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Abstract— In this paper we present a fully distributed,
asynchronous, and general purpose optimization algorithm for
Consensus Simultaneous Localization and Mapping (CSLAM).
Multi-robot teams require that agents have timely and accurate
solutions to their state as well as the states of the other robots
in the team. To optimize this solution we develop a CSLAM
back-end based on Consensus ADMM called MESA (Manifold,
Edge-based, Separable ADMM). MESA is fully distributed to
tolerate failures of individual robots, asynchronous to tolerate
communication delays and outages, and general purpose to
handle any CSLAM problem formulation. We demonstrate that
MESA exhibits superior convergence rates and accuracy com-
pare to existing state-of-the art CSLAM back-end optimizers.

I. INTRODUCTION
Collaborative teams of autonomous robots are desired

across numerous application domains. Teams can work
more efficiently than individual robots making them useful
for applications like search and rescue [1] and scientific
exploration [2]. Moreover, heterogeneous teams of robots
can use individual specializations to perform tasks beyond
the capabilities of a single platform [3]. A key capability
required for the effective deployment of multi-robot teams
is Collaborative Simultaneous Localization and Mapping
(CSLAM) [4]. For downstream tasks like planning, robots
need both an estimate of their own state as well as an estimate
of states for relevant members of the team. In this work we
focus on the CSLAM "back-end" responsible for composing
noisy measurements into a state estimate for the robotic team.

Multi-robot teams require this state estimate to be both
accurate (i.e. optimal for the available information) and con-
sistent (i.e. robots agree on a single solution). Furthermore,
teams require a method for computing this estimate that is
efficient with respect to both runtime and communication
overhead as well as resilient to practical communication
network behavior like delayed/dropped messages or commu-
nication outages between robots. Finally, robotic teams need
a method that is general purpose so that teams can make use
of all available map representations and sensing modalities.

An attractive approach to the CSLAM back-end is dis-
tributed optimization as it can adapt to failures of individual
robots. Recent work has investigated the general classes
of distributed optimization algorithms and observed that
Consensus Alternating Direction Method of Multipliers (C-
ADMM) displays superior convergence rates to alternative
distributed optimization approaches [5]. However, C-ADMM
is yet unexplored in the context of CSLAM.
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Fig. 1: Example multi-robot factor graph (gray) and its corresponding distribution
between agents (blue, green, and orange) in MESA. When asynchronously communi-
cating (arrows), the robots send only their solutions for shared variables (A, C, E).
These are used to construct "Biased Priors" (purple factors) incorporated into each
robot’s local graph to enforce consistency across the team.

Contributions: In this paper we first revisit C-ADMM
and discuss extensions relevant to our proposed algorithm.
We then propose a novel algorithm based on C-ADMM
called Manifold, Edge-based, Separable ADMM (MESA),
an efficient, general purpose CSLAM back-end that permits
asynchronous communication (see Fig. 1). We then explore
variants of MESA derived from different manifold constraint
formulations. We conclude by validating MESA under a
variety of conditions seen in CSLAM problems and demon-
strating that MESA achieves superior performance to existing
distributed CSLAM back-end optimizers.

II. RELATED WORK

ADMM was previously proposed to solve CSLAM prob-
lems by Choudhary et al. who proposed Multi-Block ADMM
(MB-ADMM) to solve generic SLAM problems distributed
on a cluster [6]. MB-ADMM, however, is not resilient as it
requires synchronized communication and unlike C-ADMM
is proven to diverge for even some linear problems [7].

Other works have investigated alternate optimization meth-
ods for solving generic CSLAM problems. Cunningham et
al. proposed Distributed Data Fusion Smoothing and Map-
ping (DDF-SAM) and DDF-SAM2. These algorithms share
marginal information between robots being careful to avoid
double counting [8], [9]. These approaches, however, fail to
enforce equal linearization points between robots resulting in
potentially inconsistent and inaccurate solutions. In another
vein, Murai et al. proposed a Loopy Believe Propagation
(LBP) based method [10], [11]. While distributed LBP



demonstrates good performance, its convergence rate and
consistency are unexplored in currently published work.

Another line of research has focused on distributed Pose
Graph Optimization (PGO). PGO is a subset of CSLAM
problems making these methods limited in their applicability.
Choudhary et al. proposed the Distributed Gauss-Seidel
(DGS) algorithm [12]. DGS solves the chordal relaxation
of the PGO problem [13] using distributed successive over
relaxation. DGS often performs well, however, it requires
synchronous communication and thus is not resilient to
unreliable networks. Furthermore, it optimizes an approxi-
mation of the PGO objective, limiting its accuracy. Cristofalo
et al. proposed another PGO method called GeoD which
avoids approximation and optimizes the "geodesic" PGO
formulation enabling better accuracy [14]. GeoD treats each
pose as an independent agent and optimizes via distributed
gradient descent making it inefficient and slow to converge.

