
Assuring the Guardians

Jonathan Laurent1, Alwyn Goodloe2, and Lee Pike3

1 École Normale Supérieure, Paris, France,
jonathan.laurent@ens.fr,

2 NASA Langley Research Center, Hampton, Virginia, USA,
a.goodloe@nasa.gov,

3 Galois, Inc., Portland, OR, USA
leepike@galois.com

Abstract. Ultra-critical systems are growing more complex, and future
systems are likely to be autonomous and cannot be assured by traditional
means. Runtime Verification (RV) can act as the last line of defense to
protect the public safety, but only if the RV system itself is trusted. In
this paper, we describe a model-checking framework for runtime mon-
itors. This tool is integrated into the Copilot language and framework
aimed at RV of ultra-critical hard real-time systems. In addition to de-
scribing its implementation, we illustrate its application on a number of
examples ranging from very simple to the Boyer-Moore majority vote
algorithm.

1 Introduction

Runtime Verification (RV), where monitors detect and respond to property vi-
olations at runtime, can help address several of the verification challenges fac-
ing ultra-critical systems [20, 24]. As RV matures it will be employed to verify
increasingly complex properties such as checking complex stability properties
of a control system or ensuring that a critical system is fault-tolerant. As RV
is applied to more complex systems, the monitors themselves will become in-
creasingly sophisticated and as prone to error as the system being monitored.
Applying formal verification tools to the monitors to ensure they are correct can
help safeguard that the last line of defense is actually effective.

The work reported here is part of a larger program aimed at creating a frame-
work for high assurance RV. In order to be used in ultra-critical environments,
high-assurance RV must:

1. Provide evidence for a safety case that the RV enforces safety guarantees.
2. Support verification that the specification of the monitors is correct.
3. Ensure that monitor code generated implements the specification of the mon-

itor.

These guiding principles inform the continued development of the Copilot lan-
guage and framework that is intended to be used in RV of ultra-critical sys-
tems [18,22]. Earlier work focused on verifying that the monitor synthesis process

is correct (Requirement 3 above) [21]. Here, the focus is on the second require-
ment for high-assurance RV - making sure the monitor specification is correct.
Requirement 1, in the spirit of Rushby’s proposal [24] is future work.

Contributions In this paper we describe the theory and implementation of a
k-induction based model-checker [5, 25] for Copilot called copilot-kind. More
precisely, copilot-kind is a model-checking framework for Copilot, with two
existing backends: a lightweight implementation of k-induction using Yices [4]
and a backend based on Kind2, implementing both k-induction and the IC3 al-
gorithm [26].

After providing a brief introduction to Copilot in Section 2 and to Satis-
fiability Modulo Theories (smt)-based k-induction in Section 3, we introduce
copilot-kind in Section 4. Illustrative examples of copilot-kind are provided
in Section 5, and implementation details are given in Section 6. The final two
sections discuss related work and concluding remarks, respectively.

Copilot and copilot-kind are open-source (BSD3) and in current use at
NASA.4

2 Copilot

Copilot is a domain specific language (DSL) embedded in the functional pro-
gramming language Haskell [14] tailored to programming monitors for hard real-
time, reactive systems. Given that Copilot is deeply embedded in Haskell, one
must have a working knowledge of Haskell to effectively use Copilot. However,
the benefit of an embedded DSL in Haskell is that the host-language serves as
a type-safe, Turing-complete macro language, allowing arbitrary compile-time
computation, while keeping the core DSL small.

Copilot is a stream based language where a stream is an infinite ordered
sequence of values that must conform to the same type. All transformations of
data in Copilot must be propagated through streams. In this respect, Copilot is
similar to Lustre [2], but is specialized for RV. Copilot guarantees that specifi-
cations compile to constant-time and constant-space implementations to update
stream states.

Copilot’s expression language. In the following, we briefly and informally
introduce Copilot’s expression language. Copilot streams mimic both the syn-
tax and semantics of Haskell lazy lists with the exception that operators are
automatically promoted point-wise to the list level.

