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Abstract— We introduce BEVRender, a novel learning-based
approach for the localization of ground vehicles in Global
Navigation Satellite System (GNSS)-denied off-road scenarios.
These environments are typically challenging for conventional
vision-based state estimation due to the lack of distinct visual
landmarks and the instability of vehicle poses. To address
this, BEVRender generates high-quality local bird’s-eye-view
(BEV) images of the local terrain. Subsequently, these images
are aligned with a georeferenced aerial map through template
matching to achieve accurate cross-view registration. Our
approach overcomes the inherent limitations of visual inertial
odometry systems and the substantial storage requirements of
image-retrieval localization strategies, which are susceptible to
drift and scalability issues, respectively. Extensive experimenta-
tion validates BEVRender’s advancement over existing GNSS-
denied visual localization methods, demonstrating notable en-
hancements in both localization accuracy and update frequency.

I. INTRODUCTION

Global localization is a crucial component that supports
smooth navigation of autonomous vehicles. It is typical
to equip on-board localization systems with the Global
Navigation Satellite System (GNSS) modules for consistent
and reliable global poses. However, in reality, GNSS signals
can be blocked due to natural or artificial barriers, causing
temporal system failures, where vision-based localization
(VBL) serves as an alternative in GNSS-denied localization.
A variety of methods have been proposed for VBL in urban
scenarios [1], yet off-road VBL for unmanned ground vehicle
(UGV) is still challenging due to non-urban environments
lacking stable and distinct visual features, such as roads
and buildings. The varied and unpredictable terrain further
complicates the task by inducing unstable vehicle poses,
making it difficult to maintain consistent feature matching
across frames.

In response to these challenges, our paper presents a novel
learning-based method that synthesizes a local bird’s eye
view (BEV) image of the surrounding area by aggregating
visual features from camera images. This approach integrates
a modified BEVFormer [2] framework with a novel rendering
head, employing template matching for precise cross-view
registration between ground vehicles and aerial maps in
GNSS-denied off-road environments.
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We concentrate on 2D relocalization of unmanned ground
vehicles (UGV) for non-urban settings bounded within de-
fined areas. Equipped with trinocular RGB cameras and an
Inertial Measurement Unit (IMU), the vehicle employs multi-
view visual inertial odometry (VIO) for state estimation.
Our aim is to achieve accurate 2D positioning relative to
a geo-referenced aerial map, facilitating pose correction
in the absence of GNSS signals, whether temporarily or
persistently. A more detailed problem definition is in Sec. III.

Previous study [3] has explored the creation of ortho-
graphic view images by accumulating geometric features
over consecutive frames, coupled with Normalized Cross-
correlation (NCC) for relocalization in a GPS-denied situa-
tion. However, this approach is limited by the inherent drift
of VIO systems, which can distort the accumulated geometric
data, leading to inaccuracies in ground-to-air matching. Our
paper introduces a learning-based strategy for generating
BEV images, using a Vision Transformer (ViT) [4]-based
network for feature encoding. This method shows improved
performance in generating local BEV images and supporting
vehicle localization with geo-referenced aerial maps.

Other research efforts [5], [6], [7] treat vision-based local-
ization as an image retrieval problem, requiring substantial
storage for on-board localization systems. On the contrary,
our approach generates local BEV images for direct template
matching. This significantly reduces the need for extensive
data storage, relying instead on a geo-referenced map for
real-time 2D localization. In summary, our contributions are
threefold:

1) We propose a novel learning-based framework for ground
vehicle localization that combines BEV image generation
with classical template matching, eliminating the exten-
sive dataset storage requirements of image-retrieval-based
localization.

2) We integrate the deformable attention module in [8] with
the BEVFormer network, enhancing feature encoding by
using offset networks [8], followed by an efficient image
rendering head as a feature decoder capable of producing
detailed top-down views of the local terrain.