Recent work on distributed PGO relaxes PGO to a Semi-
Definite Program (SDP) [15]. The proposed algorithm DC2-
PGO and its asynchronous variant ASAPP solve CSLAM as
a SDP with distributed Riemannian Gradient Descent (RGD).
DC2-PGO and ASAPP are very accurate, can provide cer-
tificates of correctness, and ASAPP’s asynchronous com-
munication model makes it resilient to network issues [16].
However, like GeoD, by optimizing via distributed gradient
descent DC2-PGO and ASAPP exhibit slow convergence.

As we can see, prior distributed SLAM methods struggle
to achieve a sufficient solution. General purpose methods
lack either consistency, accuracy, or resiliency. While some
PGO methods achieve all of these goals they are slow to
converge and limited in their applicability. The proposed
algorithm, MESA, strives to achieve all of these goals.

III. CONSENSUS ADMM
We begin by reviewing Consensus ADMM [17], a popular

fully distributed optimization method for solving consensus
optimization problems of the form in (1).

argmin
�̄�∈ℝ||𝑛

∑

𝑖∈
𝑓𝑖(𝑥𝑖)

s.t. 𝑥𝑖 = 𝑥𝑗 ∀ (𝑖, 𝑗) ∈ 
(1)

Where  is the set of all agents, 𝑓𝑖 is the local objective
of agent 𝑖, 𝑥𝑖 ∈ ℝ𝑛 is the copy of decision variables
held by agent 𝑖, and �̄� ∈ ℝ||𝑛 is the concatenation of
all agent’s local decision variables. Agents communicate
over an undirected network made up of the agents  and
communication links  . The constraints force neighboring
agents to agree on a solution. By induction this forces all
agents to converge to a single joint solution to the problem.

Applying standard ADMM to problem (1) produces an
algorithm that requires centralized updates [18]. To produce
a fully distributed algorithm, C-ADMM augments problem
(1) with additional variables. For each edge in the commu-
nication network (𝑖, 𝑗) ∈  , C-ADMM introduces two new
variables 𝑧(𝑖,𝑗) and 𝑧(𝑗,𝑖). The variable 𝑧(𝑖,𝑗) is held by agent 𝑖
and can be interpreted as agent 𝑖’s estimate of agent 𝑗’s local
solution. We will refer to these variables as "edge variables"
and use them rewrite (1) as (2).

argmin
�̄�∈ℝ||𝑛, �̄�∈

∑

𝑖∈
𝑓𝑖(𝑥𝑖)

s.t. 𝑥𝑖 = 𝑧(𝑖,𝑗), 𝑥𝑗 = 𝑧(𝑗,𝑖) ∀ (𝑖, 𝑗) ∈ 
(2)

Where �̄� is the concatenation of all 𝑧(𝑖,𝑗) and  is the
space of ℝ2||𝑛 which has been further constrained such that
𝑧(𝑖,𝑗) = 𝑧(𝑗,𝑖). This augmentation increases the number of
constraints but does not change their meaning. C-ADMM
solves (2) according to the update process (3, 4, 5, 6).

�̄�𝑘+1 = argmin
�̄�∈ℝ||𝑛

(�̄�, �̄�𝑘, �̄�𝑘, 𝛽𝑘) (3)

�̄�𝑘+1 = argmin
�̄�∈

(�̄�𝑘+1, �̄�, �̄�𝑘, 𝛽𝑘) (4)

�̄�𝑘+1 = �̄�𝑘 + 𝛽𝑘(𝐷�̄�𝑘+1 − �̄�𝑘+1) (5)
𝛽𝑘+1 = 𝛼𝛽𝑘 (6)

Where �̄� is the concatenation of all dual variables (one
corresponding to each constraint), 𝐷 ∈ ℝ(2||𝑛)×(||𝑛) maps
each 𝑥𝑖 in �̄� to all corresponding 𝑧(𝑖,𝑗) in �̄�, 𝛽 is the penalty
term, 𝛼 is a scaling factor hyper-parameter, 𝑘 is the iteration
count, and  is the problem’s Augmented Lagrangian (7).

∑

𝑖∈
𝑓𝑖(𝑥𝑖) +

∑

𝑗∈𝑖

⟨

𝜆(𝑖,𝑗), 𝑥𝑖 − 𝑧(𝑖,𝑗)
⟩

+
𝛽
2
‖

‖

‖

𝑥𝑖 − 𝑧(𝑖,𝑗)
‖

‖

‖

2
(7)

Where 𝑖 are the neighbors of agent 𝑖. Solving these
iterates can be fully distributed as (3) can be solved by each
agent minimizing its local Augmented Lagrangian indepen-
dently. After this minimization C-ADMM stipulates that all
agents communicate their results to all neighbors to allow
each agent to independently solve (4), (5), and (6). When all
𝑓𝑖 are convex C-ADMM converges linearly [19].

