com-
paredwith existing approaches,Wi-Drone’sWi-Fi-based tracking
solution has its unique advantages mentioned above and will
empower a variety of drone-based applications.

• Wi-Drone fully exploits Wi-Fi signals to build up both extero-
ceptive and proprioceptive measurements of moving devices and
fuse them to achieve their complementary benefits. As a result,
Wi-Drone achieves a standing out performance in typical oper-
ating scenarios for indoor drones with 3D, long-distance, and
real-time requirements.

• We fully implement the Wi-Drone on an industrial drone by
integrating our design with the ArduPilot flight control system.
As aWi-Fi standalone tracking solution,Wi-Drone’s performance
is comparable to that of the visual-inertial 6-DoF tracking ones.
Our solution, in all or in part, can be directly migrated to a variety
of Wi-Fi-ready devices, such as smartphones, tablets, and robots.
In addition, some implementation techniques are essential not
only for our system but also for the community to build up real-
world Wi-Fi sensing applications.

2 OVERVIEW
2.1 Problem Statement
We first briefly introduce the problem of tracking a device’s 6-DoF
pose, including both the 3D location (𝑙𝑥 , 𝑙𝑦, 𝑙𝑧) and the 3D orienta-
tion (𝜃Pitch, 𝜃Yaw, 𝜃Roll). As shown in the left part of Fig. 1 (with a
detailed annotation in Fig. 2), there are two reference (a.k.a., coor-
dinate) systems in Wi-Drone: the Drone reference D and the Wi-Fi
Access Point (AP) reference A. Since Wi-Fi APs are typically de-
ployed in specific locations with fixed orientations in buildings,
the absolute 6-DoF pose 𝒙𝑖 of the drone at each timestamp 𝑖 can
be treated as the transformation from reference system D to A (i.e.,
a combination of the rotation matrix 𝑹𝑖AD and translation vector
𝒕𝑖AD). Note that {𝑹AD, 𝒕AD} and

{
𝑙𝑥 , 𝑙𝑦, 𝑙𝑧 , 𝜃Pitch, 𝜃Yaw, 𝜃Roll

}
are equiv-

alent in representing the drone’s 6-DoF pose, and they could be
inter-converted by the the Rodrigues’ formula [31]. The former
representation is adopted in the rest of our paper as it is widely
used in drone flight control systems. Specifically,Wi-Drone takes
time-series wireless signal H =

{
𝑯 𝑖,𝑘 | 𝑖 ∈ T , 𝑘 ∈ S

}
from the

antenna array S during a certain period of time T as input, and
then derives the drone’s real-time pose 𝒙𝑖 =

{
𝑹𝑖AD, 𝒕

𝑖
AD

}
.

2.2 Wi-Drone Overview
From the top perspective, we design and implement a platform,
namely Wi-Drone, which merely resorts to the ubiquitous Wi-Fi
signal for indoor light-weight yet accurate pose tracking. The ar-
chitecture of Wi-Drone is illustrated in Fig. 1. As seen,Wi-Drone
consists of three key components: an Exteroceptive Pose Estimation
(EPE) module (§3), a Proprioceptive Motion Tracking module (§4),
and a Joint Optimization and Fusion (JOF) module (§5).

InWi-Drone, both the EPE and PMT extract the channel state
information (CSI) from every received Wi-Fi packet as the module
input. However, the underlying philosophy of these two modules
and their ways to use CSI are significantly distinct. Specifically,
the EPE module treats CSI data as exteroceptive measurements,
which means it takes the AP as the anchor, and thus is free of
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Figure 1: System architecture of Wi-Drone.

cumulative drifts. The EPE module estimates the drone’s absolute
pose by observing the geometric channel parameters (e.g., angle of
arrival, time of flight) between the drone and the AP. In EPE, the
single-link pose reconstruction algorithm is proposed to establish
the relationship between the drone’s pose and wireless channel
parameters.

In contrast, the PMT module leverages the CSI phase as proprio-
ceptive measurements, which means it infers the drone’s relative
motion change in a finer granularity by perceiving the temporal
difference of the received CSI phase. The PMTmodule first sanitizes
the CSI phase and analyzes the phase differences among diverse
signal propagation paths and each packet. Further, our proposed
spatial dimension expansion algorithm is performed to bridge the
gap between 1D CSI phase difference and 6D drone’s pose change
by leveraging these phase differences among multiple antennas.

Finally, the graph-based JOF framework takes the above drone’s
exteroceptive absolute pose and proprioceptive relative motion as in-
put and outputs an optimized drone’s 6-DoF pose by maximum
a posterior (MAP) estimation, which guarantees the fused 6-DoF
trajectory is accurate enough while avoiding cumulative drift. It’s
worth mentioning that the factor nodes in JOF are elaborately de-
signed to make them associate with the EPE and PMT.

3 EXTEROCEPTIVE POSE ESTIMATION
In this section, we introduce the proposed Exteroceptive Pose Esti-
mation (EPE) module. The EPE module first estimates multipath
parameters and then selects the parameters from the direct path
to reconstruct the relative pose between the AP reference A (can
also be treated as the world coordinate system in our work) and the
drone reference D based on a novel Single-link Pose Reconstruction
algorithm. EPE treats Wi-Fi as an exteroceptive sensor and hence
provides absolute location and orientation of the drone.

3.1 Multipath Parameter Estimation
The basic idea of resolving multipath is parameter estimation. We
first consider a general CSI measurement of the 𝑖-th packet, the

𝑗-th subcarrier and the 𝑘-th antenna:

𝐻 (𝑖, 𝑗, 𝑘) =
𝐿∑︁
𝑙=1

𝛼𝑙𝑒
−𝑗𝜙𝑙 (𝑖, 𝑗,𝑘) + 𝑁 (𝑖, 𝑗, 𝑘), (1)

where 𝐿 is the total number of multipaths, 𝛼𝑙 and 𝜙𝑙 represent the
attenuation factor and phase of the 𝑙-th propagation path, and 𝑁 is
the additive white Gaussian noise (AWGN). The phase of the 𝑙-th
path in Eqn. 1 can be written as:

𝜙𝑙 (𝑖, 𝑗, 𝑘) = 2𝜋 (𝑓𝑐 + Δ𝑓𝑗 ) (𝜏𝑙 + (𝚫𝒔𝑘 · 𝒏𝑙 )/𝑐), (2)

where 𝑓𝑐 is the carrier frequency, Δ𝑓𝑗 is the subcarrier frequency
offset, 𝚫𝒔𝑘 is the spatial difference between antenna 𝑘 and the
reference antenna, and 𝑐 is the speed of light. 𝜏𝑙 and 𝒏𝑙 represent
the time-of-flight (ToF) and the unit direction vector of the angle
of arrival (AoA) of the 𝑙-th path respectively. To resolve the path
parameters 𝜽 𝑙 = (𝛼𝑙 , 𝜏𝑙 , 𝒏𝑙 ) of each path, a maximum likelihood
estimator is introduced. Denote 𝒎 = (𝑖, 𝑗, 𝑘), the log-likelihood
function of 𝚯 = (𝜽 )𝐿

𝑙=1 is:

L (𝚯 | 𝐻 (𝒎)) = −
∑︁
𝒎

∥𝐻 (𝒎) −
𝐿∑︁
𝑙=1

𝑃𝑙 (𝒎, 𝜽 𝑙 )∥22, (3)

where 𝑃𝑙 denote the CSI of the 𝑙-th path with path parameters 𝜽 𝑙 .
Therefore, the parameter estimation task is transformed into the
following form:

�̂� = argmax
𝚯

L(𝚯 | 𝐻 (𝒎)), (4)

where all the path parameters are estimated based on the iterative
parameter refinement algorithm [45].