3) Through comprehensive experiments with real-world
datasets, we demonstrate that our method exhibits su-
perior localization accuracy and frequency compared to
existing GNSS-denied visual localization techniques, and
generalizes to unseen trajectories.



Fig. 1. A diagram of our system. The light blue background indicates the training phase and the light green background indicates the testing phase.
During the training phase, camera images are patch projected and sent to the feature encoder (in blue) and rendering head (in orange) to generate BEV
images (highlighted in yellow boxes). The aerial map image is rotated and cropped according to the GPS information provided, ensuring that the final
label image accurately represents the BEV space surrounding the vehicle. During the testing phase, the rendered BEV image is rotated according to the
azimuth angle provided by the GPS, and matched against a local search region surrounding the vehicle position.

II. RELATED WORK

A. GNSS-denied Vehicle Localization

Vehicle localization in GNSS-denied environments can be
broadly categorized into relative and absolute localization
strategies. Relative localization aims to mitigate odometry
drifts by fusing data from multiple onboard sensors with
motion models, or by leveraging loop closures to correct
drift relative to global frames [9]. Absolute localization, in
contrast, involves constructing local maps from the vehicle’s
perspective and aligning them with a global georeferenced
map to determine precise vehicle positions. Reference data
for this process can vary, including High-definition (HD)
maps [10], aerial satellite imagery, Digital Elevation Models
(DEM) [11], [12], and OpenStreetMap (OSM) data [13].
While HD maps offer high accuracy, they are costly and
data intensive. DEMs, primarily used for UAVs [11], cater
to non-planar terrains and scale ambiguity, whereas OSM
provides dense semantic and geometric details suitable for
urban navigation. Aerial satellite maps present strong visual
cues with detailed information for off-road localization.

Significant advancements have been made in aligning
ground-level images with aerial imagery for localization.
Viswanathan et al. [14] demonstrate effective ground-to-air
image matching using satellite images by warping UGV
panoramic images to a bird’s eye view, comparing feature
descriptors, and employing a particle filter for accurate
localization. Based on this, recent work [3] focuses on
generating an orthographic occupancy map by accumulation
of local features and estimation of pose through NCC, and
optimizing the prediction of global pose through a registra-
tion graph [15]. In contrast, our approach adopts a Vision
Transformer (ViT)-based [4] learning network to generate
BEV images for ground-to-air matching, emphasizing frame-
by-frame registration accuracy and reducing reliance on
global trajectory optimization.

B. Learning Vision-based Localization

The evolution of vision-based localization has seen it
conceptualized as an image retrieval task [5], employing
contrastive learning to enhance the matching of onboard
camera and satellite images [6], [7]. Efforts to improve
image alignment include warping satellite imagery by po-
lar transformation to match ground perspectives [7], and
constructing semantic neural maps from camera images [6].
Further innovations leverage CNNs for feature extraction and
BEV representation, enabling precise localization through 3D
structure inference and matching [13], [16], [17], [18].

The advent of foundation models offers promising direc-
tions for Visual Place Recognition (VPR), demonstrating
the adaptability of pre-trained models (e.g., DINO [19], DI-
NOv2 [20]) to diverse environments without fine-tuning [21].
Subsequent work [22] integrates dense visual feature extrac-
tion with advanced filtering and global-local pose estimation
via Extended Kalman Filters (EKF) for refined localization
accuracy. Our methodology aligns with these advancements,
utilizing a streamlined ViT architecture for efficient and
accurate BEV image rendering and localization, minimizing
parameter overhead while maximizing performance.

In the realm of self-driving applications, BEV representa-
tions [23], [24] have been enriched by encoding temporal
and spatial features, as demonstrated by BEVFormer [2],
which leverages attention mechanisms [25], [8] for 3D object
detection. Our work extends this concept by incorporating
BEVFormer’s feature propagation approach, ensuring our
BEV representations integrate temporal information from
successive frames. This strategy is complemented by recent
explorations in temporal information encoding for BEV
representation, highlighting the continuous evolution and ap-
plication of these techniques in autonomous navigation [26],
[27], [28], [29], [30].



