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Robust Preintegrated Wheel Odometry for
Off-road Autonomous Ground Vehicles

Easton R. Potokar, Daniel McGann, and Michael Kaess

Abstract—Wheel odometry is not often used in state estimation
for off-road vehicles due to frequent wheel slippage, varying
wheel radii, and the 3D motion of the vehicle not fitting with the
2D nature of integrated wheel odometry. This paper attempts to
overcome these issues by proposing a novel 3D preintegration of
wheel encoder measurements on manifold. Our method addition-
ally estimates wheel slip, radii, and baseline online to improve
accuracy and robustness. Further, due to the preintegration,
many measurements can be summarized into a single motion
constraint using first-order updates for wheel slippage and
intrinsics, allowing for efficient usage in an optimization-based
state estimation framework. While our method can be used
with any sensors in a factor graph framework, we validate
its effectiveness and observability of parameters in a vision-
wheel-odometry system (VWO) in a Monte Carlo simulation.
Additionally, we illustrate its accuracy and demonstrate it can
be used to overcome other sensor failures in real-world off-road
scenarios in both a VWO and visual-inertial-wheel odometry
(VIWO) system.

Index Terms—Localization, Wheeled Robots, Field Robots

I. INTRODUCTION

OFF-ROAD autonomous ground vehicles (AGVs) have a
variety of applications that can have significant impacts

in industries such as autonomous driving, agriculture, and
space exploration. The use of AGVs in these industries has
the potential to greatly increase quality of life, safety, and
productivity in their various fields. However, effective usage
of AGVs requires accurate 3D localization. For some of
these applications GPS is often not available, leading to state
estimation using sensors such as cameras, LiDARs, inertial
measurement units (IMUs), and wheel encoders.

While fusion of IMUs in odometry frameworks has been
well studied [1], [2] in off-road vehicles, fusion with wheel
encoders has mainly been limited to planar environments
such as urban driving or indoors. Wheel encoders have seen
more limited use for off-road vehicle state estimation due
to a number of inherit limitations. One such obstacle is that
integration of wheel encoder measurements is inherently 2D.
Because of this, previous methods have provided either planar

Manuscript received: July, 26, 2024; Revised October, 7, 2024; Accepted
October, 31, 2024.

This paper was recommended for publication by Editor Giuseppe Loianno
upon evaluation of the Associate Editor and Reviewers’ comments.

This material is based upon work supported by the U.S. Army Research
Office and the U.S. Army Futures Command under Contract No. W911NF20-
D-0002. The content of the information does not reflect the position or the
policy of the government and no official endorsement should be inferred.

Easton R. Potokar, Daniel McGann, and Michael Kaess are with the
Robotics Institute at Carnegie Mellon University, Pittsburgh, PA USA
{potokar, danmcgann, kaess}@cmu.edu

Digital Object Identifier (DOI): see top of this page.

GT WO SVO + Planar SVO + ROSE

Fig. 1: Trajectory of results from a real world trial in Penn Hills,
Pennsylvania. Where other baseline methods break down due to non-
planar surfaces and wheel slippage, our method is able to minimize
drift and output more accurate pose estimates. Shown above are the
ground truth (GT), wheel odometry (WO), stereo visual odometry
with planar wheel odometry (SVO + Planar), and stereo visual
odometry with our method (SVO + ROSE).

or no constraints on the additional roll, pitch, and z pose
dimensions.

Another common pitfall is outlier wheel slippage, which
occurs more often in an off-road scenario. While some wheel
slippage is expected due to the dynamics of AGVs [3], a
single outlier encoder measurement from wheel slippage can
cause significant degradation of vehicle tracking and must be
detected in real-time. Additionally, many parameters such as
wheel radii can vary in real time due to dropping tire pressure
or rugged terrain. While the effect of incorrect wheel radii
parameters is more subtle than that of wheel slippage, it can
still cause meaningful increase in drift over time.

Further, wheel encoder measurements generally come in at a
much higher rate than sensors such as cameras. When estimat-
ing other parameters such as wheel intrinsics or slip, this can
lead to repeated integration of wheel encoder measurements
during optimization, a significant computational burden. Some
work has been done on preintegration theory to avoid the
repeated integration of wheel encoder measurements, although
it is generally on SE(2) and not suitable for off-road vehicles.
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We propose a Robust Offroad wheel odometry with Slip
Estimation (ROSE) to solve these problems. ROSE is a
novel way to incorporate wheel encoder measurements into
optimization-based state estimation under the factor graph
framework. Our approach seeks to address the above issues
when using wheel encoders for off-road state estimation. In
particular, our contributions are as follows:

1) By leveraging nonholonomic constraints and constrain-
ing the x and y angular velocity of the vehicle, we show
the on-manifold SE(3) integration of wheel encoder
measurements using local coordinates and how it can
be used in a preintegrated fashion to form a piecewise-
planar constraint.

2) We show how wheel slip, wheel radii, and the vehicle
wheel baseline can be estimated online without repeated
integration for more efficient optimization-based estima-
tion.