Specifically, with the number of paths 𝐿 to be determined, the
following steps are performed: 1) we first treat all the signal except
the strongest 𝑃1 (𝒎, 𝜽 1) as noise, and then only estimate the first
path parameter 𝜽 1; 2) from the residual 𝑟1 = 𝐻 (𝒎) −𝑃1 (𝒎, 𝜽 1), the
𝜽 2 path parameters can be estimated; 3) the iteration continues until
the power of residual 𝑟𝐿 is lower than the level of noise 𝑵 , and the
residual is treated as the updated noise𝑵 ′ = 𝑟𝐿 . Once the number of
paths 𝐿 is determined, the refinement process begins: 1) the pseudo
CSI corresponding to each path 𝑙 is reconstructed as 𝑃𝑙 + 𝑵 ′; 2) the
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Figure 2: Illustration of the Single-link Pose Reconstruction
algorithm. EPE leverages the AoA vector 𝒏 and the distance 𝑑 of
the direct path measured by both AP and drone.

system re-estimates the each path parameter 𝜽 ′
𝑙
, and update the

residual and noise as𝑵 ′′ = 𝑟 ′
𝐿
= 𝐻 (𝒎)−𝑃 ′1 (𝒎, 𝜽

′
1)−· · ·−𝑃

′
𝐿
(𝒎, 𝜽 ′

𝐿
);

3) the above iterations continues until convergence, i.e., each path
parameter 𝜽 𝑙 doesn’t change anymore. To accelerate the estimation
process, the generalized expectation maximization algorithm [14]
are adopted.

The above parameter estimation process can be considered as
an over-determined optimization problem. In Eqn. 4, the unknown
path parameters 𝚯 contains 5𝐿 unknown dimensions, since each
path parameter 𝜽 𝑙 consists of a 2D complex attenuation 𝛼𝑙 , a 1D
ToF, and a 2D AoA vector. In contrast, the dimension of each CSI
measurement 𝐻 (𝒎) is generally much higher.

3.2 Single-link Pose Reconstruction
The key insight of Single-link Pose Reconstruction is to leverage the
direct path parameter (i.e., the 𝜽 𝑙 with the largest |𝛼𝑙 |) on both sides
of the AP and the drone to derive the coordinate transformation
between drone reference D and AP reference A.

As shown in Fig. 2, denote the ToF measured by the AP and the
drone as 𝜏A and 𝜏D, and the unit direction vector of AoA as 𝒏A and
𝒏D. According to the principle of 3D coordinate transformation, the
following relations are established:{

𝑹AD𝒏D = −𝒏A,

𝒕AD = 𝑐𝜏D𝒏D = −𝑐𝜏A𝑹T
AD𝒏A,

(5)

where 𝑹AD indicates the orientation difference between AP and
drone, and 𝒕AD refers to the location difference. The intuition behind
Eqn. 5 is two-fold: 1) by performing a rotation transformation, the
orientation of two reference systems should be aligned, which
means the AoA direction vector observed by the AP and the drone
should be exactly the opposite; 2) the relative location difference
between the two coordinates can be jointly determined by the ToF
and the AoA.

To solve the rotation 𝑹AD, we have the following equations:

�̂�AD = argmin
𝑹AD

∥𝑹AD𝒏D + 𝒏A∥22

= argmin
𝑹AD

(
𝒏TD𝑹

T
AD𝑹AD𝒏D + 2𝒏TA𝑹AD𝒏D + 𝒏TA𝒏A

)
= argmin

𝑹AD

𝒏TA𝑹AD𝒏D,

(6)

which can be solved by singular value decomposition (SVD) [2]:

�̂�AD = 𝑽𝚺𝑼 T, 𝑼𝚺𝑽T = 𝒏D𝒏
T
A . (7)

As for the translation 𝒕AD, we have:

𝒕AD = 𝑐 (𝜏D + 𝜏A)𝒏D/2. (8)

By performing the aforementioned steps, the drone’s pose real-
time pose �̂�AD =

{
�̂�AD, 𝒕AD

}
can be estimated from the direct path

parameter of each CSI measurement.

4 PROPRIOCEPTIVE MOTION TRACKING
Distinguished from EPE which estimates the drone’s absolute yet
rough pose, PMT exploits CSI phase samples as proprioceptive mea-
surements to track the drone’s relative motion. Compared with ToF
and AoA that are used in EPE, the CSI phase is more competent to
track the tiny movements of objects with centimeter-level or even
millimeter-level accuracy. In this section, we present the design of
PMT, especially how to derive the drone’s instant 6-DoF motion in
3D space from the merely 1D CSI phase.

4.1 Spatio-temporal Phase Sanitization
Due to the imperfect NIC hardware design, various types of errors
are introduced into CSI measurement. For errors varying across
each packet (e.g., packet boundary detection (PBD) error, sampling
frequency offset (SFO), and carrier frequency offset (CFO)), there
is a need for novel phase sanitization algorithms [44]. Consider
an erroneous version of CSI phase received by antenna 𝑘 with a
propagation path 𝑙 , which suffers from both the frequency offset
𝜖𝑓 caused by CFO and the timing offset 𝜖𝑡 caused by PBD and SFO:

𝜙𝑙
𝑘
= 2𝜋 (𝑓𝑐 + Δ𝑓𝑗 + 𝜖𝑓 ) (𝜏𝑙𝑘 + 𝜖𝑡 ) . (9)

To recover the accurate phase from disturbed CSI, the PMT module
performs the following three steps.

Spatial correlation. Our key observation is, though varying
across different packets, 𝜖𝑓 and 𝜖𝑡 are spatial-invariant, which
means given one packet, these errors keep stationary across differ-
ent propagation paths [18]. Therefore, PMT first extracts the CSI
𝑯𝑘 of each antenna 𝑘 , and then calculates the spatial correlation
term 𝑪𝑘 by conjugate multiplication, which can be written into the
following form:

𝑪𝑘 =𝑯𝑘𝑯
∗
𝑘
=
©«𝑯LoS

𝑘
+

∑︁
𝑙 ∈L𝑁

𝑯 𝑙
𝑘

ª®¬ ©«𝑯LoS∗
𝑘

+
∑︁
𝑙 ∈L𝑁

𝑯 𝑙∗
𝑘

ª®¬
= 𝑯LoS

𝑘
𝑯LoS∗
𝑘︸        ︷︷        ︸

semi-static term 𝑪𝑆
𝑘

+
∑︁
𝑙 ∈L𝑁

𝑯 𝑙
𝑘

∑︁
𝑙 ∈L𝑁

𝑯 𝑙∗
𝑘︸                  ︷︷                  ︸

higher order minima 𝑪𝑂
𝑘

+ 𝑯LoS
𝑘

∑︁
𝑙 ∈L𝑁

𝑯 𝑙∗
𝑘
+ 𝑯LoS∗

𝑘

∑︁
𝑙 ∈L𝑁

𝑯 𝑙
𝑘︸                                       ︷︷                                       ︸

dynamic term 𝑪𝐷
𝑘

,

(10)

where the L𝑁 denotes the NLoS paths (i.e., non-direct paths) col-
lection. As seen, each 𝑪𝑘 consists of three terms: the semi-static
term 𝑪𝑆

𝑘
, the dynamic term 𝑪𝐷

𝑘
, and the higher order minima 𝑪𝑂

𝑘
.
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Figure 3: A step-by-step illustration of the Spatial Dimension Expansion algorithm. (a) The phase difference encountered by each
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translations of antennas together, the 6-DoF motion of the drone can be resolved using the rigid-body constraint among multiple antennas.