Two types of temporal operators are provided in Copilot, one for delaying
streams and one for looking into the future of streams:

(++) :: [a] → Stream a → Stream a
drop :: Int → Stream a → Stream a

4 https://github.com/Copilot-Language

Here xs ++ s prepends the list xs at the front of the stream s. The expression
drop k s skips the first k values of the stream s, returning the remainder of
the stream. For example, the Fibonacci sequence modulo 232 can be written in
Copilot as follows:

fib :: Stream Word32
fib = [1,1] ++ (fib + drop 1 fib)

The base types of Copilot over which streams are built include Booleans,
signed and unsigned words of 8, 16, 32, and 64 bits, floats, and doubles. Type-
safe casts in which overflow cannot occur are permitted.

Sampling. Copilot programs are meant to monitor arbitrary C programs. They
do so by periodically sampling values in the program under observation. Cur-
rently, Copilot can be used to sample variables, arrays, and the return values
of side-effect free functions—sampling arbitrary structures is future work. For a
Copilot program compiled to C, symbols become in-scope when arbitrary C code
is linked with the code generated by the Copilot compiler. Copilot provides the
operator extern to introduce an external symbol to sample.

The following stream samples the C variable e0 of type uint8_t to create
each new stream index. If e0 takes the values 2, 4, 6, 8,... the stream ext
has the values 1, 3, 7, 13,....

ext :: Stream Word8
ext = [1] ++ (ext + extern "e0")

3 Background on SMT-based k-induction

The focus of our investigation has been on applying model checking to prove in-
variant properties of our monitors. We employ a technique known as k-induction [5,
25] for verifying inductive properties of infinite state systems. k-induction has
the advantage that it is well suited to smt based bounded model checking. This
section profiles the basic concepts of the k-induction proof technique needed in
the remainder of the paper. In practice, we use tools that implement enhance-
ments of the basic procedure such as path compression [3] that help the process
scale, but are beyond the focus of the paper.

Consider a state transition system (S, I, T), where S is a set of states, I ⊆ S
is the set of initial states and T ⊆ S × S is a transition relation over S. To
show P holds in the transition system one must show that (1) the base case
holds—that P holds in all states reachable from an initial state in k steps, and
(2) the induction step holds—that if P holds in states s0, . . . , sk−1 then it holds
in state sk. The k-induction principle is formally expressed in the following two
entailments:

I(s0) ∧ T (s0, s1) ∧ · · · ∧ T (sk−1, sk) |= P (sk)

P (s0) ∧ · · · ∧ P (sk−1) ∧ T (s0, s1) ∧ · · · ∧ T (sk−1, sk) |= P (sk)

If one cannot show the property to be true, the property is strengthened by either
extending the formula or progressively increasing the length of the reachable
states considered.

Property P said to be a k-inductive property with respect to (S, I, T) if
there exists some k ∈ N0< such that P satisfies the k-induction principle. As k
increases, weaker invariants may be proved. If P is a safety property that does
not hold, then the first entailment will break for a finite k and a counterexample
will be provided. The trick is to find an invariant that is tractable by the smt
solver yet weak enough to satisfy the desired property.

4 Copilot Prover Interface

The copilot-kind model-checker is an extensible interface to multiple provers
used to verify safety properties of Copilot programs. Currently, two backends for
copilot-kind have been implemented: the first is a homegrown prover we call
“the light prover” built on top of Yices [4] and the second is the Kind2 model
checker being developed at the University of Iowa [17].

To begin, we describe how safety properties are specified in Copilot. Using
the “synchronous observer” approach [10], properties about Copilot programs
are specified within Copilot itself. In particular, properties are encoded with
standard Boolean streams and Copilot streams are sufficient to encode past-
time linear temporal logic [12]. We bind a Boolean stream to a property name
with the prop construct in the specification, where the specification has type
Spec.

