

Segmentation and Classif ication of
Online Chats

Justin Weisz

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213
jweisz@cs.cmu.edu

Abstract

One method for analyzing textual chat transcripts is a process
called coding, whereby individual lines of chat, or blocks of chat,
are assigned a topical label. This task is typically performed by
humans, and takes a great deal of time. Automated analyses can
reduce the amount of time it takes to code chat transcripts, and this
paper presents the performance of the Naïve Bayes and Viterbi
algorithms for classifying chat data.

1 Introduct ion

Coding is the process by which data – typically textual data – are assigned labels, in
order to understand what the data are about. Typically, coding is performed by
humans, and is a tedious and time-consuming task. Further, in order to provide
confidence in the coding scheme and assignment of labels, multiple human coders
are often used to code the same data, and an inter-rater reliability statistic (such as
Cohen’s Kappa) is computed to determine the degree of agreement between coders.
However, coding is a time-consuming process, one that can be greatly sped up by
the use of machine learning algorithms. In this project, I consider the problem of
automatically coding two types of data: chat transcripts and broadcast instant
messages.

1 .1 C h a t t ra n sc r i p t s

Chat transcripts are sequences of utterances made by one or more persons in a chat
session. Each utterance can be classified as belonging to a certain topic of
conversation1. Chat data comes from a previous research study by the author in
which participants watched a movie together and chatted about it at the same time.
An example chat excerpt is presented in Table 1. First, the two participants talk
about events occurring in the movie. Then, they talk about whether or not they had

1 While it is possible that a single utterance could be relevant to multiple topics of
conversation, we assume that utterances belong to only one topic.

previously seen the movie. Thus, there are two topics of conversation: things going
on in the movie, and whether or not the participants had seen the movie before.

Table 1: Example chat topics

TOPIC CHAT

P1: They're quite self-righteous, these guys. ;)

P2: yeah

Topic is about events
occurring in a movie being
watched by P1 and P2.

P2: especially considering what comes later

P1: Oh. I haven't seen this movie before. Topic switches to talking
about having seen the movie
previously. P1: ok, then I'll not spoil you

1 .2 Bro a d ca s t i n s t a n t mes sa g es

Instant messages are small snippets of text containing a message for an intended
recipient. Traditionally, instant messages are sent in a one-to-one fashion; however,
broadcast instant messages use a one-to-many model. A person sending a broadcast
instant message must first choose a community to which to send the message. These
communities are composed of other users using the broadcast instant messaging
system, and each community has its own topic or area of interest. For example, the
“tennis players” community would consist of people who play tennis (self-selected,
as users can subscribe to any communities they wish, and need not actually be
tennis players). Thus, this presents another classification problem: given an instant
message, to which community should it be sent?

2 Data set characterist ics

2 .1 C h a t t ra n sc r i p t s

Chats were logged during a previous research study conducted by the author. In
total, there were 2,203 lines of chat, from 15 different chat sessions. After manual
segmentation, there were 434 topic blocks (this process consisted of bucketing all of
the words used in each topic block, with no respect to the order of those words or of
who spoke them). The original coding scheme consisted of 8 classes, including talk
about the movie being watched (participants were chatting while watching a movie;
this type of chat comprises 29% of the data set), chat about the technology used to
view the movie (11%), chat about personal topics (32%), chat about the research
study in which they were participating (23%) and miscellaneous topics (5%). A
reduced coding scheme is also considered, utilizing three classes: chat about the
movie (39%), chat about personal topics (18%) and chat about the study (44%).

The final step of processing was converting each line of chat (or topic block) into a
vector of words: for each position i, the value in the vector is 1 if the ith word exists
in the line of chat (or topic block). This has the side-effect of eliminating any
influence of word order on the classification. In total, there were 2,270 unique
words used in this data set.

2 .2 Bro a d ca s t i n s t a n t mes sa g es

Broadcast instant messages were recorded during another research study conducted
by the author. In total, 5,299 broadcast instant messages were sent to a total of 422

different communities. Word vectors were created for this data set as well, and this
data set contained 9,924 unique words.