Figure 4: Time-frequency analysis of 𝑪𝑘 .

The dynamic term can be presented as follows:

𝑪𝐷
𝑘

=
∑︁
𝑙 ∈L𝑁

(
𝛼LoS
𝑘

𝛼𝑙∗
𝑘
𝑒 𝑗Δ𝜙

𝑙
𝑘 + 𝛼LoS∗

𝑘
𝛼𝑙
𝑘
𝑒−𝑗Δ𝜙

𝑙
𝑘

)
, (11)

where Δ𝜙𝑙
𝑘
indicates the phase difference between the LoS path

(i.e., the direct path) and the NLoS path 𝑙 and can be written as:

Δ𝜙𝑙
𝑘
= 2𝜋 (𝑓𝑐 + Δ𝑓𝑗 + 𝜖𝑓 ) (𝜏𝑙𝑘 − 𝜏

LoS
𝑘

), (12)
where the timing offset 𝜖𝑡 has been eliminated.

Temporal analysis. The remaining problem is how to separate
the dynamic term 𝑪𝐷

𝑘
from 𝑪𝑘 in Eqn. 10. Our key insight is to lever-

age the temporal relationship across the CSI packets. Specifically,
as the drone moves: 1) the semi-static term 𝑪𝑆

𝑘
reflects the attenua-

tion changes over a short period, which is nearly constant, since
centimeter-level distance change doesn’t cause any obvious signal
strength fluctuation; 2) the dynamic term 𝑪𝐷

𝑘
changes dramati-

cally since even a centimeter-level slight motion incurs a periodical
change in CSI phase in Eqn. 12; 3) the high-order term 𝑪𝑂

𝑘
can be

omitted since the reflected signals from the non-direct path are
orders weaker than the LoS signal [28]. Therefore, as shown in
Fig. 4, after performing the time-frequency analysis on a series of
𝑪𝑘 , a high-pass filter can be used to separate the dynamic term
series.

Spectral fitting.With both the spatial correlation and the tempo-
ral analysis mentioned above, the timing offset 𝜖𝑡 can be eliminated,

leaving the frequency offset 𝜖𝑓 to be dealt with. To reconstruct ac-
curate CSI phase, the phase in Eqn. 12 is treated as a linear function
of Δ𝑓𝑗 across all subcarriers, and both the common phase slope
𝛽𝑙
𝑘
= 𝜏𝑙

𝑘
−𝜏LoS

𝑘
across the subcarriers and the corresponding overall

attenuation 𝜂𝑙
𝑘
= 𝛼LoS

𝑘
𝛼𝑙∗
𝑘

are jointly estimated [35]:{
𝛽𝑙
𝑘
, 𝜂𝑙
𝑘

}
= argmin

𝛽𝑙
𝑘
,𝜂𝑙
𝑘

©«𝑪𝐷𝑘 −
∑︁
𝑙 ∈L𝑁

(
𝜂𝑙
𝑘
𝑒 𝑗Δ𝜙

𝑙
𝑘 + 𝜂𝑙∗

𝑘
𝑒−𝑗Δ𝜙

𝑙
𝑘

)ª®¬ ,
Δ𝜙𝑙

𝑘
= 2𝜋 (𝑓𝑐 + Δ𝑓𝑗 + 𝜖𝑓 )𝛽𝑙𝑘 ,

(13)

and the phase could be reconstructed as:

Δ𝜙𝑙
𝑘
= 2𝜋 (𝑓𝑐 + Δ𝑓𝑗 )𝛽𝑘

𝑙
, (14)

So far, both 𝜖𝑓 and 𝜖𝑡 are eliminated, leaving the sanitized phase
Δ𝜙𝑙

𝑘
in Eqn. 14, which indicates the phase difference between the

NLoS path 𝑙 and the LoS path.

4.2 Spatial Dimension Expansion
To infer the drone’s 6-DoF relative pose from the 1D sanitized phase,
PMT performs Spatial Dimension Expansion algorithm.

For ease of notion, we first consider the geometric meaning
of the CSI phase. As shown in Fig. 3a, the phase difference Δ𝜙
between two consecutive packets reveals the radial distance change
Δ𝑑 =

Δ𝜙
2𝜋 𝜆, where the 𝜆 indicates the wavelength of the radio signal.

However, the distance change is only of one dimension. Therefore,
the spatial dimension expansion algorithm is proposed to bridge
the dimensional gap in two steps: 1) bridge the gap between 1D
distance change and 3D location change based on multipath, and 2)
bridge the gap between 3D location change and 6D pose change
based on multiple antennas.

From 1D distance to 3D location. The PMT module leverages
the sanitized phase in Eqn. 14 to derive the 3D location change. For
the 𝑖-th packet, suppose there are 𝐿 NLoS paths and one LoS path, ag-

gregate the sanitized phase in Eqn. 14 as𝚫�̂�𝑖,𝑘 =

(
Δ𝜙1

𝑖,𝑘
, · · · ,Δ𝜙𝐿

𝑖,𝑘

)T
,
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which refers to the phase difference between all 𝐿 NLoS paths
and the LoS path. Correspondingly, subtract the direction vector
of the LoS path 𝒏0 from the direction vector of 𝐿 NLoS paths to

get 𝑵 𝑖 =

(
𝒏1
𝑖
− 𝒏0

𝑖
, · · · , 𝒏𝐿

𝑖
− 𝒏0

𝑖

)T
. Thus, we have the following

approximate relationship between the phase change and the 3D
location change 𝚫𝒅𝑖,𝑘 = 𝒅𝑖,𝑘 − 𝒅𝑖−1,𝑘 :

𝚫�̂�𝑖,𝑘 − 𝚫�̂�𝑖−1,𝑘 = 2𝜋
𝑵 𝑖𝚫𝒅𝑖,𝑘

𝜆
, (15)

which indicates that the phase change on each propagation path
is induced by the projection of the drone’s 3D location change on
each corresponding direction, as shown in Fig. 3b.

From 3D location to 6D pose. To derive the drone’s relative
rotation and translation, our key insights are as follows:
• As the drone rotates, different antennas may experience distinc-
tive location changes, as shown in Fig. 3c.

• Multiple antennas on the drone are rigidly attached. Therefore,
PMT infers macroscopic pose change from the microscopic mo-
tion of each antenna based on rigid body kinematics [50].