For instance, here is a straightforward specification declaring one property:

spec = prop "gt0" (x > 0)
where
x = [1] ++ (1 + x)

In order to check that property gt0 holds, we use a prove function implemented
as part of copilot-kind. Here, we can discharge the proof-obligation for the
program above with the light prover using the command:

prove (lightProver def) (check "gt0") spec

where lightProver def stands for the light prover with default configuration.
While numeric types are bounded in Copilot, they are abstracted as integers

in the prover, so we ignore overflow; see Section 6 for details.

Combining Provers. Copilot-Kind allows provers to be combined. Given
provers A and B, the combine function returns a prover C which launches both
A and B and returns the most precise output of the two upon termination.
“Precise” in this case means returning the least element in the following partial
order: for a given execution, classify prover outputs as valid (V), unknown (U),
invalid with countexample (C), and invalid with no counterexample (N); the
partial order is the least relation such that

U

V N

C

(Merging provers that handle non-termination within a bound is future work.)
In practice, we used the following prover in the examples of Section 5:

prover = lightProver def {kTimeout = 5} ‘combine‘ kind2Prover def

which uses both the light and Kind2 provers, the first being limited to 5 steps
of the k-induction.

Proof Schemes. Consider the example :

spec = do
prop "gt0" (x > 0)
prop "neq0" (x /= 0)
where
x = [1] ++ (1 + x)

and suppose we want to prove "neq0". Currently, the two available solvers fail
at showing this non-inductive property (if at index i, x = −k, then it satisfies
the induction hypothesis but fails the induction step for all k). Yet, we can prove
the more general inductive lemma "gt0" and deduce our main goal from this.
For this, we apply our proof scheme feature as follows:

assert "gt0" » check "neq0"

A proof scheme is a chain of primitive proof operations glued together by the
>> operator to combine proofs, and in particular, provide lemmas. The available
primitives are:

– check "prop" checks whether or not a given property is true in the current
context.

– assume "prop" adds an assumption in the current context.
– assert "prop" is a shortcut for check "prop" >> assume "prop".
– assuming props scheme assumes the list of properties props, executes the

proof scheme scheme in this context, and forgets the assumptions.
– msg "..." displays a string in the standard output.

5 Examples

In this section, we will present several examples of copilot-kind applied to
verify properties on Copilot monitors.

First, let us reexamine the Copilot program from Section 2 that generates the
Fibonacci sequence. A fundamental property of this program is that it produces
a stream of values that are always positive. We express this as follows:

spec = prop "pos" (fib > 0)
where
fib :: Stream Word64
fib = [1, 1] ++ (fib + drop 1 fib)

This invariant property is clearly inductive and is easily discharged. Note that,
as discussed in Section 6, 64-bit words are modelled by integers and eventual
overflow problems are ignored here.

The next example uses copilot-kind to prove properties relating two dif-
ferent specifications. Consider the following specification:

intCounter :: Stream Bool → Stream Word64
intCounter reset = time
where
time = if reset then 0

else [0] ++ if time == 3 then 0 else time + 1

that acts as a counter performing modulo arithmetic, but is reset when the reset
stream value is true. Now consider the specification

greyTick :: Stream Bool → Stream Bool
greyTick reset = a && b
where
a = (not reset) && ([False] ++ not b)
b = (not reset) && ([False] ++ a)

After a reset, greyTick’s output stream forms a cycle of Boolean values with
the third item in the cycle having value true and the rest being false. Thus,
the two specifications both have a cyclic structure and with a cycle that begins
when the reset stream is set to true.

spec = do
prop "iResetOk" (r =⇒ (ic == 0))
prop "eqCounters" (it == gt)
where

ic = intCounter r
it = ic == 2
gt = greyTick r
r = extern "reset" Nothing

Fig. 1. Spec listing.

From the above observations we conjecture that given the same input stream,
when reset is true, the intCounter is 0 and greyTick is true when intCounter
is 2. (Extern streams are uninterpreted; see Section 6.) We formalize these two

properties in our framework as shown in Figure 1. These predicates are dis-
charged using the proof scheme

scheme :: ProofScheme
scheme = do
check "iResetOk"
check "eqCounters"

5.1 Boyer-Moore Majority Vote

Earlier research on Copilot has investigated fault-tolerant runtime verifica-
tion [22]. Fault-tolerant algorithms often include a variant of a majority vote
over values (e.g., sensor values, clock values, etc.). The Boyer-Moore Majority
Vote Algorithm is a linear-time voting algorithm [13, 16]. In this case-study, we
verify the algorithm.