3 Feature set reduct ion

Many words were used in both data sets. Each word corresponds to a column in the
“feature vector” for a line of chat (or broadcast message). Because classification
with many features takes a long time, several strategies were employed in order to
reduce the number of features in each data set. A summary of the number of features
present after each of the feature-reduction strategies is applied is given in Table 2.
Since feature reduction may result in data points losing all of their features (e.g. a
chat message composed of only stopwords), Table 3 shows how many data points
were present after applying stopword removal (stemming did not eliminate any data
points).

Further, in the broadcast message data set, many of the communities are similar to
one another (e.g. there are multiple communities for “c programming”). Section 3.4
discusses clustering community names in order to treat similar communities as one.

Table 2: Number of features in each data set for each feature reduction strategy

DATA SET ORIGINAL STEM STOPWORD
REMOVAL

STEM +
STOP

FREQ.
CUTOFF

Chat (lines &
topics)

2,270 1,898 2,108 1,741 636

Broadcast
messages

9,924 7,861 8,662 6,725 1,470

Table 3: Number of data points for each feature reduction strategy (stopword
removal and frequency cutoff were the only strategies that eliminated data points)

DATA SET ORIGINAL STOPWORD
REMOVAL

FREQ.
CUTOFF

Chat (lines) 2,203 2,163 2,080

Chat (topics) 434 434 432

Broadcast messages 5,299 5,282 5,206

3 .1 S t em m in g

Stemming [2] is the process by which words are reduced to their root forms. For
example, suffixes are removed, such as “-ing” and “-s”, such that “digging” and
“dig” become the same word. This allows a classifier to focus on differences
between concepts, rather than treating “digging” and “dig” as two separate concepts.

3 .2 S t o p w o rd re mo v a l

Stopwords [1] are words that occur frequently in the English language, such as “a”,
“and” and “the”. Because of their frequent occurrence, they may not add any
additional information to aid classification, assuming a uniform distribution over all
classes. Stopword removal is performed in order to test this hypothesis.

3 .3 Fre q u en cy cu t o f f

Some words are more important than others. For example, misspellings and typos
are not as important as properly spelled words, because they may not generalize
across chat data. In order to approximate the removal of “unimportant” data, words
which do not occur frequently can be removed from the data set. Further, words
which occur frequently might also be removed, according to the same logic that
justifies stopword removal, however this analysis is not performed. Figure 1 shows
the familiar power-law distribution of stemmed word frequencies for the chat data
set. The distribution is similar for the words in the broadcast message data set.

Figure 1: Word frequency distribution for chat data

For the purposes of this analysis, we consider words that occur 3 or more times in
the chat data, and 6 or more times for the broadcast message data2. For both data
sets, words that occur 3 or more times comprise roughly 35% and 22% of the total
number of words in the data sets, respectively.

3 .4 C o mmu n it y n a m e c lu s t er in g

In order to reduce the number of classes in the broadcast message data set,
clustering was performed on the community names. This involved first computing
the cosine distance [5] between each community name with each other community
name. Next, the cmdscale function in MATLAB was used to convert the distance
matrix into (X,Y) points for each community name. A plot of these results is shown
in Figure 3, and it shows 5 distinct “clusters” of community names (with one
outlier). Reducing the number of classes from 422 to 5 seems very drastic, and the
implications are discussed in Section 7.

4 Classif icat ion algorithms

Two algorithms are used for the classification of the chat data and broadcast
message data: Naïve Bayes [3,6], and the Viterbi algorithm for Hidden Markov
Models (HMMs). Naïve Bayes is a simple classifier that tries to compute the
probability of a class given the input, by considering the base probabilities of each

2 These were picked based on a combination of visual inspection of the words, and of
making the broadcast message data computationally feasible.

class, and the probability of seeing each word in each class. Viterbi takes this one
step further, by modeling the probability of seeing one class after another
(transitions between classes).

Thus, we have two primary hypotheses: Naïve Bayes will perform equal to Viterbi
for the broadcast message data, since there (should be) no correlation between
broadcast messages. Viterbi should perform better than Naïve Bayes on the chat
data, because there is a high correlation between successive chat utterances. Further,
both classifiers should perform better when lines of chat have been grouped into
topic blocks, as the topic blocks contain more information than single lines of chat.