Fig. 2. Encoder layer architecture. An encoder layer is composed of temporal and spatial attention. In temporal attention, a set of 2D reference points with
a spatial dimension of l×w is sampled and deformed. Next, bilinear sampling is performed to extract tokens for multi-head attention (MHA) [25] given
deformed reference points from previous timestamp BEV feature Bt−1. The MHA output from temporal attention serves as a query for the subsequent
spatial attention module. In spatial attention, we sample one point per 3D grid cell in the BEV space as reference points and project them to the three
camera image frames with extrinsic and intrinsic parameters to obtain 2D reference points for each image view. Similarly to temporal attention, the 2D
reference points are deformed and used for bilinear sampling, but from camera feature. A more detailed description can be found in Sec. III-A.

III. METHODOLOGY

Our system contains three main components: a feature
encoder to map the visual features from the camera to the
top-down view, a rendering head to decode the features and
generate top-down BEV images, and an image registration
component for cross-view localization. An overview of our
system is shown in Fig. 1.

We consider a scenario where a vehicle, equipped with
trinocular cameras and an IMU, is traversing flat natural ter-
rain. A pre-stored aerial map of the area aids in localization.
The vehicle’s pose is predicted by the VIO system in a local
coordinate frame as follows:

Xt =
[
xt, yt, θt

]
∈ SE(2). (1)

We assume that the prediction for the azimuth angle θt
from VIO is accurate, but the position estimates (xt and yt)
may drift over time. Our system aggregates information from
consecutive frames to construct a top-down representation of
the environment for map registration.

We define a 3D BEV space centered on the vehicle with a
length of L, a width of W and a height of H . The space is
divided into l×w×h grid cells, so that each cell represents
a cubic size of L

l × W
w × H

h in the real world. The BEV
query is a 3D trainable embedding with a dimension of
l × w × h representing the BEV space and serving as the
query for deformable attention modules in the encoder. All
intermediate BEV features in the network also follow the
same spatial dimension. The specific range and dimension
chosen for our experiment are described in Sec. IV-A.

Our system seeks to find the optimal pose prediction that
minimizes the difference between camera feature represen-
tation and local aerial image:

X∗ = argmin
X

Φ
(
I

′

bev(X), Imap(X)
)
, (2)

where Φ is a function to find X∗ to achieve minimum
distance between two representations in feature space, and is
provided by template matching module in our system. Imap
is a subset of the aerial map with respect to a vehicle pose.

The image rendering head Ψrender defines a mapping from
the encoded image feature Ffeat to top-down BEV image I

′

bev:

I
′

bev(X) = Ψrender

(
Ffeat(X)

)
. (3)

A. Feature Encoding with BEVFormer
Adopting BEVFormer’s framework [2], we propagate con-

secutive frame features to capture temporal information.
Within a temporal window of T seconds, n frames (3 × n
images in a trinocular setup) are sampled. A detailed setting
can be found in Sec. IV-A. Starting with the earliest frame,
camera images Icamt are processed through patch projection,
which is a convolutional layer in our implementation, to
obtain camera feature F cam

t and sent to the encoder together
with the BEV query Q and previous BEV feature Bt−1 to
obtain the encoded BEV feature for current timestamp Bt.
The encoding process consists of two stages: a temporal
attention stage that takes in query Q and previous timestamp
BEV feature Bt−1 for deformable attention:

Btemp
t = DeformableAttn

(
Bt−1, Q

)
, (4)

followed by a spatial attention stage that takes in temporal
output and camera feature Ft for deformable attention:

Bt = Bspatial
t = DeformableAttn

(
F cam
t , Btemp

t

)
. (5)

Bt is then projected to the subsequent frame vehicle pose
as B

′

t according to the movement of the vehicle provided by
GPS. The projection is performed by affine transformations
in SE(2) followed by a bilinear interpolation:

∆X = Xt −Xt−1 =
[
∆x,∆y,∆θ

]
, (6)



xt
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1

 =

cos∆θ − sin∆θ ∆x
sin∆θ cos∆θ ∆y

0 0 1

xt−1

yt−1

1

 , (7)

B
′

t(xt, yt) = BilinearInterp(Bt(xt, yt)). (8)

Subsequently, B
′

t serves as a query to the encoder to query
the next timestamp camera feature Ft+1 to obtain Bt+1.
The propagation continues in the temporal window until we
obtain the latest timestamp feature. A diagram of temporal
propagation is shown in Fig. 3. It should be noted that Bt−1

is the same as query Q for the first frame in the temporal
window:

Bt−1 = Q if t = 0. (9)

Unlike BEVFormer, our encoder simplifies to a single
layer, totaling 1.44 million parameters, while supporting
effective feature learning for downstream localization tasks.

The architecture of the encoding layer is shown in Fig. 2,
and the ablation study of the number of layers can be found
in Table V.

B. Deformable Attention Vision Transformer

In contrast to BEVFormer that employs Deformable
DETR [31], our approach utilizes the deformable attention
[8], which uses offset networks to calculate adjustments
to each reference point. The offsets are processed by an
additional convolution layer θoffset, as shown in Fig. 2, and
its output modifies the original reference point to generate
deformed reference points. For spatial attention, offsets θioffset
are added to the reference points unique to each camera view
i, acting as adjustments to the pixel locations of reference
points. Consequently, we employ three distinct convolution
layers dedicated to learning offsets as an adaptation to the
trinocular system setting. The final output of the spatial
attention layer is a stacking of features from three camera
views, undergoing another convolutional layer to maintain
the same spatial dimension as the BEV query and BEV
features.

The output of deformable attention heads is formulated as

z(m) = σ
(q(m)k(m)⊤

√
d

+ ϕ(B;R)
)
v(m), (10)

where q, k, v constructs the standard transformer atten-
tion [25] with softmax activation σ and scale normalization√
d, enhanced by relative positional bias [32] in ϕ(B;R). A

more detailed description of deformable attention formula-
tion can be found in [8].

C. BEV Image Rendering Head

The BEV image rendering head is designed to translate
encoded features into interpretable top-down views of the
vehicle’s surroundings. It is a straightforward convolutional
neural network (CNN) architecture that takes as input the
encoded BEV features with dimensions of d× l×w, where
d is the model embedding dimension. Through a series
of convolutional and upsampling layers, the BEV features

are processed to generate a colored image of certain size,
which serves as a top-down visual representation of the BEV
space around the vehicle. The rendering head ensures that
the resulting BEV image retains critical spatial information
required for ground-to-aerial vehicle localization in GNSS-
denied environments. The detailed structure of the rendering
head is illustrated in Table I.

Fig. 3. Temporal feature propagation and dataset organization. For each
timestamp, we sample n frames from past T seconds, composing a training
sample of n+1 camera frames together with current timestamp frame.
Staring with the earliest timestamp in the window, BEV query Q is used
to query camera feature F to obtain BEV feature B, which is subsequently
projected to next timestamp vehicle position given GPS outputs, to obtain
new feature B′. Propagation continues until the latest frame is processed.
A detailed description on projection can be found in Sec. III-A.