Within existing literature there are two extensions to the
base C-ADMM algorithm that will be relevant to MESA.
Firstly, C-ADMM assumes that each agent’s objective relies
on all optimization parameters. However, there are a large
class of problems where each agent’s objective relies on
only a subset of the variables. We refer to such problems
as "separable" consensus optimization problems, a reference
to Separable Optimization Variable ADMM (SOVA) [20].
SOVA proposed a simple but effective extension in which
agents hold only the variables required by their local objec-
tive and we impose constraints on only the variables shared
between agents. Separable problems take the form of (8).

argmin
{𝑥0∈ℝ𝑛0 , ..., 𝑥𝑟∈ℝ𝑛𝑟}

∑

𝑖∈
𝑓𝑖(𝑥𝑖)

s.t. 𝐴(𝑖,𝑗)𝑥𝑖 = 𝐵(𝑖,𝑗)𝑥𝑗 ∀ (𝑖, 𝑗) ∈ 
(8)

Where 𝐴(𝑖,𝑗) ∈ ℝ𝑛(𝑖,𝑗)×𝑛𝑖 and 𝐵(𝑖,𝑗) ∈ ℝ𝑛(𝑖,𝑗)×𝑛𝑗 map the
variables shared between agents 𝑖 and 𝑗 into a common space.

Secondly, C-ADMM assumes an algorithmic structure in
which, at each iteration, all agents communicate with all
neighbors. However, C-ADMM has been proven to con-
verge for significantly less restrictive communication models.
Edge-based C-ADMM assumes that at each iteration of the
algorithm only a subset of communication edges are active
and each agent, therefore, communicates with only some
of its neighbors [21]. Without loss of generality this model
can be simplified to assume that at each iteration only two



agents communicate with each other. Under this Edge-based
communication model C-ADMM is proven to convergence
with rate 𝑂(1∕𝑘) where 𝑘 is the number of iterations [22].

IV. METHODOLOGY
In this section we first define the CSLAM problem and

demonstrate that it can be transformed into an instance of
a Separable Consensus ADMM problem with on-manifold
decision variables. We then propose a novel algorithm MESA
for solving general CSLAM problems with asynchronous
communication. Finally, we derive variants of the algorithm
driven by different approaches to modeling constraints be-
tween the manifold decision variables found in CSLAM.

We focus on solving generalized CSLAM problems, which
can be defined as Maximum-A-Posterori (MAP) inference.

Θ𝑀𝐴𝑃 = argmax
Θ∈Ω

𝑃 (Θ|𝑀) (9)

Where Θ are all the variables of interest, Ω is the product
manifold formed by the manifold of each element within
Θ, and 𝑀 is the set of measurements. When we assume
our measurements are affected by Gaussian noise (i.e. 𝑚 ∼


(

𝜇𝑚,Σ𝑚
)

), problems of this form can be solved via
nonlinear least squares optimization [23].

Θ𝑀𝐴𝑃 = argmin
Θ∈Ω

∑

𝑚∈𝑀

‖

‖

ℎ𝑚(Θ) − 𝑚‖
‖

2
Σ𝑚

(10)

Where ℎ𝑚 is the measurement prediction function that
computes the expected 𝑚 from an estimate of the state.
A. Manifold, Edge-based, Separable ADMM (MESA)

In the case of a multi-robot team , the variables Θ
and measurements 𝑀 are distributed across robots. Let 𝑀𝑖
denote the measurements made by robot 𝑖 and Θ𝑖 denote
the variables that are observed by the measurements in 𝑀𝑖.
Multiple robots may observe the same variable (e.g. two
robots observe the same landmark). Therefore, while 𝑀𝑖 are
disjoint subsets of 𝑀 , each Θ𝑖 is a non-disjoint subset of Θ.
Let (𝑖,𝑗) ≜ Θ𝑖 ∩ Θ𝑗 represent the variables shared between
robots 𝑖 and 𝑗 where for 𝜃𝑠 ∈ (𝑖,𝑗) we denote 𝜃𝑠𝑖 as the copy
of that variable owned by robot 𝑖. We can therefore re-write
(10) to reflect this distribution of information.

Θ𝑀𝐴𝑃 = argmin
Θ𝑖∈Ω𝑖∀𝑖∈

∑

𝑖∈

∑

𝑚∈𝑀𝑖

‖

‖

ℎ𝑚(Θ𝑖) − 𝑚‖
‖

2
Σ𝑚

s.t. 𝑞𝑠(𝜃𝑠𝑖 , 𝜃𝑠𝑗 ) = 0

∀ 𝜃𝑠 ∈ (𝑖,𝑗) ∀ (𝑖, 𝑗) ∈ 

(11)

Where 𝑞𝑠 is a function that compares the equality appropri-
ately for the manifold to which 𝜃𝑠 belongs and returns 0 ∈ ℝ𝑑

if and only if 𝜃𝑠𝑖 and 𝜃𝑠𝑗 are equal. The generic function 𝑞𝑠
is used as there exists potentially many ways to compare
equality of on-manifold objects. Concrete implementations
of 𝑞𝑠 will be explored in detail in Sec. IV-C.

