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Abstract 

One method for analyzing textual chat transcripts is a process 
called coding, whereby individual lines of chat, or blocks of chat, 
are assigned a topical label. This task is typically performed by 
humans, and takes a great deal of time. Automated analyses can 
reduce the amount of time it takes to code chat transcripts, and this 
paper presents the performance of the Naïve Bayes and Viterbi 
algorithms for classifying chat data. 

1  Introduct ion 

Coding is the process by which data – typically textual data – are assigned labels, in 
order to understand what the data are about. Typically, coding is performed by 
humans, and is a tedious and time-consuming task. Further, in order to provide 
confidence in the coding scheme and assignment of labels, multiple human coders 
are often used to code the same data, and an inter-rater reliability statistic (such as 
Cohen’s Kappa) is computed to determine the degree of agreement between coders. 
However, coding is a time-consuming process, one that can be greatly sped up by 
the use of machine learning algorithms. In this project, I consider the problem of 
automatically coding two types of data: chat transcripts and broadcast instant 
messages. 

1 .1  C h a t  t ra n sc r i p t s  

Chat transcripts are sequences of utterances made by one or more persons in a chat 
session. Each utterance can be classified as belonging to a certain topic of 
conversation1. Chat data comes from a previous research study by the author in 
which participants watched a movie together and chatted about it at the same time. 
An example chat excerpt is presented in Table 1. First, the two participants talk 
about events occurring in the movie. Then, they talk about whether or not they had 

                                                             
1 While it is possible that a single utterance could be relevant to multiple topics of 
conversation, we assume that utterances belong to only one topic. 



 

previously seen the movie. Thus, there are two topics of conversation: things going 
on in the movie, and whether or not the participants had seen the movie before. 

Table 1: Example chat topics 

TOPIC CHAT 

P1: They're quite self-righteous, these guys. ;) 

P2: yeah 

Topic is about events 
occurring in a movie being 
watched by P1 and P2. 

P2: especially considering what comes later 

P1: Oh. I haven't seen this movie before. Topic switches to talking 
about having seen the movie 
previously. P1: ok, then I'll not spoil you 

1 .2  Bro a d ca s t  i n s t a n t  mes sa g es  

Instant messages are small snippets of text containing a message for an intended 
recipient. Traditionally, instant messages are sent in a one-to-one fashion; however, 
broadcast instant messages use a one-to-many model. A person sending a broadcast 
instant message must first choose a community to which to send the message. These 
communities are composed of other users using the broadcast instant messaging 
system, and each community has its own topic or area of interest. For example, the 
“tennis players” community would consist of people who play tennis (self-selected, 
as users can subscribe to any communities they wish, and need not actually be 
tennis players). Thus, this presents another classification problem: given an instant 
message, to which community should it be sent? 

2  Data set  characterist ics 

2 .1  C h a t  t ra n sc r i p t s  

Chats were logged during a previous research study conducted by the author. In 
total, there were 2,203 lines of chat, from 15 different chat sessions. After manual 
segmentation, there were 434 topic blocks (this process consisted of bucketing all of 
the words used in each topic block, with no respect to the order of those words or of 
who spoke them). The original coding scheme consisted of 8 classes, including talk 
about the movie being watched (participants were chatting while watching a movie; 
this type of chat comprises 29% of the data set), chat about the technology used to 
view the movie (11%), chat about personal topics (32%), chat about the research 
study in which they were participating (23%) and miscellaneous topics (5%). A 
reduced coding scheme is also considered, utilizing three classes: chat about the 
movie (39%), chat about personal topics (18%) and chat about the study (44%). 

The final step of processing was converting each line of chat (or topic block) into a 
vector of words: for each position i, the value in the vector is 1 if the ith word exists 
in the line of chat (or topic block). This has the side-effect of eliminating any 
influence of word order on the classification. In total, there were 2,270 unique 
words used in this data set. 