The algorithm operates in two passes, first it chooses a candidate and the
second pass verifies that the candidate is indeed a majority. The algorithm is
subtle and the desire to apply formal verification to our Copilot implementation
helped motivate the effort described here.

Two versions of this algorithm were checked with copilot-kind. The first
algorithm was the one implemented as part of the aforementioned research on
fault tolerance and flew on a small unmanned aircraft. This algorithm is a parallel
implementation, where at each tick, the algorithm takes n inputs from n distinct
streams and is fully executed. The second version of the algorithm is a sequential
version, where the inputs are delivered one by one in time and where the result
is updated at each clock tick. Both can be checked with the basic k-induction
algorithm, but the proofs involved are different.

The parallel version. The core of the algorithm is the following:

majorityVote :: (Typed a, Eq a) ⇒ [Stream a] → Stream a
majorityVote [] = error "empty list"
majorityVote (x : xs) = aux x 1 xs
where
aux p _s [] = p
aux p s (l : ls) =
local (if s == 0 then l else p) $ λ p’ →
local (if s == 0 | | l == p then s + 1 else s - 1) $ λ s’ →
aux p’ s’ ls

Let us denote A as the set of the elements that can be used as inputs for the algo-
rithm. Assume l is a list and a ∈ A, we denote |l|a as the number of occurrences
of a in l. The total length of a list l is simply written |l|. The majorityVote
function takes a list of streams l as its input and returns an output maj such
that:

∀a ∈ A, (a 6= maj) =⇒ (|l|a ≤ |l|/2)

Given that quantifiers are handled poorly by smt solvers and their use is re-
stricted in most model-checking tools, including copilot-kind, we use a simple
trick to write and check this property. If P (n) is a predicate of an integer n, we
have ∀n . P (n) if and only if ¬P (n) is unsatisfiable, where n an unconstrained
integer, which can be solved by a smt solver. The corresponding Copilot speci-
fication can be written as:

okWith :: (Typed a, Eq a) ⇒
Stream a → [Stream a] → Stream a → Stream Bool

okWith a l maj = (a /= maj) =⇒ ((2 ∗ count a l) ≤ length l)
where
count _e [] = 0
count e (x : xs) = (if x == e then 1 else 0) + count e xs

spec = prop "OK" (okWith (arbitraryCst "n") ss maj)
where
ss = [arbitrary ("s" ++ show i) | i ← [1..10]]
maj = majorityVote

The function arbitrary is provided by the copilot-kind standard library and
introduces an arbitrary stream. In the same way, arbitraryCst introduces a
stream taking an unconstrained but constant value.

Note that we prove the algorithm for a fixed number of N inputs (here
N = 10). Therefore, no induction is needed for the proof and the invariant of
the Boyer-Moore algorithm does not need to be made explicit. However, the size
of the problem discharged to the smt solver grows in proportion to N .

The serial version. Now, we discuss an implementation of the algorithm where
the inputs are read one by one in a single stream and the result is updated at each
clock tick. As the number of inputs of the algorithm is not bounded anymore, a
proof by induction is necessary and the invariant of the Boyer-Moore algorithm,
being non-trivial, has to be stated explicitly. As stated in Hesselink [13], this
invariant is:

∀m ∈ A, (m 6= p) =⇒ (s+ 2|l|m ≤ |l|) ∧ (m = p) =⇒ (2|l|m ≤ s+ |l|)

where l is the list of processed inputs, p is the intermediary result and s is an
internal state of the algorithm. The problem here is that the induction invariant
needs universal quantification to be expressed. Unfortunately, this quantifier
cannot be removed by a similar trick like the one seen previously. Indeed, when
an invariant is of the form ∀x.P (x, s), s denoting the current state of the world,
the induction formula we have to prove is:

∀x.P (x, s) ∧ T (s, s′) |= ∀x.P (x, s′)

Sometimes, the stronger entailment

P (x, s) ∧ T (s, s′) |= P (x, s′)

holds and the problem becomes tractable for the smt solver by replacing a
universally quantified variable by an unconstrained one. In our current example,
it is not the case.