From (11) we can see that the general CSLAM problem
is an instance of a separable optimization problem (8) as
each robot’s cost function affects only a subset of the global
variables and robots share sparse sets of variables. However,
unlike (8) and all standard ADMM formulations, CSLAM
problems typically include on-manifold decision variables
which we handle with generic constraint functions 𝑞𝑠.

To make the CSLAM problem fully distributed we apply
the same method as C-ADMM and augment the problem
with edge variables. Specifically, for every shared variable
𝜃𝑠 shared along edge (𝑖, 𝑗) we introduce edge variables 𝑧(𝑖,𝑗)𝑠
and 𝑧(𝑗,𝑖)𝑠 . The addition of edge variables allows us to re-
write the constraints of our problem as follows in (12).
Θ𝑀𝐴𝑃 = argmin

Θ𝑖∈Ω𝑖∀𝑖∈, 𝑍∈

∑

𝑖∈

∑

𝑚∈𝑀𝑖

‖

‖

ℎ(Θ𝑖) − 𝑚‖
‖

2
Σ𝑚

s.t. 𝑞𝑠(𝜃𝑠𝑖 , 𝑧(𝑖,𝑗)𝑠 ) = 0
𝑞𝑠(𝜃𝑠𝑗 , 𝑧(𝑗,𝑖)𝑠 ) = 0

∀ 𝜃𝑠 ∈ (𝑖,𝑗) ∀ (𝑖, 𝑗) ∈ 

(12)

Where 𝑍 is the set of all 𝑧(𝑖,𝑗)𝑠 and  is the appropriate
product manifold further constrained such that 𝑧(𝑖,𝑗)𝑠 = 𝑧(𝑗,𝑖)𝑠 .
Next we use (3, 4, 5, 6, 7) to derive on-manifold, separable,
C-ADMM iterates required to solve (12).

Θ𝑘+1
𝑖 =argmin

Θ𝑖∈Ω𝑖

∑

𝑚∈𝑀𝑖

‖

‖

‖

ℎ𝑚(Θ𝑘
𝑖 ) − 𝑚‖‖

‖

2

Σ𝑚

+
∑

𝑗∈𝑖

∑

𝑠∈(𝑖,𝑗)

⟨

𝜆𝑘(𝑖,𝑗)𝑠 , 𝑞𝑠
(

𝜃𝑠𝑖 , 𝑧
𝑘
(𝑖,𝑗)𝑠

)⟩

+
∑

𝑗∈𝑖

∑

𝑠∈(𝑖,𝑗)

𝛽𝑘

2
‖

‖

‖

‖

𝑞𝑠
(

𝜃𝑠𝑖 , 𝑧
𝑘
(𝑖,𝑗)𝑠

)

‖

‖

‖

‖

2

(13)

𝑧𝑘+1(𝑖,𝑗)𝑠
= argmin

𝑧𝑠∈𝑠
⟨

𝜆𝑘(𝑖,𝑗)𝑠 , 𝑞𝑠
(

𝜃𝑘+1𝑠𝑖
, 𝑧𝑠

)⟩

+
𝛽𝑘

2
‖

‖

‖

‖

𝑞𝑠
(

𝜃𝑘+1𝑠𝑖
, 𝑧𝑠

)

‖

‖

‖

‖

2

+
⟨

𝜆𝑘(𝑗,𝑖)𝑠 , 𝑞𝑠
(

𝜃𝑘+1𝑠𝑗
, 𝑧𝑠

)⟩

+
𝛽𝑘

2
‖

‖

‖

‖

𝑞𝑠
(

𝜃𝑘+1𝑠𝑗
, 𝑧𝑠

)

‖

‖

‖

‖

2

(14)

𝜆𝑘+1(𝑖,𝑗)𝑠
= 𝜆𝑘(𝑖,𝑗)𝑠 + 𝛽𝑘

(

𝑞𝑠
(

𝜃𝑘+1𝑠𝑖
, 𝑧𝑘+1(𝑖,𝑗)𝑠

))

(15)

𝛽𝑘+1 = 𝛼𝛽𝑘 (16)
Where we have introduced a dual variable 𝜆(𝑖,𝑗)𝑠 for each

constraint and written the iterates for individual variables
where they can be solved for independently.

Using these iterates with a C-ADMM algorithm, how-
ever, is insufficient for typical CSLAM problems. Multi-
robot teams operating in the field cannot assume reliable
network infrastructure. Therefore, robots may not be able
to synchronously communicate with all neighbors as is
required by C-ADMM. To make our algorithm resilient to
these conditions we combine these iterates with an Edge-
based communication model. Within the Edge-based model,
communication dropouts and message delay/loss are modeled
simply as iterations in which the affected robots do not com-
municate. The resulting asynchronous algorithm can tolerate
expected network conditions. To fully address asynchronous
communication we further modify the iterates adding unique
penalty terms 𝛽(𝑖,𝑗), 𝛽(𝑗,𝑖) for each edge in  .