Denote location changes of antennas as 𝚫𝑫𝑖 =
(
𝚫𝒅𝑖,1, · · · ,𝚫𝒅𝑖,𝐾

)
.

With preknown antenna arrangement 𝛀 = (𝝎1, · · · ,𝝎𝐾 ), the equa-
tion below can be derived:

𝚫𝑫𝑖 = (𝚫𝑹𝑖𝛀 + 𝚫𝒕𝑖 ) − 𝛀, (16)

indicating the location change of each antenna is induced by an
overall rotation and translation of the array.

So far, the basic ideas of the spatial dimension expansion al-
gorithm have been illustrated. To infer the relative 6-DoF pose
change of the drone, we gather all sanitized phase of 𝐿 NLoS path
and 𝐾 antennas into an 𝐿 × 𝐾 matrix 𝚫𝚽𝑖 =

(
𝚫�̂�𝑖,1, · · · ,𝚫�̂�𝑖,𝐾

)
,

and define 𝚫2
𝚽𝑖 = 𝚫𝚽𝑖 − 𝚫𝚽𝑖−1 as the phase difference between

packet 𝑖 and 𝑖 − 1. By combining Eqn. 15 and Eqn. 16, the relative
pose 𝚫𝒙𝑖 = {𝚫𝑹𝑖 ,𝚫𝒕𝑖 }, which indicates the relative rotation and
translation between packet 𝑖 and 𝑖 − 1 can be solved as follows:

𝚫�̂�𝑖 = argmin
{𝚫𝑹𝑖 ,𝚫𝒕𝑖 }

2𝜋𝑵 𝑖 ((𝚫𝑹𝑖 − 𝑰 ) 𝛀 + 𝚫𝒕𝑖 )
𝜆

− 𝚫
2
𝚽𝑖

2
2
. (17)

5 JOINT OPTIMIZATION AND FUSION
So far, two independent 6-DoF tracking modules have been de-
rived. However, EPE and PMT suffer from severe pose tracking bias
due to the limited ToF resolutions, and cumulative drift, respec-
tively, as depicted in Fig. 5. To further push the limit of Wi-Fi-based
pose tracking accuracy, we introduce a factor-graph-based joint
optimization and fusion (JOF) module to fuse the EPE and PMT
module. As mentioned above, the rationale behind the sufficient
fusion is that EPE and PMT leverage two distinct wireless features
and treat CSI samples as exteroceptive and proprioceptive measure-
ments, respectively. Consequently, the two modules benefit from
their individual yet complementary advantages, and hence a joint
optimization of them would boost the overall performance, getting
a 6-DoF trajectory with both low bias and low cumulative drift.

As illustrated in Fig. 6, JOF includes both short-term (inter-frame
tracking, Fig. 6a) and long-term (local pose tracking, Fig. 6b) op-
timizations that work hand in hand to improve the pose tracking

Proprioceptive Motion 
Tracking Bias

Joint Pose 
Optimization

Figure 5: Illustration of EPE, PMT, and JOF. JOF jointly opti-
mizes the EPE and PMT module to fuse their derived 6-DoF poses,
which overcomes the drawbacks of each module and reports the
drone’s accurate trajectory.

performance continuously. Besides EPE and PMT, JOF also inte-
grates prior knowledge such as drone flight characteristics (e.g., the
continuity of the velocity) to optimize a more smooth and accurate
trajectory.

5.1 Factor Graph
A factor graph consists of two types of nodes: the variable nodes
which indicate the states to be optimized (e.g., 𝒙𝑖 ), and the factor
nodes which represent the probability of certain states given a
measurement result. In Wi-Drone, these measurements come from
the EPE module 1 (denoted as 𝒗𝑖 ) and PMT module (denoted as
𝚫
2
𝚽𝑖 ).
In order to estimate the values of a certain set of variable nodes

X = {𝒙𝑖 |𝑖 ∈ T } given all relevantmeasurementsZ = {𝚫2
𝚽𝑖 , 𝒗𝒊 |𝑖 ∈

T }, Wi-Drone optimizes all the factor nodes connected with them
based on maximum a posteriori (MAP) estimation:

X̂ = argmax
X

𝑝 (X|Z) = argmax
X

𝑝 (X)𝑝 (Z|X)

= argmax
X

𝑝 (X)
∏
𝑖∈T

𝑝 (𝚫2
𝚽𝑖 |𝒙𝑖 )𝑝 (𝒗𝑖 |𝒙𝑖 ),

(18)

where the 𝑝 (𝒗𝑖 |𝒙𝑖 ) and 𝑝 (𝚫2
𝚽𝑖 |𝒙𝑖 ) are the likelihood of the EPE

and PMT measurements respectively, and 𝑝 (X) is the prior infor-
mation of trajectory, which can be inferred from the drone flight
characteristics.

5.2 Probabilistic Representation
To infer the drone’s 6-DoF pose based on MAP, both the prior term
and the likelihood term in Eqn. 18 are needed.

Prior term. The prior term 𝑝 (𝒙𝑖 ) indicates the probability dis-
tribution of the drone’s location and orientation at time 𝑖 without
knowing any measurement result. Based on the kinetic character-
istics of the drone, the constant velocity model, which has been
widely used in both flight control [40] and poses estimation [25], is
adopted to derive the prior term. Specifically, the drone is assumed
to move and rotate at an approximately constant speed during a
1Denote the direct path parameters in EPE module as 𝒗 = {𝒏A,𝒏D, 𝜏A, 𝜏D }.
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Figure 6: Long-short term optimization based on the factor graph.

short period of time. On this basis, the prior pose 𝒙𝑖 = {𝑹𝑖 , 𝒕𝑖 } can
be inferred from the following equations:

𝑹𝑖 = 𝑹𝑖−1 (𝑹𝑖−2)T𝑹𝑖−1, 𝒕𝑖 = 2𝒕𝑖−1 − 𝒕𝑖−2 . (19)

Suppose the prediction error follows a zero-mean Gaussian distri-
bution, we have 𝑝 (𝒙𝑖 |𝒙𝑖−1, 𝒙𝑖−2) ∼ N (𝒙𝑖 ,𝝈𝒙 ), where the 𝝈𝒙 is an
empirical value set according to the flying mode of drone.

EPE likelihood. The likelihood of the EPE module 𝑝 (𝒗𝑖 |𝒙𝑖 )
indicates the distribution of the measured ToF and AoA at a given
pose. According to Eqn. 5, the following relationship can be derived:

𝒏A = −𝒕AD/∥𝒕AD∥2, 𝒏D = 𝑹T
AD𝒕AD/∥𝑹

T
AD𝒕AD∥2,

𝜏A = 𝜏D = ∥𝒕AD∥2/𝑐.
(20)

Similar as most existing wireless tracking systems,Wi-Drone as-
sume the measured AoA and ToF suffers from a Gaussian noise:

𝑝 (𝒏A |𝒙𝑖 ) ∼ N (𝒏A,𝝈AoA), 𝑝 (𝒏D |𝒙𝑖 ) ∼ N (𝒏D,𝝈AoA),
𝑝 (𝜏A |𝒙𝑖 ) ∼ N (𝜏A,𝝈ToF), 𝑝 (𝜏D |𝒙𝑖 ) ∼ N (𝜏D,𝝈ToF),

(21)

where the 𝝈AoA and 𝝈ToF are the standard deviation of AoA and
ToF measurements respectively.