Our solution to the problem of dealing with quantifiers is restricted to the
case where A is finite and we replace each formula of the form ∀x ∈ A P (x) by∧

x∈A P (x). This can be done with the help of the forAllCst function provided
by the copilot-kind standard library. It is defined as:

forAllCst ::(Typed a) ⇒
[a] → (Stream a → Stream Bool) → Stream Bool

forAllCst l f = conj $ map (f ◦ constant) l
where conj = foldl (&&) true

The code for the serial Boyer-Moore algorithm and its specification is then:

allowed :: [Word8]
allowed = [1, 2]

majority :: Stream Word8 → (Stream Word8, Stream Word8, Stream
Bool)

majority l = (p, s, j)
where
p = [0] ++ if s ≤ 0 then l else p
s = [0] ++ if p == l | | s ≤ 0 then s + 1 else s - 1
k = [0] ++ (1 + k)

count m = cnt
where cnt = [0] ++ if l == m then cnt + 1 else cnt

j = forAllCst allowed $ λ m →
local (count m) $ λ cnt →
let j0 = (m /= p) =⇒ ((s + 2 ∗ cnt) ≤ k)

j1 = (m == p) =⇒ ((2 ∗ cnt) ≤ (s + k))
in j0 && j1

spec = do
prop "J" j
prop "inRange" (existsCst allowed $ λ a → input == a)
where
input = externW8 "in" Nothing
(p, s, j) = majority input

scheme = assuming ["inRange"] $ check "J"

We make the hypothesis that all the elements manipulated by the algorithm
are in the set allowed, which is finite. The smt proofs are generally exponential
with respect to the number of variables, so this approach does not scale well.

6 Implementation

In this section, we shall outline the structure of the implementation of our Copi-
lot verification system. After Copilot type-checking and compilation, a Copilot
program is approximated so it can be expressed in a theory handled by most smt
solvers, as described below. Any information of no use for the model checking
process is thrown away. The result of this process is encoded in Cnub format,
which is is structurally close to the Copilot core format, but supports fewer
datatypes and operators. Then, it can be translated into one of two available
representation formats:

– The IL format: a list of quantifier-free equations over integer sequences,
where each sequence roughly corresponds to a stream. This format is similar
to the one developed by Hagen [8], but customized for Copilot. The light
prover works with this format.

– The TransSys format: a modular representation of a state transition system.
The Kind2 prover uses this format, which can be printed into Kind2’s native
format [17].

6.1 Approximating a specification

The complexity of the models that are built from Copilot specifications is limited
by the power and expressiveness of the smt solvers in use. For instance, most
smt solvers do not handle real functions like trigonometric functions. Moreover,
bounded integer arithmetic is often to be approximated by standard integer
arithmetic.

The Cnub format is aimed at approximating a Copilot specification in a for-
mat relying on a simple theory including basic integer arithmetic, real arithmetic,
and uninterpreted functions. The stream structure is kept from the Copilot core
format, but the following differences have to be emphasized:

– In contrast to the great diversity of numeric types available in Copilot, we
restrain ourselves to three basic types which are handled by the SmtLib
standard: Bool, Integer, and Real. Problems related to integer overflows
and floating point arithmetic are ignored.

– Uninterpreted functions are used to model operators that are not handled.
They are abstract as function symbols satisfying the equality:

(∀i. xi = yi) =⇒ f(x1, · · · , xn) = f(y1, · · · , yn).

in the quantifier-free theory of uninterpreted function symbols, as provided
by most smt solvers.

– Copilot extern variables are modelled by unconstrained streams. Particular
precautions have to be taken to model access to external arrays in order to
express the constraint that several requests to the same index inside a clock
period must yield the same result.