5 Method

Naïve Bayes and Viterbi implementations were adopted from the homework for use
in this project. Many lines of Perl code were written (over 1,500) in order to process
chat and broadcast message logs into a format suitable for MATLAB (feature
vectors). Three data sets are used in this analysis: chat lines are the individual lines
of chat from the chat logs, chat topics are the chat data after manual segmentation,
and broadcast messages are the broadcast message data. For both of the chat data
sets, two classification schemes are considered: the original 8 class (section 6.1),
and the reduced 3 class (section 6.2). For the broadcast message data, two
classifications are also used: the 422 class (section 6.1) and the 5 class (section 6.4).

Each algorithm was trained using two-thirds of the data set, and tested on the
remaining third. Unless otherwise stated, the Viterbi algorithm was run with five
data points (e.g. using a history of five lines of chat, or five broadcast messages).
Five was chosen because the average length of chat topics (from manual
segmentation) was five.

6 Results

6 .1 Perf o rma n ce o n t h e o r ig i n a l d a t a s e t s

For the chat lines data, the training set accuracy of Naïve Bayes was 77.6%, and the
test set accuracy was 33.6%. The Viterbi training set accuracy was 76.5%, and test
set accuracy was 19.1%. For the chat topics data, the training set accuracy of Naïve
Bayes was 97.5%, and the test set accuracy was 25.7%. The Viterbi training set
accuracy was 88.1%, and test set accuracy was 21.6%.

Neither Naïve Bayes nor Viterbi were run to completion on the original broadcast
message data set, because the computation took too long to run.

6 .2 Ef f e c t o f r ed u c in g t h e n u mb e r o f c la s ses

Reducing the number of classes for the chat lines data from 8 to 3 results in an
increase in the training set accuracy of Naïve Bayes, from 77.6% to 83.3%, and an
increase in the test set accuracy from 33.6% to 53.9%. The Viterbi training set
accuracy increased from 76.5% to 83.5%, and test set accuracy increased from
19.1% to 46.1%.

For the chat topics data, the training set accuracy of Naïve Bayes decreased from
97.5% to 95.4%, and the test set accuracy increased from 25.7% to 49.3%. The
Viterbi training set accuracy increased from 88.1% to 90.2%, and test set accuracy

increased from 21.6% to 37.2%. The effect of reducing the number of classes on the
broadcast message data set is discussed in Section 6.4.

6 .3 Ef f e c t o f f ea t u re r ed u ct io n s t ra t eg i es

Four strategies for reducing the number of features in each data set are considered:
stemming, stopword removal, stemming + stopword removal, and frequency cutoff.
The frequency cutoff was performed on the stemming + stopword removal data set,
and only used words that occurred three or more times.

Figure 2 shows the training and test set accuracies of Naïve Bayes and Viterbi for
each of the feature reduction strategies, on the chat lines data set. The effects were
similar on the chat topics data set. Overall, stemming and stopword removal do not
have much of an impact on either algorithm’s accuracy. Including only words that
occur 3 or more times increases test set accuracy, and decreases training set
accuracy.

Figure 2: Feature reduction strategies on the chat lines data set

For the broadcast message data, performing a frequency cutoff of 6 – only using
words that occur 6 or more times – makes classifying the data computationally
feasible. In this case, the train & test set accuracies of Naïve Bayes are 85.7% and
26.0%, respectively, for the full 422 classes. For the Viterbi algorithm, the train &
test set accuracies are 41.9% and 3.7%, respectively.

6 .4 Ef f e c t o f c lu s t er in g o n t h e b ro a d ca s t messa g e d a t a

Figure 3 shows the clustering of community names described in Section 3.4. Five
clusters (plus one outlier) are depicted.

Using only 5 classes, Naïve Bayes has train/test set accuracies of 88.0% and 75.9%,
respectively. For the Viterbi algorithm, the train & test set accuracies are 86.5% and
73.3%, respectively.