TABLE I
BEV RENDERING HEAD ARCHITECTURE

block layer
Decoder block 0 Conv2d + BN + ReLU
Decoder block 1 (Conv2d + BN)×4 + ReLU
Decoder block 2 (Conv2d + BN)×4 + ReLU
Decoder block 3 (Conv2d + BN)×4 + ReLU

Upsample block 0 Upsample + (Conv2d + BN)×2 + ReLU
Upsample block 1 Upsample + (Conv2d + BN)×2 + ReLU
Upsample block 2 Upsample + (Conv2d + BN)×2 + ReLU
Upsample block 3 Upsample + (Conv2d + BN)×2 + Sigmoid

IV. EXPERIMENTS

A. Experiment Setting

Since the satellite image1 has a resolution of 0.229 meters
per pixel, we define the length and width of the BEV space
as 25.648 meters centered on vehicle position, equivalent to a
size of 112×112 pixels on the aerial map. We also define the
height of the BEV space as 2 meters. The space is divided
into 28×28×5 3D grid cells, so that each cell represents a
voxel of 0.916×0.916×0.4m3 in the real world. We utilize
a temporal window of 5 seconds and randomly sample 5
frames in the window to compose a training sample.

1The satellite image used in this paper is provided by Nearmap.

https://www.nearmap.com/us/en


Seq 1 Seq 2 Seq 3 Seq 4

Fig. 4. Qualitative comparison of our method and Litman [3]. Top row: the rendering and registration result of our method, where the BEV images are
highlighted in yellow boxes, the red dots indicate the NCC predictions from our system, and the blue dots indicate the GPS ground truth position. Our
approach produces coherent rendering to the aerial image. Bottom row: predictions from Litman [3]. Similarly, the red and blue dots indicate the predictions
and ground truth, while the yellow boxes indicate the generated occupancy image overlaid on the groundtruth. Only semi-dense rendering are available for
Litman [3] (see the saturated white and green points around red dots), resulting in compromised registration accuracy.

TABLE II
STATISTICS OF GNSS-DENIED REAL-WORLD DATASET

# images traj. length (m) coverage (m2 )

Seq 1 1634 1059.42 349.34×159.70
Seq 2 1563 1067.08 349.34×159.67
Seq 3 1427 1415.72 353.07×164.65
Seq 4 1210 1228.61 350.99×161.92
Seq 5 1707 1179.64 462.53×359.25
Seq 6 838 495.64 340.13×239.08
Seq 7 815 439.67 410.86×74.74
Seq 8 1395 1425.88 368.51×166.06

aerial map - - 1278.20×1646.46

We conduct two main experiments, one to compare against
state-of-the-art VBL methods in GNSS-denied setting [3],
[7], where we use 4 sequences and split them into 80%
training, 20% testing data; and another to show our model’s
ability to generalize across different scenes given limited
training data, where we use 2 sequences for training and
4 sequences for testing. The trajectory plots for sequences
used in the cross-sequence testing experiment are shown in
Fig. 5.

Training is distributed on 8 NVIDIA A100 GPUs for a
total of 2500 epochs and with a learning rate of 4e−5. The
configuration of the testing computer is described in Sec. IV-
C in system runtime.

During the testing phase, we crop and rotate the aerial
map based on the GPS ground truth position as the center of
the image with a size of 874×874 pixels, which corresponds
to a real-world coverage of approximately 200×200 square

meters. This search region is sufficient to accommodate
VIO drift for more than 10 minutes without registration.
For cross-sequence testing, we loosen the assumption of
drifting range and use a search region of 100×100 square
meters. Our camera system captures 3 frames per second and
predicts registration consistent with camera frame; therefore,
sufficient for preventing from failing with the 100×100
square meter search range.

We use NCC for template matching. NCC identifies the
best match within the search area, maximizing similarity
between the generated BEV image and the aerial map, thus
predicting the vehicle’s position relative to the aerial map.
We observe failure cases where rendered BEV images are
of moderate visual quality, whereas NCC fails in prediction.
An example of failure cases is shown in Fig. 6.

B. Dataset Organization

We collect our real-world data set in the Pittsburgh area,
with a VIO system on board. Detailed information on the
sequences can be found in Table II. For each training sample,
we use the information of timestamp, trinocular RGB images,
and GPS ground truth including x, y, and azimuth angle in
the UTM coordinate system for training. The preprocessing
for cropping the aerial map can be found in Fig. 1.