2 .2  Bro a d ca s t  i n s t a n t  mes sa g es  

Broadcast instant messages were recorded during another research study conducted 
by the author. In total, 5,299 broadcast instant messages were sent to a total of 422 



 

different communities. Word vectors were created for this data set as well, and this 
data set contained 9,924 unique words. 

3  Feature set  reduct ion 

Many words were used in both data sets. Each word corresponds to a column in the 
“feature vector” for a line of chat (or broadcast message). Because classification 
with many features takes a long time, several strategies were employed in order to 
reduce the number of features in each data set. A summary of the number of features 
present after each of the feature-reduction strategies is applied is given in Table 2. 
Since feature reduction may result in data points losing all of their features (e.g. a 
chat message composed of only stopwords), Table 3 shows how many data points 
were present after applying stopword removal (stemming did not eliminate any data 
points). 

Further, in the broadcast message data set, many of the communities are similar to 
one another (e.g. there are multiple communities for “c programming”). Section 3.4 
discusses clustering community names in order to treat similar communities as one. 

Table 2: Number of features in each data set for each feature reduction strategy 

DATA SET ORIGINAL STEM STOPWORD 
REMOVAL 

STEM + 
STOP 

FREQ. 
CUTOFF 

Chat (lines & 
topics) 

2,270 1,898 2,108 1,741 636 

Broadcast 
messages 

9,924 7,861 8,662 6,725 1,470 

Table 3: Number of data points for each feature reduction strategy (stopword 
removal and frequency cutoff were the only strategies that eliminated data points) 

DATA SET ORIGINAL STOPWORD 
REMOVAL 

FREQ. 
CUTOFF 

Chat (lines) 2,203 2,163 2,080 

Chat (topics) 434 434 432 

Broadcast messages 5,299 5,282 5,206 

3 .1  S t em m in g  

Stemming [2] is the process by which words are reduced to their root forms. For 
example, suffixes are removed, such as “-ing” and “-s”, such that “digging” and 
“dig” become the same word. This allows a classifier to focus on differences 
between concepts, rather than treating “digging” and “dig” as two separate concepts. 

3 .2  S t o p w o rd  re mo v a l  

Stopwords [1] are words that occur frequently in the English language, such as “a”, 
“and” and “the”. Because of their frequent occurrence, they may not add any 
additional information to aid classification, assuming a uniform distribution over all 
classes. Stopword removal is performed in order to test this hypothesis. 



 

3 .3  Fre q u en cy  cu t o f f  

Some words are more important than others. For example, misspellings and typos 
are not as important as properly spelled words, because they may not generalize 
across chat data. In order to approximate the removal of “unimportant” data, words 
which do not occur frequently can be removed from the data set. Further, words 
which occur frequently might also be removed, according to the same logic that 
justifies stopword removal, however this analysis is not performed. Figure 1 shows 
the familiar power-law distribution of stemmed word frequencies for the chat data 
set. The distribution is similar for the words in the broadcast message data set. 

Figure 1: Word frequency distribution for chat data 

 

For the purposes of this analysis, we consider words that occur 3 or more times in 
the chat data, and 6 or more times for the broadcast message data2. For both data 
sets, words that occur 3 or more times comprise roughly 35% and 22% of the total 
number of words in the data sets, respectively. 

3 .4  C o mmu n it y  n a m e c lu s t er in g  

In order to reduce the number of classes in the broadcast message data set, 
clustering was performed on the community names. This involved first computing 
the cosine distance [5] between each community name with each other community 
name. Next, the cmdscale function in MATLAB was used to convert the distance 
matrix into (X,Y) points for each community name. A plot of these results is shown 
in Figure 3, and it shows 5 distinct “clusters” of community names (with one 
outlier). Reducing the number of classes from 422 to 5 seems very drastic, and the 
implications are discussed in Section 7. 

4  Classif icat ion algorithms 

Two algorithms are used for the classification of the chat data and broadcast 
message data: Naïve Bayes [3,6], and the Viterbi algorithm for Hidden Markov 
Models (HMMs). Naïve Bayes is a simple classifier that tries to compute the 
probability of a class given the input, by considering the base probabilities of each 

                                                             
2 These were picked based on a combination of visual inspection of the words, and of 
making the broadcast message data computationally feasible. 