PMT likelihood. The likelihood of the PMTmodule 𝑝 (𝚫2
𝚽𝑖 |𝒙𝑖 )

indicates the distribution of the measured phase difference at a
given pose. According to Eqn. 17, the following relationship can be
derived:

𝚫
2
𝚽𝑖 = 2𝜋𝑵 ((𝚫𝑹𝑖 − 𝑰 ) 𝛀 + 𝚫𝒕𝑖 ) /𝜆, (22)

where𝚫𝑹𝑖 = 𝑹𝑖 (𝑹𝑖−1)T, and𝚫𝒕𝑖 = 𝒕𝑖−𝑹𝑖 (𝑹𝑖−1)T𝒕𝑖−1. Suppose the
CSI phase noise follows a Gaussian distribution of 𝑝 (𝚫2

𝚽𝑖 |𝒙𝑖 ) ∼
N

(
𝚫
2
𝚽𝑖 ,𝝈𝚽

)
, where 𝝈

𝚽
denotes the standard deviation of the

phase.

5.3 Fusion-based Tracking
As shown in Fig. 6, two types of fusion schemes are adopted in
Wi-Drone. Specifically, the inter-frame tracking infers the drone’s
instant 6-DoF pose in real-time. In contrast, the local pose tracking
focuses on the overall accuracy of the flight trajectory over a period
of time.

Inter-frame tracking. As shown in Fig. 6a, once a new Wi-Fi
packet 𝑖 arrives, the prior factor, the EPE factor and the PMT factor

are formulated as follows:

𝑬
prior
𝑖

= − log 𝑝 (𝒙𝑖 ) ∝ ∥𝒙𝑖 − 𝒙𝑖 ∥2𝝈𝒙
,

𝑬EPE
𝑖 = − log𝑝 (𝒏A, 𝒏D,𝝉A,𝝉D |𝒙𝑖 )

∝ ∥𝒏A − 𝒏A∥2𝝈AoA + ∥𝒏D − 𝒏D∥2𝝈AoA

+ ∥𝜏A − 𝜏A∥2𝝈ToF + ∥𝜏D − 𝜏D∥2𝝈ToF ,

𝑬PMT
𝑖 = − log𝑝 (𝚫2

𝚽𝑖 |𝒙𝑖 ) ∝ ∥𝚫2
𝚽𝑖 − 𝚫

2
𝚽𝑖 ∥2𝝈𝚽

.

(23)

On this basis, the inter-frame optimization is performed to give an
instant pose tracking result. According to Eqn. 18:

�̂�𝑖 = argmax
𝒙𝑖

𝑝 (𝒙𝑖 |𝒙𝑖−1, 𝒙𝑖−2)𝑝 (𝚫2
𝚽𝑖 |𝒙𝑖 )𝑝 (𝒗𝑖 |𝒙𝑖 )

= argmin
𝒙𝑖

− log
(
𝑝 (𝒙𝑖 |𝒙𝑖−1, 𝒙𝑖−2)𝑝 (𝚫2

𝚽𝑖 |𝒙𝑖 )𝑝 (𝒗𝑖 |𝒙𝑖 )
)

= argmin
𝒙𝑖

(
𝑬
prior
𝑖

+ 𝑬EPE
𝑖 + 𝑬PMT

𝑖

)
.

(24)

Local pose tracking. For every few seconds, the local pose
tracking is triggered to correct the cumulative drift. As shown
in Fig. 6b, local pose tracking takes all frames based on a sliding
window, and jointly optimizes their poses:

X̂ = argmax
X

𝑝 (X)
∏
𝑖∈T

𝑝 (𝚫2
𝚽𝑖 |𝒙𝑖 )𝑝 (𝒗𝑖 |𝒙𝑖 )

= argmin
X

∑︁
𝑖∈T

(
𝑬
prior
𝑖

+ 𝑬EPE
𝑖 + 𝑬PMT

𝑖

)
.

(25)

Loop detection and global optimization.To correct the drone’s
trajectory during the flight, we exploit the locations it has visited
before as constraints for long-term cumulative error elimination.
To detect the loop, we adopt the time-reversal resonating strength
(TRRS) proposed in [43] as a loop closure index, indicating the simi-
larity between the current CSI measurement 𝑯 𝑖 and a previous one
𝑯 𝑖−𝑇 . A TRRS higher than the threshold (set to 0.7 in our imple-
mentation) indicates the existence of a closed loop, and the global
optimization is performed. The global optimization is a special case
of local pose tracking, where all the frames between 𝑖 −𝑇 and 𝑖 are
optimized, under a constraint that 𝒙𝑖−𝑇 = 𝒙𝑖 .
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6 PLATFORM IMPLEMENTATION
As shown in Fig. 7, we implement Wi-Drone using commercial Wi-
Fi NIC AR9580 operating in 5.8 GHz with 40 MHz bandwidth. To
realize multi-NIC integration, all the NICs are set on a Pericom PCI-
E extension card attached to an Intel NUCwith Core i7-1165G7 CPU
and 8GB RAM.Wi-Drone is integrated with ArduPilot [1], a widely-
used open source drone flight control framework. The output 6-DoF
poses are streamed to the ArduPilot Mega (APM) controller through
a Micro-USB port, making real-time flight control available. The
main part of Wi-Drone runs on Unbuntu 20.04 LTS. The NICs
are driven by the PicoScenes [17]. All algorithms in Wi-Drone
are implemented by MATLAB/C++ hybrid programming. Several
implementation techniques are introduced to make our system
practical and push the limit of tracking accuracy.

6.1 Flight Controller Integration
It takes a lot of effort to integrate Wi-Drone with ArduPilot. To
realize the data transmission from the Intel NUC to the APM flight
controller, we dive into the transmission protocol used by ArduPilot
called MAVLink and implement a communication middleware to
forward the 6-DoF pose to APM in real-time. To evaluate the flight
control performance of Wi-Drone, both the GPS module and IMU
module of the controller are manually disabled. The workflow of
the controller is also modified based on our system flow design,
and the corresponding flight control firmware is also recompiled
and burned in the APM controller.

6.2 NIC Calibration
Most commercial NICs suffer from imperfect hardware implemen-
tations. Therefore, they generally need to be before performing
wireless sensing tasks.

Radio chain phase offset. The signals transmitted or received
by different antennas experience different phase offsets, which
incurs inaccurate AoA measurements [46]. Such offset is constant
across different packets and frequency bands. Therefore, we connect
each transmitter (Tx) and receiver (Rx) via coaxial cable in turn,
and then record the phase offset of each Tx-Rx pair. The recorded
offsets are canceled from the raw CSI before any processing steps.

Amplitude and phase nonlinearity. Due to non-ideal ana-
logue filter design, both the CSI amplitude and phase suffer from
nonlinear error, and it has been proved that such nonlinearity is
constant for one specific NIC [44]. Our basic idea is to connect the
Tx and Rx with coaxial cables to record the nonlinear pattern, and
then subtract the pattern from the measured CSI amplitude and
phase respectively.

6.3 Push the Limit of Tracking Accuracy
The following techniques are used in our implementation to fully
unleash the potential of Wi-Drone.