C. Quantitative Comparison

We compare our method with GPS denied registration via
occupancy mapping proposed in [3], and GeoDTR proposed
in [7]. The comparison result is shown in Table III.



TABLE III
QUANTITATIVE COMPARISONS ON OUR REAL-WORLD DATASET

approach Seq 1 Seq 2 Seq 3 Seq 4
mean ↓ std ↓ match (%) ↑ mean ↓ std ↓ match (%) ↑ mean ↓ std ↓ match (%) ↑ mean ↓ std ↓ match (%) ↑

Litman [3] 24.35 13.50 21.62 (Rmk.1) 34.45 21.59 12.12 26.27 13.44 11.46 61.04 55.80 8.89
GeoDTR [7] (top 1) 82.72 25.52 0.00 (Rmk.2) 90.27 29.92 1.28 84.40 27.33 0.36 86.53 27.60 0.00

GeoDTR [7] (top 5 avg.) 67.35 24.22 0.94 74.06 30.43 1.60 71.33 28.91 1.07 66.34 29.35 1.67
Ours 19.33 26.09 63.44 22.40 27.92 60.90 20.60 24.96 58.93 21.18 25.49 57.50

1. The darker shading indicates the best results, and the lighter shading indicates the second-best results.
2. The mean and std are calculated for the APE for predicted positions, see the registration accuracy of Sec. IV-C for more details.
3. The search region is set to 200×200 square meters.

Since GeoDTR is an image-retrieval-based method and
relies on cultivating the corresponding information between
camera inputs and polar transformation of aerial map images,
it is required to preserve a database of candidate polar
transformed images for real-world vehicle localization. We
randomly sample 5000 particles within the search region at
each timestamp and apply polar transformation according to
the particle location on the map together with the azimuth
angle of GPS ground truth. After obtaining the candidate
polar images, for each timestamp, we pass in the camera
images and polar images to the model, and calculate the
distance between camera descriptors and polar descriptors,
we choose candidate with closest descriptor distance as the
top 1 prediction, and its corresponding real-world location as
top 1 location, and we average the top 5 predicted locations
as top 5 prediction.
Registration accuracy To evaluate the accuracy of vehicle
registration, we calculate the mean and standard deviation
(STD) of absolute position error (APE) between predicted
position and the ground truth vehicle location given by on-
board GPS.
Registration frequency In the real-world localization sce-
nario, the update frequency is another important factor that
determines the stability of registration system. We report the
matching frequency by counting the total successful matches
when the APE is within a threshold of 10 meters (the
range we deem tolerable for our VIO system) and calculate
the match rate as total successful matches divided by total
camera frames for a sequence:

xi = (xi, yi), (11)

di = ∥xi
gt − xi

pred∥2, (12)

pmatch =
1

N

N∑
i=1

1 · (di < dthreshold), (13)

where N is the number of images for a sequence per camera
module.
Remark 1 (Testing with Litman [3]): It should be noted that the
method proposed in [3] accumulates geometric features on a certain
number of consecutive camera frames (50 by default), leading to a
limited number of registration try-outs throughout a sequence. For
comparison sake, we calculate the match rate as the total number
of successful matches divided by the total number of occupancy
maps synthesized in a sequence.
Remark 2 (Testing with GeoDTR): It takes up to 21 hours to
sample polar images for 5000 particles for 320 testing samples;
hence, we cannot further increase the density of particles. To

apply image-retrieval-based method for on-board localization, it
is required to have a pre-stored dataset, specifically in our case,
of polar images sampled from all candidate positions on local
aerial map enumerating all possible rotations, which is prohibitively
expensive storage for on-board system in real-world localization.

System runtime Testing is performed on a machine
equipped with an AMD Ryzen 9 5900X 12-Core processor
and a NVIDIA GeForce RTX 4090. The total time to localize
280 testing samples is 33.32 seconds, equivalent to 0.12
seconds to localize per camera frame. The camera frame rate
for our system is 3 per second; therefore, our system is able
to support online localization in real-world scenario.