 

class, and the probability of seeing each word in each class. Viterbi takes this one 
step further, by modeling the probability of seeing one class after another 
(transitions between classes). 

Thus, we have two primary hypotheses: Naïve Bayes will perform equal to Viterbi 
for the broadcast message data, since there (should be) no correlation between 
broadcast messages. Viterbi should perform better than Naïve Bayes on the chat 
data, because there is a high correlation between successive chat utterances. Further, 
both classifiers should perform better when lines of chat have been grouped into 
topic blocks, as the topic blocks contain more information than single lines of chat. 

5  Method 

Naïve Bayes and Viterbi implementations were adopted from the homework for use 
in this project. Many lines of Perl code were written (over 1,500) in order to process 
chat and broadcast message logs into a format suitable for MATLAB (feature 
vectors). Three data sets are used in this analysis: chat lines are the individual lines 
of chat from the chat logs, chat topics are the chat data after manual segmentation, 
and broadcast messages are the broadcast message data. For both of the chat data 
sets, two classification schemes are considered: the original 8 class (section 6.1), 
and the reduced 3 class (section 6.2). For the broadcast message data, two 
classifications are also used: the 422 class (section 6.1) and the 5 class (section 6.4). 

Each algorithm was trained using two-thirds of the data set, and tested on the 
remaining third. Unless otherwise stated, the Viterbi algorithm was run with five 
data points (e.g. using a history of five lines of chat, or five broadcast messages). 
Five was chosen because the average length of chat topics (from manual 
segmentation) was five. 

6  Results 

6 .1  Perf o rma n ce  o n  t h e  o r ig i n a l  d a t a  s e t s  

For the chat lines data, the training set accuracy of Naïve Bayes was 77.6%, and the 
test set accuracy was 33.6%. The Viterbi training set accuracy was 76.5%, and test 
set accuracy was 19.1%. For the chat topics data, the training set accuracy of Naïve 
Bayes was 97.5%, and the test set accuracy was 25.7%. The Viterbi training set 
accuracy was 88.1%, and test set accuracy was 21.6%. 

Neither Naïve Bayes nor Viterbi were run to completion on the original broadcast 
message data set, because the computation took too long to run. 

6 .2  Ef f e c t  o f  r ed u c in g  t h e  n u mb e r  o f  c la s ses  

Reducing the number of classes for the chat lines data from 8 to 3 results in an 
increase in the training set accuracy of Naïve Bayes, from 77.6% to 83.3%, and an 
increase in the test set accuracy from 33.6% to 53.9%. The Viterbi training set 
accuracy increased from 76.5% to 83.5%, and test set accuracy increased from 
19.1% to 46.1%. 

For the chat topics data, the training set accuracy of Naïve Bayes decreased from 
97.5% to 95.4%, and the test set accuracy increased from 25.7% to 49.3%. The 
Viterbi training set accuracy increased from 88.1% to 90.2%, and test set accuracy 



 

increased from 21.6% to 37.2%. The effect of reducing the number of classes on the 
broadcast message data set is discussed in Section 6.4. 

6 .3  Ef f e c t  o f  f ea t u re  r ed u ct io n  s t ra t eg i es  

Four strategies for reducing the number of features in each data set are considered: 
stemming, stopword removal, stemming + stopword removal, and frequency cutoff. 
The frequency cutoff was performed on the stemming + stopword removal data set, 
and only used words that occurred three or more times. 

Figure 2 shows the training and test set accuracies of Naïve Bayes and Viterbi for 
each of the feature reduction strategies, on the chat lines data set. The effects were 
similar on the chat topics data set. Overall, stemming and stopword removal do not 
have much of an impact on either algorithm’s accuracy. Including only words that 
occur 3 or more times increases test set accuracy, and decreases training set 
accuracy. 