Excepting the first point, the approximations made are sound: they result in
a superset of possible behaviors for the RV.

The problem of integer overflows can be tackled by adding automatically
to the property being verified some bound-checking conditions for all integer
variables. However, this solution can generate a great overhead for the proof
engine. Moreover, it treats every program which causes an integer overflow as
wrong, although this behaviour could be intended. An intermediate way to go
would be to let the developer annotate the program so he can specify which
bounds have to be checked automatically or to use the bit vector types of SmtLib,
which will be implemented in a future release.

6.2 The Light prover and the IL format

Our homegrown prover relies on an intermediate representation format called
IL. An IL specification mostly consists of a list of quantifier-free equations over
integer sequences. These equations contain a free variable n which is implicitly
universally quantified. The IL format is similar to the one used by Hagen [8].

A stream of type a is modeled by a function of type N → a. Each stream
definition is translated into a list of constraints on such functions. For instance,
the stream definition

fib = [1, 1] ++ (fib + drop 1 fib)

is translated into the IL chunk:

f : N→ N
f(0) = 1
f(1) = 1

f(n+ 2) = f(n+ 1) + f(n).

Suppose we want to check the property fib > 0 which translates into f(n) > 0.
This can be done in two steps of the k-induction seen in Section 3 by taking

T [n] ≡ (f(0) = 1 ∧ f(1) = 1 ∧ f(n+ 2) = f(n+ 1) + f(n))

P [n] ≡ (f(n) > 0)

and checking that both

T [0] ∧ T [1] ∧ ¬ (P [0] ∧ P [1])

and
T [n] ∧ T [n+ 1] ∧ P [n] ∧ P [n+ 1] ∧ ¬P [n+ 2]

are non-satisfiable, the last one being equivalent to

(f(n+ 2) = f(n+ 1) + f(n))∧ (f(n) > 0)∧ (f(n+ 1) > 0)∧ (f(n+ 2) ≤ 0)∧ · · ·

This simple example illustrates that the construction of SmtLib requests from
an IL specification is straightforward.

6.3 The Kind2 prover and the TransSys format

Recall that a state transition system is a triple (S, I, T), where S is a set of
states, I ⊆ S is the set of initial states, and T ⊆ S × S is a transition relation
over S. Here, a state consists of the values of a finite set of variables, with types
belonging to {Int, Real, Bool}. I is encoded by a logical formula whose free
variables correspond to the state variables and that holds for a state q if and
only if q is an initial state. Similarly, the transition relation is given by a formula
T such that T [q, q′] holds if and only if q → q′.

The TransSys format is a modular encoding of such a state transition sys-
tem. Related variables are grouped into nodes, each node providing a distinct
namespace and expressing some constraints between its variables. A significant
task of the translation process to TransSys is to flatten the Copilot specification
so the value of all streams at time n only depends on the values of all the streams
at time n− 1 which is not the case in the Fibonacci example shown earlier. This
is done by a simple program transformation which turns

fib = [1, 1] ++ (fib + drop 1 fib)

into

fib0 = [1] ++ fib1
fib1 = [1] ++ (fib1 + fib0)

After this, it is natural to associate a variable to each stream. Here, the
variables fib0 and fib1 would be grouped into a single node in order to keep
some structure in the representation of the transition system.5 Such a modular
transition system is almost ready to be translated into the Kind2 native format.
However, we first have to merge each node’s pair whose components are mutually
dependent as Kind2 requires a topological order on its nodes.

7 Related Work

The research reported here builds on recent research conducted in a number
of areas including formal verification, functional programming and DSL design,
and RV.

Copilot has many features common to other RV frameworks aimed at mon-
itoring distributed or real-time systems. There are few other instances of RV
frameworks targeted to C code. One exception is Rmor, which generates constant-
memory C monitors [11]. Rmor does not address real-time behavior or dis-
tributed system RV, though. To our knowledge no other RV framework has
integrated monitor verification tools into their systems.

5 Maintaining structure is important for two reasons. First, the model checker can use
this structural information to optimize its search; see structural abstraction in [8].
Second, structured transition systems are easier to read, debug, and transform.