The edge-based communication model combined with our
on-manifold, separable, C-ADMM iterates produces MESA
(Alg. 1) which is also outlined in Fig. 1.
Remark 1 (MESA Initialization): Without loss of generality we
define 𝜆0(𝑖,𝑗)𝑠 = 𝟎 where 𝟎 is of proper dimension. Further, we assume
𝑧(𝑖,𝑗)𝑠 = 𝜃𝑠𝑖 until the first communication between robots 𝑖 and 𝑗.



Algorithm 1 Manifold, Edge-based, Separable, ADMM (MESA)

1: In: Robots , communication links  , local estimates
{

Θ0
0,Θ

0
1, ...,Θ

0
𝑟
}

2: Out: Final Variable Estimates
{

Θ𝑓𝑖𝑛𝑎𝑙
0 ,Θ𝑓𝑖𝑛𝑎𝑙

1 , ...,Θ𝑓𝑖𝑛𝑎𝑙
𝑟

}

3: 𝜆(𝑖,𝑗)𝑠 , 𝜆(𝑗,𝑖)𝑠 ← 𝟎 ∀ 𝑠 ∈ (𝑖,𝑗) ∀ (𝑖, 𝑗) ∈ 
4: 𝑧(𝑖,𝑗)𝑠 ← 𝜃0𝑠𝑖 , 𝑧(𝑗,𝑖)𝑠 ← 𝜃0𝑠𝑗 ∀ 𝑠 ∈ (𝑖,𝑗) ∀ (𝑖, 𝑗) ∈ 
5: while Not Converged do
6: if Communication available between robot 𝑖 and robot 𝑗 then
7: In parallel update Θ𝑖 and Θ𝑗 with (13)
8: Between 𝑖 and 𝑗 communicate 𝜃𝑠𝑖 , 𝜃𝑠𝑗 ∀ 𝜃𝑠 ∈ (𝑖,𝑗)
9: In parallel update 𝑧(𝑖,𝑗)𝑠 , 𝑧(𝑗,𝑖)𝑠 ∀ 𝜃𝑠 ∈ (𝑖,𝑗) with (14)

10: In parallel update 𝜆(𝑖,𝑗)𝑠 , 𝜆(𝑗,𝑖)𝑠 ∀ 𝜃𝑠 ∈ (𝑖,𝑗) with (18)
11: In parallel update 𝛽𝑘+1(𝑖,𝑗) = 𝛼𝛽𝑘(𝑖,𝑗) and 𝛽𝑘+1(𝑗,𝑖) = 𝛼𝛽𝑘(𝑗,𝑖)
12: end if
13: end while

Remark 2 (MESA Theoretical Guarantees): Due to the non-convex
objective and non-convex variable space found in CSLAM, MESA
does not share the convergence guarantees of C-ADMM, SOVA, or
Edge-based C-ADMM. Recent work has proven that, under certain
assumptions, non-convex C-ADMM will converge [24]. However,
this proof does not addressed on-manifold decision variables.
More importantly, for practical CSLAM it is unclear whether the
problems will meet the required assumptions. Therefore, we do
not pursue a convergence proof for MESA. Instead we opt to
demonstrate convergence of MESA empirically (see Sec. V).

B. MESA Implementation
Implementation of Alg. 1 requires solving the optimization

problems (13) and (14). As originally demonstrated by
Choudhary et al. [6] the Augmented Lagrangian in (13) can
be represented as a factor-graph by re-writing the dual and
penalty terms as "Biased Priors". Specifically, the identity
that argmin𝑎 ⟨𝑏, 𝑎⟩+(𝛽∕2) ‖𝑎‖

2 = argmin𝑎(𝛽∕2) ‖𝑎 + 𝑏∕𝛽‖2
when 𝑏 is constant is used to re-write the terms as (17).

𝛽(𝑖,𝑗)
2

‖

‖

‖

‖

‖

𝑞𝑠
(

𝜃𝑠, 𝑧(𝑖,𝑗)𝑠
)

+
𝜆(𝑖,𝑗)𝑠
𝛽(𝑖,𝑗)

‖

‖

‖

‖

‖

2

(17)

This allows us to compute (13) using existing sparse
nonlinear least squares libraries like gtsam [25].

The edge variable update (14) could be implemented
similarly and each 𝑧(𝑖,𝑗)𝑠 independently solved via a nonlinear
optimization. However, to improve efficiency, we would
prefer that (14) be solved in closed form. Depending on the
selection of constraint function and edge variable space, a
closed form solution may exist or may be approximated.

Computing updates to dual variables is straightforward
according to (15). In this, dual variables are updated based
on the error between a 𝜃𝑠𝑖 and 𝑧(𝑖,𝑗)𝑠 . However, this error
underestimates the magnitude of the constraint satisfaction
gap (i.e. the error between 𝜃𝑠𝑖 and 𝜃𝑠𝑗 ). We observe that
updating dual variables according to (18) is more reflective
the proper magnitude and improves convergence speed.