Figure 2: Feature reduction strategies on the chat lines data set 

 

For the broadcast message data, performing a frequency cutoff of 6 – only using 
words that occur 6 or more times – makes classifying the data computationally 
feasible. In this case, the train & test set accuracies of Naïve Bayes are 85.7% and 
26.0%, respectively, for the full 422 classes. For the Viterbi algorithm, the train & 
test set accuracies are 41.9% and 3.7%, respectively. 

6 .4  Ef f e c t  o f  c lu s t er in g  o n  t h e  b ro a d ca s t  messa g e  d a t a  

Figure 3 shows the clustering of community names described in Section 3.4. Five 
clusters (plus one outlier) are depicted. 

Using only 5 classes, Naïve Bayes has train/test set accuracies of 88.0% and 75.9%, 
respectively. For the Viterbi algorithm, the train & test set accuracies are 86.5% and 
73.3%, respectively. 

 

 

 



 

Figure 3: Community name clusters 

 

6 .5  A mo u n t  o f  h i s t o ry  f o r  V i t e rb i  

Figure 4 shows the effect of history on classification accuracy on the chat lines data. 
The training set error hovers just below 80% no matter how much history is given, 
but the test set error decreases slightly with more history. The effect is the same on 
the chat topics data set. 

Figure 4: Number of chat lines given to Viterbi vs. test set accuracy 

 

7  Discussion 

Overall, there was a huge gap between training set accuracy and test set accuracy. 
This suggests some overfitting is occurring, whereby both Naïve Bayes and Viterbi 
learn parameters optimal to the training data, but not to the testing data. One 
possible reason explanation is because of the large number of words used in both 
data sets. Both algorithms may pick up on rarely used words to classify messages, 
and as those rarely occurring words do not occur in the test set, accuracy suffers. 
The frequency cutoff strategy seems to help guard against overfitting, by increasing 
test set accuracy and decreasing training set accuracy. 

Comparing Naïve Bayes and Viterbi on the chat data, in almost every case, Naïve 
Bayes’ test set accuracy was higher than Viterbi’s (33.6% vs 19.1% for the original 
chat lines data set). Further, varying how much history Viterbi sees results in a 
decrease in test set accuracy as more history is given. One explanation for this is 
that perhaps lines of chat and chat topics are really not as correlated as originally 
anticipated. Further, the grouping of chat data into topic blocks did not really help 
either algorithm (Viterbi test set accuracy went from 19.1% to 21.6% on the original 



 

data, Naïve Bayes test set accuracy went from 33.6% to 25.7%). Again, this seems 
to suggest only a weak correlation in the chat data. 

In almost all cases, reducing the number of classes resulted in significant gains in 
test set accuracy (e.g. 33.6% to 53.8% for Naïve Bayes on the original chat lines 
set). However, this has the drawback of decreased realism: in order to be useful, 
chat messages really should be classified into 8 (or possibly more classes) instead of 
just 3, and broadcast messages really should be classified into one or more of 400+ 
communities. 

For the broadcast message data, reducing the number of features made the problem 
computationally solvable in a reasonable amount of time. Using the full set of 422 
communities, Naïve Bayes performed fairly well, obtaining a 26% test set accuracy. 
However, the Viterbi algorithm performed extremely poorly, only classifying about 
4% of the examples correctly. This could be because of a strong independence 
between broadcast messages, and Viterbi is being negatively influenced by previous 
messages, when there is no correlation among them. 

With regard to clustering communities based on their name, while it seemed like a 
good idea in theory, many of the clusters had communities that really had nothing to 
do with each other. For example, one cluster included communities named: “IBM 
Christians”, “IBM Discounts” and “IBM hardware repair center”, which have 
nothing in common except “IBM”. Future work might use additional information, 
such as each community’s description, to perform the clustering. 

Finally, many other algorithms exist for classifying text data; Conditional Random 
Fields [4] are used to perform the task of segmenting and labeling sequences of text 
data (i.e. a stream of text data, much as how a chat occurs), and have relaxed 
assumptions about the independence of the data. EM [7] can also be used to 
incorporate unlabeled data, enabling automatic collection & classification of chat 
data, without requiring a human to label many examples. 
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