Figure 3: Community name clusters

6 .5 A mo u n t o f h i s t o ry f o r V i t e rb i

Figure 4 shows the effect of history on classification accuracy on the chat lines data.
The training set error hovers just below 80% no matter how much history is given,
but the test set error decreases slightly with more history. The effect is the same on
the chat topics data set.

Figure 4: Number of chat lines given to Viterbi vs. test set accuracy

7 Discussion

Overall, there was a huge gap between training set accuracy and test set accuracy.
This suggests some overfitting is occurring, whereby both Naïve Bayes and Viterbi
learn parameters optimal to the training data, but not to the testing data. One
possible reason explanation is because of the large number of words used in both
data sets. Both algorithms may pick up on rarely used words to classify messages,
and as those rarely occurring words do not occur in the test set, accuracy suffers.
The frequency cutoff strategy seems to help guard against overfitting, by increasing
test set accuracy and decreasing training set accuracy.

Comparing Naïve Bayes and Viterbi on the chat data, in almost every case, Naïve
Bayes’ test set accuracy was higher than Viterbi’s (33.6% vs 19.1% for the original
chat lines data set). Further, varying how much history Viterbi sees results in a
decrease in test set accuracy as more history is given. One explanation for this is
that perhaps lines of chat and chat topics are really not as correlated as originally
anticipated. Further, the grouping of chat data into topic blocks did not really help
either algorithm (Viterbi test set accuracy went from 19.1% to 21.6% on the original

data, Naïve Bayes test set accuracy went from 33.6% to 25.7%). Again, this seems
to suggest only a weak correlation in the chat data.

In almost all cases, reducing the number of classes resulted in significant gains in
test set accuracy (e.g. 33.6% to 53.8% for Naïve Bayes on the original chat lines
set). However, this has the drawback of decreased realism: in order to be useful,
chat messages really should be classified into 8 (or possibly more classes) instead of
just 3, and broadcast messages really should be classified into one or more of 400+
communities.

For the broadcast message data, reducing the number of features made the problem
computationally solvable in a reasonable amount of time. Using the full set of 422
communities, Naïve Bayes performed fairly well, obtaining a 26% test set accuracy.
However, the Viterbi algorithm performed extremely poorly, only classifying about
4% of the examples correctly. This could be because of a strong independence
between broadcast messages, and Viterbi is being negatively influenced by previous
messages, when there is no correlation among them.

With regard to clustering communities based on their name, while it seemed like a
good idea in theory, many of the clusters had communities that really had nothing to
do with each other. For example, one cluster included communities named: “IBM
Christians”, “IBM Discounts” and “IBM hardware repair center”, which have
nothing in common except “IBM”. Future work might use additional information,
such as each community’s description, to perform the clustering.

Finally, many other algorithms exist for classifying text data; Conditional Random
Fields [4] are used to perform the task of segmenting and labeling sequences of text
data (i.e. a stream of text data, much as how a chat occurs), and have relaxed
assumptions about the independence of the data. EM [7] can also be used to
incorporate unlabeled data, enabling automatic collection & classification of chat
data, without requiring a human to label many examples.

8 References

[1] List of stop words. http://www.snowball.tartarus.org/algorithms/english/stop.txt

[2] Porter stemming algorithm. http://www.tartarus.org/martin/PorterStemmer/

[3] Friedman, N., Geiger, D., and Goldszmidt, M. Bayesian network classifiers. Machine
Learning, 29:131–163, 1997.

[4] Lafferty, J. D., McCallum, A., and Pereira, F. C. 2001. Conditional random fields:
probabilistic models for segmenting and labeling sequence data. In Proceedings of the
Eighteenth International Conference on Machine Learning, 282-289.

[5] Lee, L. 1999. Measures of distributional similarity. Proceedings of the 37th Annual
Meeting of the Association For Computational Linguistics on Computational Linguistics.
Association for Computational Linguistics, Morristown, NJ, 25-32.

[6] Mccallum, A., and Nigam, K. A comparison of event models for naïve bayes text
classification. In AAAI-98 Workshop on Learning for Text Categorization, 1998.

[7] Nigam, K., Mccallum, A. K., Thrun, S., Mitchell, T. Text classification from labeled and
unlabeled documents using EM. Machine Learning, 39:103-134, 2000.