𝜆𝑘+1(𝑖,𝑗)𝑠
= 𝜆𝑘(𝑖,𝑗)𝑠 + 𝛽𝑘(𝑖,𝑗)

(

𝑞𝑠
(

𝜃𝑘+1𝑠𝑖
, 𝜃𝑘+1𝑠𝑗

))

(18)

C. Manifold Constraint Functions
To compute (13), (14), and (18) we must also concretely

define the constraint function used for each shared variable.
The selection of constraint function 𝑞𝑠 depends on the
type of our shared variables 𝜃𝑠 and the type selected for
edge variables 𝑧(𝑖,𝑗)𝑠 . In the existing C-ADMM literature
(see Sec. III) all algorithms assume vector-valued decision
variables and thus that all constraints are linear (𝑞(𝑎, 𝑏) ≜

𝑎 − 𝑏) which permits a closed form solution to (14) of
𝑧𝑘+1(𝑖,𝑗)𝑠

= 1
2 (𝜃

𝑘+1
𝑠𝑖

+𝜃𝑘+1𝑠𝑗
). For linear variables in CLSAM (e.g.

landmarks) this approach should be taken.
However, in CSLAM we are typically also optimizing

over robot poses that are contained on the SE(𝑁) manifold.
For such on-manifold variables we identify four unique con-
straint functions (Geodesic, Approximate-Geodesic, Split,
and Chordal). For each we derive the corresponding closed
form solution to (14) or an approximate solution if no closed
form solution exists. A summary of constraint functions and
shared variable updates can be found in Table I.
TABLE I: Constraint functions for SE(𝑁) objects and their corresponding closed form
solutions to (14). Where SPLIT interpolates the translation component linearly and the
rotation component spherically [26], Vec returns a vector of the objects non-constant
matrix elements [27], and 𝑝 is the dimension of the tangent space for SE(𝑁). Manifold
object notation is derived from the work of Solà et al. [28]. The geodesic 𝑧 update is
approximated by the case where 𝜆(𝑖,𝑗)𝑠 = 𝜆(𝑗,𝑖)𝑠 = 𝟎.

Function 𝑧 ∈ 𝑞(𝜃, 𝑧) 𝑧𝑘+1(𝑖,𝑗)𝑠

Geodesic SE(𝑁) Log
(

𝑧−1◦𝜃
)

SPLIT
(

𝜃𝑠𝑖 , 𝜃𝑠𝑗 , 0.5
)

Apx.-Geo. ℝ𝑝 Log (𝜃) − 𝑧 1
2

(

Log
(

𝜃𝑠𝑖
)

+ Log
(

𝜃𝑠𝑗
))

Split SE(𝑁)
[

Log
(

𝑅−1
𝑧 𝑅𝜃

)

𝑡𝜃 − 𝑡𝑧

]

SPLIT
(

𝜃𝑠𝑖 , 𝜃𝑠𝑗 , 0.5
)

Chordal ℝ𝑁2+𝑁 Vec(𝜃) − 𝑧 1
2

(

Vec
(

𝜃𝑠𝑖
)

+ Vec
(

𝜃𝑠𝑗
))

Each constraint function produces a slight variant of the
MESA algorithm. We identify each variant by the name
of the constraint function used (i.e. Geodesic MESA is the
MESA algorithm that uses the Geodesic constraint).
Remark 3 (Hyper-Parameters): All MESA variants use 𝛽0

(𝑖,𝑗) = 200
and 𝛼 = 1 with the exception of Split MESA that uses 𝛼 = 1.2. Note
that these parameters are modified for some experiments.

V. EXPERIMENTS
In this section we evaluate the performance of MESA to

solve representative CSLAM problems. We first compare the
four variants of the algorithm induced by choice of constraint
function. With the best performing variants we then explore
the effect of problem parameters (length, initialization qual-
ity, number of robots, and types of measurements) to validate
its performance across different CSLAM scenarios. Finally,
we compare MESA to state of the art works and demonstrate
its superior convergence compared to existing methods.
A. Experiment Setup

1) Dataset Generation: To explore different CSLAM
conditions we generate datasets by sampling odometry mea-
surements from a categorical distribution over forward mo-
tion and a ±90◦ rotation around each axis. At each time-
step robots add intra-robot loop closures with probability
𝑝 = 0.4 if the current pose is nearby a previous pose.
Every 𝑘 steps we search for inter-robot loop closures. Unless
modified, each experiment consists of 10 datasets generated
with 4 robots traversing a 400 pose long trajectory. All
measurements are relative poses subject to a noise model
of (𝜎𝑟 = 1◦, 𝜎𝑡 = 0.05𝑚). With this general framework we
can generate a variety of 2D and 3D datasets (e.g. Fig 2).