Antenna array setup. As shown in Fig. 7, 12 antennas on 4
NICs forms into a 3 × 4 square-shaped array. To improve the ac-
curacy of AoA measurement, the arrangement of each antenna is
carefully designed. As the previous research [41] points out, for
AoA measurement, there’s a trade-off between improving accu-
racy and removing ambiguity: an antenna space larger than 𝜆/2
(half-wavelength) improves the angle resolution, while causing the

Intel NUC

Battery

APM Flight 

Controller

3 × 4 Square 

Antenna Array

4 × AR9580 On 

Extension Card

1080P Camera

Figure 7: Hardware setup of Wi-Drone platform.

ambiguity. Therefore, 2 NICs are designed with an antenna space
𝜆/2 for global search to avoid ambiguity, while the other 2 NICs are
designed with an antenna space 𝜆 responsible for AoA refinement.
By comprehensively using the AoA measurement results from mul-
tiple NICs, the AoA accuracy generally has 3× improvements.

Erroneous packet rejection. Multipath parameter estimation
lies in the vital part of Wi-Drone. Though only taking up a small
portion, those packets in which multipath cannot be resolved cor-
rectly still incur severe drift in practice. Therefore,Wi-Drone adopts
a straightforward yet effective erroneous frame rejection strategy.
Concretely, Wi-Drone assumes that all frames received within a
short time window𝑊𝑇 (set to 20 ms in our implementation) experi-
ence similar multipath conditions. Therefore, Wi-Drone computes
the mean and covariance matrix of all multipath parameters of
these packets within the𝑊𝑇 , and removes the “outliers”.

Multi-AP collaboration.Wi-Drone achieves satisfactory track-
ing accuracy with only one Wi-Fi AP. Nevertheless, since Wi-Fi
APs have been densely deployed in many indoor spaces, we expect
our system perform better in realistic scenarios through multi-AP
collaboration. Specifically, by adding constraints of the APs’ relative
poses and CSI timestamps to Eqn. 24 and Eqn. 25, Wi-Drone lever-
ages CSI data collected from multiple APs, and further improves
tracking accuracy. Since the link quality (e.g., signal strength, LoS
condition) between the drone and APs are different, during the
optimization process, EPE and PMT factors corresponding to each
AP are weighted by the attenuation 𝜂 in Eqn. 13.

Extra spatial stream. According to the 802.11 protocol [3],
multiple consecutive high throughput long training fields (HT-
LTFs) are allowed to be inserted into the physical layer protocol data
unit (PPDU), which means more than one CSI measurement can be
collected from a single packet.Wi-Drone collects 3 independent CSI
measurements from one packet by adding 2 extra spatial streams. By
averaging 3 CSI measurements in the same packet, the background
noise can be eliminated effectively.

7 EVALUATION
7.1 Experimental Methodology
Field studies. As illustrated in Fig. 8, we integrate Wi-Drone into
a drone platform and conduct extensive experiments in an office
building with several typical indoor scenarios. As shown in Fig. 9,
various 3D experimental trajectories are elaborately set with diverse
rotation angles, pose transfer speeds, and path lengths ranging from
5 m to 30 m. Three types of drone rotation modes (i.e., roll, pitch,
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Flying Drone
Wi-Fi AP

OptiTrack Cameras

(a)
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(c)

Figure 8: Experimental setup and scenarios of Wi-Drone. (a) An experimental scenario with satisfactory light and texture
conditions. (b)-(c) A low-light-level scenario and a texture-less scenario from the drone’s perspective.

Figure 9: Floorplan of the experimental scenario with AP
deployment and planned trajectories.

and yaw) are included in the designed trajectories. During the
flight, drastic speed fluctuations are avoided, and the flight speed is
controlled within a given interval.

Ground truth acquisition. Multiple OptiTrack [27] cameras
working at 240 FPS are deployed along the experimental trajectories
to obtain sub-millimeter-level ground truth.

Evaluation metrics. Wi-Drone reports the drone’s 6-DoF pose
(3D location and 3D rotation) in real-time. We compare the reported
pose with the ground truth for all trajectories to calculate the aver-
age location error (a.k.a. Absolute Trajectory Error, ATE) in meters
and the average rotation error in degrees. We also evaluate the
latency for reporting the drone’s instant pose. Moreover, the CPU
workload and RAM usage are recorded as the runtime resource
consumption.

Comparative methods.We compareWi-Drone with several
related systems, which can be divided into three categories:

• Visual-inertial-based pose tracking system,VINS-Mono [29], which
leverages both the monocular camera and IMU for accurate drone
6-DoF pose tracking and has already been embedded in today’s
drone flight control system.

• Wi-Fi-based location tracking solutions,mD-Track [45] and SpotFi
[18], both of which estimate the device’s location based on the
resolved AoA and ToF parameters.

• Wi-Fi-based rotation tracking solutions, RIM [43], which tracks
the device’s rotation in the 2D plane by applyingmultiple antenna
alignment algorithm, andMonoLoco [35], which estimates the
device’s azimuth (a.k.a. the rotation in the 2D plane) based on
the plane geometry.

We first compare Wi-Drone with VINS-Mono to demonstrate its
capability to support indoor drone flight control. Then we compare
Wi-Dronewith the latter two types ofWi-Fi-based tracking systems
to present our system’s superiority in terms of both dimensionality
and accuracy. For VINS-Mono, the video is recorded by a monocular
1080P RGB camera at 60 FPS, and a built-in IMU working at 200 Hz
is leveraged for inertial measurements. Additionally, we provide
VINS-Mono and RIM with accurate initial location and orientation
to transform their relative pose changes into absolute ones.

7.2 Overall Performance
7.2.1 Accuracy Comparison with the On-drone System. We first
compare the 6-DoF pose tracking accuracy of Wi-Dronewith VINS-
Mono, one of the most prevalent 6-DoF tracking solutions that has
been widely adopted for drone flight control. As shown in Fig. 10,
Wi-Drone outperforms VINS-Mono under low-light-level scenarios
(VINS-Mono-LL) and texture-less scenarios (VINS-Mono-TL) and
achieves comparable performance with VINS-Mono under satisfac-
tory light and texture conditions. The average location accuracy
of Wi-Drone is 26.1 cm, which exceeds VINS-Mono-LL by 63.0%
and VINS-Mono-TL by 70.2%. As for the rotation, the average ac-
curacy of Wi-Drone is 3.8◦, outperforming VINS-Mono-LL and
VINS-Mono-TL by 42.7% and 58.9% respectively. Besides, the 95th
percentile accuracy of Wi-Drone outperforms VINS-Mono in all
scenarios, improving location accuracy and rotation accuracy by
17.6% and 12.7%, respectively. The rationale behind the delightful
performance is two-fold: 1) Compared with visual clues, Wi-Fi is
agnostic to either frequent illumination change or insufficient tex-
ture, which are common cases in complex indoor environments. 2)
From the perspective of the proposed tracking algorithm, the EPE
module inWi-Drone leverages AP as the anchor point to provide
the drone with an absolute reference, bounding the tracking bias
within 0.7m. In contrast, visual-inertial odometry inevitably suffers
from severe cumulative drift as the path length increases. In general,
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Figure 10: Accuracy comparison with
VINS-Mono.
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Figure 11: Accuracy comparison with re-
lated Wi-Fi-based solutions.
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Figure 12: Resource consumption with
VINS-Mono.
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Figure 13: Robustness analysis on different practical factors.

compared with existing visual-inertial-based method, Wi-Drone is
a competitive solution for indoor drone pose tracking.