Fig. 5. Trajectory plot for cross-sequence testing. Sequence 3 and 8 are
used in training, sequence 4 to 7 are used in testing.

TABLE IV
CROSS-SEQUENCE TESTING FOR MODEL GENERALIZATION

sequence mean ↓ std ↓ match(%) ↑
Seq 4 11.24 6.64 45.38
Seq 5 13.77 6.74 31.16
Seq 6 12.72 6.38 36.63
Seq 7 16.30 6.92 21.81

D. Qualitative Comparison

Visualizations of the rendering and registration result can
be found in Fig. 4. The image rendering head processes the
encoded BEV feature with a spatial dimension of 64× 28×
28 through a set of convolutional layers and 4 upsample
layers, as shown in Table I. The final BEV image is an RGB
image with a size of 224× 224 pixels, representing an area
of 51.296 × 51.296 m2. The occupancy map reconstructed
from [3] aggregates geometric features from 50 consecutive
frames, of which the coverage may vary for each prediction.

E. Model Generalization

To test the generalizability of the proposed system, we
perform cross-sequence tests. Specifically, training with se-



quences 3 and 8 while testing with sequences 4-7. We report
search regions of 100× 100m2 in Table IV.

F. Ablation Study

In this section we explore the influence of choosing
different hyperparameters and BEV space resolutions on the
final registration result. Since the aerial map resolution is
0.229 meters, we experiment with the BEV grid resolutions
of 0.458 meters and 0.916 meters, corresponding to 2 pixels
and 4 pixels on the map, respectively. We also experiment
with an increased number of layers and report the results
in Table V. Considering the result from ablation study, we
choose the resolution of the BEV grid as 0.916 meters, and
the number of encoder layers as 1 for Table III and Table IV.

TABLE V
ABLATION STUDY ON SEQ 4

EFFECTS OF ARCHITECTURE CHOICE AND HYPER PARAMETERS

# layers grid reso. (m) # params mean ↓ std ↓ match(%) ↑
1 0.458 1.71M 27.47 27.83 48.75
2 0.458 2.09M 27.75 27.32 45.42
1 0.916 1.44M 21.17 25.49 57.50
2 0.916 1.72M 36.40 25.66 20.42

V. CONCLUSION AND FUTURE WORK

We present a learning-based system to generate local BEV
images combined with NCC for ground vehicle localization
in GNSS-denied off-road environments. Our system incor-
porates the deformable attention module with BEVFormer
for a multi-view camera sensor setting, followed by a novel
rendering head to generate high-precision BEV images to
enable downstream localization task.

To enhance our ground vehicle localization system for
operation across different seasons, future research will focus
on improving the network’s ability to learn and generalize
features from varied seasonal landscapes. This is essential
for deploying our system in real-world scenarios where
environmental conditions fluctuate significantly over the year.
Additionally, we aim to advance the fidelity of BEV image
generation by incorporating techniques such as the diffusion
module, inspired by the diffusion transformer [33]. This
enhancement is expected to refine the detail and precision
of the BEV images, thus enriching contextual data for more
accurate vehicle localization.

Further improvements will also explore the integration of
temporal features to accumulate historical data more effec-
tively, addressing current limitations caused by projection ad-
justments and vehicle pose changes. Moreover, explorations
can be made on removing dependence on GPS information
for training by leveraging local state estimates from VIO.
Furthermore, a sophisticated approach to incorporate data
from previous frames could significantly improve rendering
quality and system performance. In addition, a transition
from classic template matching to learnable template match-
ing for vehicle positioning is anticipated to overcome the
limitation of NCC’s uniform pixel weighting, as shown in
Fig. 6, and to enable the system to prioritize strategically

significant areas, potentially elevating the accuracy of vehicle
registration in challenging environments.

Fig. 6. Examples of failure cases due to the uniform weighting of NCC.
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