2) Metric: Single robot optimization tasks are often eval-
uated using the cost function residual (10). In multi-robot
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Fig. 2: Ground-truth from example synthetic datasets. Colors represent different robots.

problems, however, we cannot directly apply this metric. For
each shared variable, there exists a local copy on each robot
that observed the variable. We want a consistent solution
such that all local copies are equal. However, practically
local copies will differ slightly and it is ambiguous which
copy to use to compute the residual. Moreover, in cases
where local copies differ we want a metric that reflects the
inconsistency. To meet these goals we introduce the Mean
Residual (𝑟2𝑚𝑒𝑎𝑛). Mean residual is an extension of the SLAM
cost function in which, the cost contribution for any factor
that affects shared variables is averaged over the cost from
all possible combinations of solutions. If all shared variables
agree exactly, 𝑟2𝑚𝑒𝑎𝑛 is the same as the SLAM cost function
and represents the accuracy of the optimized solution. If
shared variables disagree, 𝑟2𝑚𝑒𝑎𝑛 still captures this accuracy
but also monotonically increases with any shared variable
disagreement. Concretely we define 𝑟2𝑚𝑒𝑎𝑛 as:

𝑟2𝑚𝑒𝑎𝑛 =
∑

𝑚∈𝑀

1
||

∑

(𝑖,𝑗,...)∈

‖

‖

‖

‖

ℎ𝑚
(

𝜃𝑎𝑖 , 𝜃𝑏𝑗 , ...
)

− 𝑚
‖

‖

‖

‖

2

Σ𝑚
(19)

Where, for a factor on variables {𝜃𝑎, 𝜃𝑏...},  represents
the set of combinations of local solutions to these variables.
For example if a factor affects variables 𝑎 and 𝑏 where 𝑎 is
shared between robots {𝑖, 𝑗} and 𝑏 is shared between robots
{𝑘, 𝑙} then  = {(𝑖, 𝑘), (𝑖, 𝑙), (𝑗, 𝑘), (𝑗, 𝑙)}. If 𝑎 and 𝑏 are not
shared and owned by robot 𝑖 then  is simply {(𝑖, 𝑖)}.

B. MESA Variant Exploration

In our first experiment we explore the performance of
different variants of MESA. This experiment is run on 20
random 3D datasets and a summary of 𝑟2𝑚𝑒𝑎𝑛 achieved by
each variant are represented by box-plots.
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Fig. 3: Comparison of MESA variants derived from Geodesic (⚫), Split (◼),
Approximate-Geodesic (▴) and Chordal ( ) constraints on 20 synthetic 3D pose graph
datasets. Split and Geodesic constraints significantly outperform the alternatives.

As can be seen in Fig. 3 the selection of constraint function
has a significant affect on the performance of the algorithm.
We can see that the Geodesic and Split constraints signif-
icantly outperform the Chordal and Approximate-Geodesic
constraints. Throughout the rest of this paper we will present
only results from the Geodesic and Split variants.

C. MESA Generalization
Next we look to validate that MESA generalizes to differ-

ent CSLAM scenarios. For each scenario we present results
in comparison to two baselines: a Centralized approach in
which all measurements are aggregated and solved using
Levenberg-Marquardt and an Independent approach in which
robots ignore all inter-robot measurements and solve their
local factor graph independently. Specifically, we explore:

1) Trajectory Length (Fig. 4a): First we evaluate how
MESA handles different sizes of 3D factor graphs and vary
trajectory length from 200 to 1000 poses for all robots.

2) Problem Initialization (Fig. 4b): Next we evaluate how
initialization quality affects MESA. The quality of initializa-
tion from odometry is proportional to the magnitude of the
noise model and thus we vary the measurement noise used
to generate each dataset. This trial is run on 20 3D datasets.

3) Problem Scale (Fig. 4c): We also inspect how MESA
scales with the size of the robot team. To do so we vary the
number of robots in each 3D dataset from 2 to 16.

4) Measurement Models (Fig. 4d): In this sub-experiment
we evaluate the ability of MESA to handle generalized 2D
CSLAM problems. We explore two types of inter-robot loop-
closure measurements (range and bearing+range). These
measurements are particularly compelling as they can be
made locally and do not require any communication of
raw sensor data to support a distributed front-end. For this
scenario both MESA variants use 𝛽0(𝑖,𝑗) = 2 and 𝛼 = 1.05.

As can be seen in Fig. 4, both the Geodesic and Split
MESA variants generalize across different conditions found
in CSLAM. In all scenarios the algorithms converge toward
the centralized solution indicating that the algorithms are
both accurate and reliable. Moreover, this experiment vali-
dates that collaboration between robots can significantly im-
prove localization performance over independent operation.