7.2.2 Accuracy Comparison with Wi-Fi-based Solutions. We further
demonstrate the superiority of our system compared to the state-of-
the-art Wi-Fi-based tracking solutions. In this part, we compareWi-
Drone’s location tracking performance with mD-Track and SpotFi
and its azimuth tracking performance with RIM and MonoLoco.
Specifically, we extend mD-Track and SpotFi to 3D space by apply-
ing multiple antennas and then compare their 3D location tracking
results withWi-Drone. Limited by the inherent drawbacks of the
algorithm, RIM and MonoLoco are constrained to the 2D plane,
so we focus on comparing the 2D azimuth tracking performance.
As depicted in Fig. 11, Wi-Drone’s average location accuracy is
26.1 cm, exceeding mD-Track and SpotFi by 40.9% and 59.0% re-
spectively. Besides, Wi-Drone achieves an average 2.1◦ azimuth
tracking accuracy, outperforming RIM and MonoLoco by 49.5% and
66.8%. The results demonstrate thatWi-Drone outperforms existing
Wi-Fi-based tracking solutions in terms of both dimensionality and
accuracy. Being the first Wi-Fi-based work capable of tracking an
object’s 6-DoF pose,Wi-Drone fully exploits the spatial-temporal
CSI to infer the drone’s states and optimize the trajectory, providing
finer-grained pose estimations continuously.

7.2.3 Resource Consumption. Compared with the widely used
visual-inertial 6-DoF tracking method, Wi-Drone takes fewer com-
puting resources and thus is more suitable for devices with limited
hardware on board. As shown in Fig. 12a, the CPU workload for
running Wi-Drone is only 32.8%, outperforming VINS-Mono by
about 40%. Our system also requires less memory, Fig. 12b depicts
thatWi-Drone takes only 100MB memory on average, achieving
more than 3× memory saving compared with VINS-Mono.

7.3 Robustness Analysis
7.3.1 Impact of Flight Speed. To evaluate the robustness of Wi-
Drone against different velocity, we conduct experiments on the
same trajectories with various flight speeds. The flight speed is
divided into three levels corresponding to different types of indoor
drone applications. In Fig. 13a, the slow, medium, and fast indicate
a flight speed of 𝑣 ≤ 2 m/s, 2 < 𝑣 ≤ 3 m/s, and 3 < 𝑣 ≤ 5 m/s
respectively. As shown, at three levels of flight speed, the average
location error is 20.3 cm, 29.2 cm, and 34.9 cm, respectively. Simi-
larly, the corresponding average rotation error is 3.8◦, 3.9◦ and 4.4◦.
Although the accuracy of tracking performance slightly degrades
as the flight speed increases, the tracking performance under a high
flight speed (34.9 cm location accuracy with 4.4◦ rotation accuracy)
still meets the needs of most indoor drone applications.Wi-Drone’s
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Figure 14: Component study.
JOF EKF PF

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ca

tio
n 

Er
ro

r (
m

)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ro
ta

tio
n 

Er
ro

r (
de

gr
ee

)Location Error
Rotation Error

Figure 15: Fusion frameworks.
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outstanding tracking performance at high-speed conditions bene-
fits from its quick response mechanism due to the following facts:
1) the Wi-Fi NICs could transmit and receive up to 1000 packets
per second; 2) the acceleration techniques significantly reduce the
computational complexity of both EPE module and PMT module.

7.3.2 Impact of Path Length. Fig. 13b depicts that as the path length
increases, the location tracking error and the rotation tracking er-
ror gradually converge to an upper bound of about 47 cm and 5.1◦
respectively. There is no significant performance degradation in
both location accuracy and rotation accuracy when the path length
increases from 25 m to 30 m. Such a good long-path tracking perfor-
mance benefits from the advantages of the EPE module and the JOF
module. Specifically, by fusing the result of the EPE module, Wi-
Drone corrects the trajectory in real-time, preventing the location
error from accumulating.

7.3.3 Impact of AP Deployment Density. By changing the number
of APs monitoring the drone via the direct path from 1 to 4, we
evaluate the performance of Wi-Drone with different AP deploy-
ment densities. Fig. 13c shows that as the AP number increases, the
location error and the rotation error gradually converge to 18.7 cm
and 3.1◦ respectively. The result also shows that even with only
one AP,Wi-Drone achieves a satisfactory result of 32.2 cm location
accuracy and 5.2◦ rotation accuracy, which ensures the robustness
of the system being used in real-world scenarios.

7.3.4 Impact of Antenna Number. We further evaluate how the
number of antennas affects the system accuracy. As shown in
Fig. 13d, a larger number of antennas brings a significant accu-
racy improvement. The result shows that, as the antenna number
increases from 3 to 12, the average location error reduces from 102.2
cm to 26.1 cm, and the average rotation error also reduces from 8.4◦
to 3.8◦. The number of antennas improves the Wi-Drone accuracy
in two aspects: 1) More antennas come with better AoA estimation
results; 2) Independent measurements of multiple antennas form
into the overdetermined equations (Eqn. 17) in the PMT module,
which means a larger number of antennas helps solve the relative
6-DoF pose more accurately.

7.4 Micro Benchmarks
7.4.1 Effectiveness of Each Component. In this part, we evaluate
the performance of EPE, PMT and further demonstrate the improve-
ment brought by the joint optimization. As illustrated in Fig. 14,
the performance of a fusion-basedWi-Drone far exceeds that of the
EPE-only strategy and the PMT-only strategy in terms of location
accuracy and rotation accuracy. Specifically, the location tracking
accuracy forWi-Drone, EPE, and PMT are 26.1 cm, 105.7 cm, and

67.4 cm, respectively, which meansWi-Drone reduces 75.3% and
61.5% location error compared with EPE and PMT. As for the ro-
tation tracking, fusion-based Wi-Drone also outperforms EPE and
PMT by 43.9% and 33.1%, respectively. The results indicate thatWi-
Drone effectively incorporates the complementary characteristics
of the two modules: the EPE module with AP location reference
doesn’t incur any cumulative drift, while the PMT module based
on fine-grained phase has extremely high short-term accuracy.

7.4.2 Effectiveness of the Fusion Framework. To demonstrate the
effectiveness of theWi-Drone’s fusion performance, we compare
the proposed factor-graph-based fusion framework, JOF, with an-
other two classic fusion approaches, extended Kalman filter (EKF)
and particle filter (PF), both of which are widely used in previous
works [16, 48]. As shown in Fig. 15,Wi-Drone based on the factor
graph achieves enhanced location tracking accuracy for more than
35.6% and 55.0% compared with EKF and PF. This performance
gain becomes 22.9% and 41.3% when tracking the rotation. The
outstanding performance benefits from leveraging the factor graph
in a nonlinear and tight-coupling manner. Specifically, both the PF
and EKF are based on the approximation with local linearity, and
thus falling short in complex nonlinear problem [8]. In contrast, the
factor graph realizes efficient nonlinear optimization and fusion
based on the maximum posterior principle, and estimates the final
result from the error distribution of the initial measurements (e.g.,
CSI phase).