Haskell-based DSLs are of growing popularity and given that they are all
embedded into the same programming language, they share many similarities
with Copilot. For instance, Kansas Lava [7], which is designed for programming
field programmable gate arrays, and Ivory [19], which is designed for writing
secure autonomous systems, are both implemented using techniques similar to
Copilot.

The ROSETTE extension to the Racket language [6] provides a framework
for building DSLs that integrate smt solvers. Smten [23] is a DSL with embedded
smt solvers that is targeted at writing satisfiability based searches.

As we have already mentioned, Copilot is similar in spirit to other languages
with stream-based semantics, notably represented by the Lustre family of lan-
guages [15]. Copilot is a simpler language, particularly with respect to Lustre’s
clock calculus, focused on monitoring (as opposed to developing control sys-
tems). The work that is most relevant the research presented in this paper is
the application of the Kind model checking tool to verify Lustre programs [9].
Kind and its most recent incarnation [17] is designed to model check Lustre
programs and due to the similarities between Copilot and Lustre we targeted
the Kind2 prover to be one of our back ends as well. Yet, to the best of our
knowledge, the Boyer-Moore majority voting examples given in Section 5.1 are
more sophisticated than published results using Kind with Lustre.

8 Conclusion

In this paper, we have presented the development of copilot-kind that en-
hances the Copilot RV framework with an integrated model-checking capability
for verifying monitors and illustrated its applicability to verify a range of moni-
tors.

In practice, our tool turned out to be very useful, indeed, even when the
property being checked is not inductive or the induction step is too hard, it is
very useful to test the first entailment of the k-induction algorithm for small
values of k, proving the property cannot be violated in the first k time steps
or displaying a counterexample trace. Many subtle bugs can be captured for
reasonable values of k.

Yet, k-induction does have limitations. For instance, writing k-inductive spec-
ifications can be difficult. Newer advances like the IC3 algorithm, implemented
by Kind2, are aimed at proving non-inductive properties by splitting it into
concise and relevant inductive lemmas. However, our experiments showed that
currently available tools fail at proving very simple properties as soon as basic
arithmetic is involved.

The development of copilot-kind has reinforced the efficacy of the em-
bedded DSL approach. Being embedded in a higher-order functional language
facilitated the creation of a number of features such as our proof scheme capa-
bility. We have also found it quite advantageous to be able to write properties in
the familiar style of Haskell programs. For instance, in Section 5.1, the function
forAllCst for the serial Boyer-Moore example in that it uses both a fold and a

map operator to model finite conjunctions. Beyond our own purposes, we believe
that other embedded DSL developers could use our designs in order to interface
their languages with proof engines.

Having successfully applied our tool to rather sophisticated monitors, future
extensions are planned. Given that we are focused on cyber-physical systems,
the limitations of smt-based provers go beyond the fact that they become pro-
hibitively slow as the size of their input increases. smt-solvers do not generally
handle quantifiers or special real-valued functions well. A promising way to deal
with both these issues would be an extension of the proof scheme system where
properties involving arbitrary streams are seen as universally quantified lemmas
which can be specialized and added to the proof context by an explicit use of a
new apply directive. An interface to MetiTarski [1] will also allow us to auto-
matically prove some of the mathematical properties of interest, but connecting
to an interactive prover may also be necessary.

References

1. Behzad Akbarpour and L.C. Paulson. MetiTarski: an automatic theorem prover
for real-valued special functions. Journal of Automated Reasoning, 44(3):175–205,
2010.

2. P. Caspi, D. Pialiud, N. Halbwachs, and J. Plaice. LUSTRE: a declarative lan-
guage for programming synchronous systems. In 14th Symposium on Principles of
Programming Languages, pages 178–188, 1987.

3. Leonardo de Moura, Harald Rueß, and Maria Sorea. Bounded model checking and
induction: From refutation to verification. In Andrei Voronkov, editor, Computer-
Aided Verification, CAV 2003, volume 2725 of Lecture Notes in Computer Science,
pages 14–26. Springer-Verlag, 2003.

4. Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Computer-
Aided Verification (CAV’2014), volume 8559 of Lecture Notes in Computer Science,
pages 737–744. Springer, July 2014.

5. Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving.
Electr. Notes Theor. Comput. Sci., 89(4):543–560, 2003.

6. Emina Torlak and Rastislav Bodik. A lightweight symbolic virtual machine for
solver-aided host languages. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’14, pages 530–541.
ACM, 2014.

7. Andy Gill. Domain-specific languages and code synthesis using Haskell. Commun.
ACM, 57(6):42–49, June 2014.

8. G. Hagen. Verifying safety properties of Lustre programs: an SMT-based approach.
PhD thesis, University of Iowa, 2008.

9. G. Hagen and C. Tinelli. Scaling up the formal verification of lustre programs
with smt-based techniques. In Proceedings of the 8th International Conference on
Formal Methods in Computer-Aided Design (FMCAD 08). IEEE, 2008.

10. N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the verifi-
cation of reactive systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors,
Third Int. Conf. on Algebraic Methodology and Software Technology, AMAST’93.
Springer Verlag, June 1993.

11. Klaus Havelund. Runtime verification of C programs. In Testing of Software and
Communicating Systems (TestCom/FATES), pages 7–22. Springer, 2008.

12. Klaus Havelund and Grigore Roşu. Efficient monitoring of safety properties. Int.
J. Softw. Tools Technol. Transf., 6(2):158–173, 2004.

13. Wim H. Hesselink. The Boyer-Moore majority vote algorithm, 2005.
14. Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised

Report. http://haskell.org/, 2002.
15. Jan Mikáĉ and Paul Caspi. Formal system development with Lustre: Framework

and example. Technical Report TR-2005-11, Verimag Technical Report, 2005.
16. Strother J. Moore and Robert S. Boyer. MJRTY - A Fast Majority Vote Algorithm.

Technical Report 1981-32, Institute for Computing Science, University of Texas,
February 1981.

17. University of Iowa: Kind Research Group. Kind 2: Multi-engine SMT-based Au-
tomatic Model Checker. http://kind2-mc.github.io/kind2/.

18. Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: A hard
real-time runtime monitor. In Runtime Verification (RV), volume 6418, pages
345–359. Springer, 2010.

19. Lee Pike, Patrick C. Hickey, James Bielman, Trevor Elliott, Thomas DuBuisson,
and John Launchbury. Programming languages for high-assurance autonomous ve-
hicles: extended abstract. In Programming Languages meets Program Verification,
pages 1–2. ACM, 2014.

20. Lee Pike, Sebastian Niller, and Nis Wegmann. Runtime verification for ultra-critical
systems. In Proceedings of the 2nd Intl. Conference on Runtime Verification, LNCS.
Springer, September 2011.

21. Lee Pike, Nis Wegmann, Sebastian Niller, and Alwyn Goodloe. Experience report:
a do-it-yourself high-assurance compiler. In Proceedings of the Intl. Conference on
Functional Programming (ICFP). ACM, September 2012.

22. Lee Pike, Nis Wegmann, Sebastian Niller, and Alwyn Goodloe. Copilot: Monitoring
embedded systems. Innovations in Systems and Software Engineering, 9(4), 2013.

23. Richard Uhler and Nirav Dave. Smten with satisfiability-based search. In Proceed-
ings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’14, pages 157–176. ACM, 2014.

24. John Rushby. Runtime certification. In Eighth Workshop on Runtime Verification
(RV08), volume 5289 of LNCS, pages 21–35, 2008.

25. M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties using induction
and a SAT-solver. In Proceedings of the Third International Conference on Formal
Methods in Computer-Aided Design, FMCAD ’00, pages 108–125. Springer-Verlag,
2000.

26. F. Somenzi and A. R. Bradley. Ic3: Where monolithic and incremental meet. In
Proceedings of the International Conference on Formal Methods in Computer-Aided
Design, FMCAD ’11, pages 3–8. FMCAD Inc, 2011.