D. Prior Work Comparison
In our final experiment we evaluate the performance

of MESA relative to existing prior works namely DDF-
SAM2 [9], MB-ADMM [6], DGS [12], and ASAPP [16].
Since ASAPP and DGS are distributed PGO algorithms we
limit our experiments in this section to pose graph CSLAM.
Remark 4 (Prior Work Implementation Details): DDF-SAM2 is
implemented by the authors. MB-ADMM is provided by the original
authors1 and uses parameters from [6]. DGS is provided by the
original authors2 and uses default parameters. ASAPP is provided
by the original authors3 and we use 100 RGD steps per iteration
with step size 0.001. A small step size was used as larger step sizes
sometimes caused divergence and we ran too many trials to permit
tuning the step size for each dataset as done in [16]. All methods
were limited to a maximum of 500 ∗ || ∗ || communications.

1) Benchmark Datasets: We first compare the perfor-
mance of these methods on partitioned versions of bench-
mark SLAM datasets. Each dataset is partitioned into 5 sub-
graphs using METIS partitioning [6]. Table II compares the
achieved 𝑟2𝑚𝑒𝑎𝑛. This sub-experiment omits Independent and

1https://github.com/itzsid/admm-slam
2https://github.com/CogRob/distributed-mapper
3https://github.com/mit-acl/dpgo
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Fig. 4: Performance of Geodesic MESA (⚫) and Split MESA (◼) compared to Centralized (★) and Independent (I) baselines under a variety of conditions. The MESA variants
consistently converge to the centralized solution indicating they are accurate and generalize across different conditions found in CSLAM problems.

DDF-SAM2 results as not all partitions have priors and these
methods will be under-determined. In this sub-experiment
both MESA variants use 𝛽0(𝑖,𝑗) = 2 and 𝛼 = 1.05.

TABLE II: Mean residuals achieved by MESA and prior works on benchmark datasets:
Sphere2500 [29], Parking Garage [13], and Torus [13].

Dataset Sphere2500 Parking Garage Torus

Centralized 675.7 0.634 29981
MB-ADMM [6] 1.7e+22 0.638 2.5e+14
DGS [12] 1204.9 0.650 12254
ASAPP [16] 940.2 0.651 12196
Geodesic MESA 676.2 0.636 30002
Split MESA 1054.7 0.645 30014

Table II illustrates that MESA is able to converge very
closely to the centralized solution across all datasets. It also
highlights that, like the centralized solution, MESA is a local
solver and can fall into local optima like on the Torus dataset.

2) Empirical Convergence: We also explore the perfor-
mance of each algorithm with respect to its convergence
speed. As each algorithm’s implementation differs, we pro-
pose a normalized measure of runtime – the number of com-
munications. We define one communication as when a pair
of robots pass bidirectionally any amount of information. For
example an iteration of Alg. 1 results in one communication.

Communication is expected to be the largest bottleneck
in the CSLAM pipeline and, for all algorithms, the number
of communications is proportional to both computational
cost and communication burden. Therefore, the number of
communications provides a holistic metric to represent the
complexity of the algorithm. To account for varying conver-
gence criteria, we run all algorithms with a tight stopping
condition and report results (𝑟2𝑚𝑒𝑎𝑛 and communications)
when the algorithm reaches within 1% of its final 𝑟2𝑚𝑒𝑎𝑛. To
reduce variance, this experiment is run on 200 3D datasets.

As we can see in Fig. 5 both MESA variants exhibit
significantly faster convergence than the prior works while
providing superior accuracy. Though difficult to see in Fig. 5,
Split MESA converges more quickly than Geodesic MESA
at the cost of reduced accuracy. ASAPP, despite being
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Fig. 5: Accuracy vs. Communications of Geodesic MESA (⚫) and Split MESA (◼)
compared to prior works [DGS ( ), ASAPP ( ), MB-ADMM (⧫), DDF-SAM2 (⬟)]
and baselines [Centralized (★), Independent (I)] on 200 synthetic 3D pose graph
datasets. Ellipses depict 3𝜎 uncertainty bounds. Methods that require only one round
of communication are shown as horizontal lines. MESA outperforms prior works both
with respect to accuracy and convergence speed.

certifiably correct, exhibits worse performance than MESA
as it often reached the communication limit before fully
converging. This experiment also shows that, as expected,
DGS provides less accurate results due to its chordal ap-
proximation of the PGO problem, MB-ADMM struggles to
converge, and DDF-SAM2’s performance lags other methods
as it does not produce consistent solutions.

VI. CONCLUSION AND FUTURE WORK

In this work we presented MESA, a distributed algorithm
for solving general CSLAM problems. MESA exhibits a
superior convergence rate and final accuracy compare to
prior works and accomplishes this for generalized CSLAM
problems while permitting asynchronous communication.

While MESA demonstrates excellent performance across
experiments, the quality of its convergence can be dependent
on hyper-parameters 𝛽0 and 𝛼. Determining these param-
eters automatically would be a good extension to MESA.
Additionally, like most prior works, MESA is a batch solver.
Therefore, despite its fast convergence it still requires many
rounds of communication to compute a solution making
it difficult to apply to real-time applications. Future work
should include extending MESA to operate incrementally.
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