7.4.3 Latency Analysis. Wi-Drone is designed to be an effective
solution for indoor drones’ flight control, which makes its real-time
performance critical. Fig. 16 illustrates the end-to-end latency of
Wi-Drone through the whole tracking process, including multipath
resolution, phase sanitization, EPE and PMT model construction,
and JOF. As seen, the average end-to-end latency of Wi-Drone is
52.34 ms, with an average of 23.35 ms for multipath resolution
and 13.91 ms for fusion. The evaluation results illustrate that the
intensive nonlinear optimizations are still the main cause of system
latency, even after various acceleration strategies. To conclude, the
latency evaluation indicatesWi-Drone can run up to 20 FPS.

7.4.4 Loop Detection Analysis. To fully understand the necessity of
the TRRS-based loop detection function, we evaluate Wi-Drone on
the looped trajectories (i.e., #3 and #4 in Fig. 9) with/without loop
detection. Our evaluation result shows that, with loop detection dis-
abled, the location accuracy and rotation accuracy degrades by over
40% and 30%, respectively, showing the effect of the loop detection
function. With a loop detection function, the global optimization
will be triggered on a closed loop, bringing about global-consistent
6-DoF trajectories.
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8 DISCUSSIONS AND FUTUREWORK
Wi-Drone is the first attempt towards ubiquitous and accurate Wi-
Fi-based 6-DoF tracking, and there is room for continued research
in various perspectives.

Antenna array. The current prototype of Wi-Drone employs
several NICs to support multiple antennas. As Wi-Fi technology
evolves, the latest 802.11be standard supports up to 16 antennas,
and the size of the PCB antenna array will be smaller enough to be
embedded into various mobile devices (e.g., VR/AR headsets, smart
watches) and further enable a broad spectrum of applications. For
the current prototype,Wi-Drone can already be integrated into the
COTS drone for 6-DoF flight control.

LoS dependency. Like most Wi-Fi-based systems [5, 45], Wi-
Drone relies on the direct path to reach the best tracking perfor-
mance. Under NLoS conditions, Wi-Drone still works based on the
PMT module and prior information, however, suffers severe perfor-
mance degradation. In a nutshell, though occasional LoS blockage
during the flight is tolerable forWi-Drone, accurate Wi-Fi-based
6-DoF tracking under long-term NLoS conditions remains open for
future research.

Multimodal fusion.Wi-Drone has a great potential to incorpo-
rate with existing modalities to achieve complementary benefits. As
a Wi-Fi-standalone solution,Wi-Drone doesn’t aim to completely
replace existing 6-DoF tracking systems (e.g., VIO, LIO, etc.). In-
stead, Wi-Drone provides a novel pervasive modality for 6-DoF
tracking, especially for those light-weight and resource-constraint
applications. In application scenarios with sufficient computing
resources and ideal lighting conditions,Wi-Drone can also be in-
corporate with other sensors (e.g., cameras and radars) with little
efforts to achieve better performance.

9 RELATEDWORK
We briefly review the related works in the following.

6-DoF pose estimation. As a key enabler of autonomous driv-
ing and AR/MR applications, numerous 6-DoF pose estimation
solutions have been proposed over the past decade. Most exist-
ing solutions leverage various onboard sensors (e.g., IMU, LiDAR,
mmWave radar, RGB, and RGB-D camera) to infer the device’s 6-
DoF pose change. Benefiting from low cost and ubiquity, IMU-based
solutions [7, 11, 34], which infer the real-time rotation and motion
from the built-in gyroscope and accelerometer, are widely used in
various mobile platforms, however suffer from severe cumulative
drift. Vision-based solutions have been proposed using RGB [9, 12]
or RGB-D [13] cameras to track the device’s relative pose by feature
matching. Some recent works integrate the visual odometry and
IMU into VIO [26, 29] and achieve better performance. However,
vision-based solutions require significant computing resources and
frequently lose tracking in low-light-level and visual-texture-less
scenarios, limiting their scope of application, especially in indoor
scenarios. Previous researches also introduce sophisticated sensors
and infrastructures including LiDAR [33], mmWave radar [21], in-
frared ray [27, 38], and their fusions [39, 49]. However, both the
price and resource overhead prevent them from ubiquitous deploy-
ment.

In contrast, Wi-Drone provides an accurate and light-weight
6-DoF tracking solution and is competent in any adverse lighting

and texture scenarios, shedding light on pervasive 6-DoF tracking
applications.

Wireless localization and tracking. As a pervasive and ubiq-
uitous approach, wireless localization and tracking have gained
great interest over the past decade. Existing works exploit a vari-
ety of channel parameters, such as AoA [18, 46], ToF [32, 37], and
their fusion [4, 45, 51], to accomplish a variety of wireless sensing
tasks. Most of them resort to extra hardware [15], frequency hop-
ping [37], and protocol modifications [47] to achieve meter-level
or decimeter-level precision. By further leveraging plane geome-
try [5], some pioneer works can even infer a device’s 2D location
and azimuth simultaneously [35]. Lacking motion information, the
methods based on channel parameters can only form discrete lo-
cations instead of a continuous trajectory, which lead to severe
performance degradation when tracking high speed moving de-
vices. In contrast, a recent work, RIM [43], directly estimates the
device’s heading direction and moving distance by leveraging mul-
tiple antennas. Another work [19] leverages the relative ToF and
attenuation change of the received signals to generate the device’s
fine-grained trajectory. These approaches achieve centimeter-level
tracking accuracy over a relatively short distance. However, they
tend to accumulate drift error, thus falling short in long-distance
tracking scenarios.

The emerging UWB [10] and Bluetooth 5.1 standards provide
high range resolution and AoA measurement capability, respec-
tively. Some recent RFID-based tracking systems [22] achieve de-
lightful performance in 3D space. Both of them, however, still lack
the ability for simultaneous rotation and location tracking.

Compared with the aforementioned works that are either 2-DoF
(e.g., 2D location) or 3-DoF (e.g., 3D location, 2D location plus
azimuth), Wi-Drone pushes the limit of wireless device tracking
dimensions by simultaneously estimating the device’s rotation and
location in 3D space, realizing 6-DoF tracking. Besides, by propos-
ing the EPE, PMT, and JOF modules, Wi-Drone enables accurate
tracking over both short and long trajectories, and thus are compe-
tent for more challenging scenarios.

10 CONCLUSION
This paper proposes the design and implementation of Wi-Drone,
the first Wi-Fi-based 6-DoF device tracking system capable of in-
door drone flight control. Wi-Drone exploits the idea of rigid-body
coordinate transformation and further derives two different 6-DoF
tracking algorithms by jointly utilizing the information of multi-
path andmultiple antennas.Wi-Drone also adopts a novel paradigm
of fusing two complementary Wi-Fi tracking modules to push the
limit of the tracking accuracy. By doing so, Wi-Drone achieves ac-
curate and robust 6-DoF pose tracking performance. Our practical
experience reveals thatWi-Drone’s accuracy is sufficient to support
most drone-based applications in typical indoor scenarios.
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