3) We evaluate our proposed method via a Monte Carlo
simulation in a VWO framework, showing convergence
of wheel parameters and slippage as well as robustness
to both significant slippage and incorrect initial param-
eters. Moreover, we validate on real-world data in both
a VWO and VIWO framework.

Finally, we release our codebase as open-source1 for
widespread usage in the state estimation library gtsam [4].

II. RELATED WORKS

Most previous work done on integrating wheel encoders into
a sensor fusion system doesn’t consider the specific limitations
of off-road vehicles. Previous frameworks are often under-
constrained if not fused with an IMU, are focused on planar
environments such as indoors, or disregard wheel slippage and
intrinsics.

While IMUs are generally used to provide an odometry
“backbone” for state estimation methods, there are scenarios
when IMU failures may occur due to poor bias estimation,
time-sync, or even hardware malfunction amongst others
issues. In these scenarios, it would be ideal if the state
estimation method could lean upon wheel odometry as an
alternative odometry backbone. Some work isn’t usable in
this way due to tightly-fusing the IMU gyroscope with wheel
encoder measurements [5], [6], [7]. Others use solely the
IMU for angular measurements [8], [9], leaving no orientation
measurements in cases of IMU failure. The majority of other
work on VIWO methods are missing constraints in the pitch,
roll, and z positions [10], [11] when the IMU isn’t functioning,
potentially leading to underconstrained systems with erroneous
estimates.

Other works do constrain these additional directions, but
do so by constraining some or all of them to zero [12], [13],
[14]. While this is a valid assumption for planar environments
such as indoors or some urban environments, the same does
not hold true for off-road vehicles. Some work has been done
on fitting complex surface manifolds to provide integration
in these additional directions either implicitly [15], [16] or

1Available at https://github.com/rpl-cmu/rose/

explicitly using cameras [17], but is unlikely to function off-
road due to potentially rocky and non-smooth terrain.

While much work has been done on modeling wheel slip-
page for dynamics and controls [18], [19], [20], estimating
outlier wheel slippage events and wheel intrinsics for state
estimation hasn’t been as widely studied. Some work has
been done using factor graphs similar to our own [11], but
is formulated for planar environments and removes the wheel
odometry in cases of slippage. Others have used Kalman
Filters to estimate slip parameters, but rely upon the IMU for
heading measurements [21] or don’t consider the impact slip
may have on vehicle heading [8].

There’s been significant work done in calibrating wheel
intrinsics and extrinsics offline [22], [23], [24]. Online estima-
tion of wheel intrinsics has been done when fused with an IMU
in a multi-state constrained Kalman Filter (MSCKF) [10] or
fused with LiDAR in a factor graph [25]. While these function
for their corresponding applications, they don’t adhere to the
requirements of off-road driving mentioned above.

To fill the gap left by prior works in off-road driving, we
propose our 6D wheel preintegrated method with online wheel
slip and intrinsics estimation.

III. MATHEMATICAL BACKGROUND

We briefly introduce some mathematical preliminaries that
we will use throughout the paper. For a ground truth measure-
ment z, we will use ẑ to represent an estimate of z, and z̃ to
represent z with noise throughout.

A. Lie Groups
We denote a Lie group by G and its corresponding Lie

algebra by g. Examples include the group of rotations SO(3)
along with so(3), or, used throughout this manuscript, the
group of 3D rigid body transformations SE(3) along with
se(3).

The group itself is generally highly nonconvex, making
tasks such as optimization, estimation, and integration difficult.
The algebra is a vector space and is isomorphic to Rdim g using
the linear “wedge” operator,

∧ : Rdim g → g. (1)

An inverse map also exists, given by the “vee” operator,
∨ : g → Rdim g. (2)

Since the algebra is a vector space, it is often used in tasks
such as optimization and integration. Finally, for elements near
the identity of G, the exponential map exp : g → G can be
used to map the algebra to the group. It is often paired with
the wedge operator,

exp(·∧) : Rdim g → G. (3)

Finally, we define the exponential map Jacobian [26] as

H(θ) ≜
∂

∂θ
exp(θ∧). (4)

It can be used as a first order approximation when separating
matrix exponential components,

exp(θ∧ + δ∧) ≈ exp(θ∧) exp((H(θ)δ)∧). (5)

We point the reader to other literature [26] for more details.

https://github.com/rpl-cmu/rose/
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B. Local Coordinates

Later on, we will perform preintegration in local manifold
coordinates [27], [28] that we introduce here. Consider a
differential equation given by X ∈ SE(3) and Ẋ ∈ se(3),

Ẋ(t) = F (X, t), X(0) = X0. (6)

Ideally, we would transfer this differential equation to R6 to
provide simple preintegration in a vector space. We assume a
solution of the form

X(t) = X0 exp(θ(t)
∧) (7)

where θ(t) ∈ R6. We can differentiate X with respect to time
by using the first-order approximations θ(t+h) ≈ θ(t)+ θ̇(t)h
and exp(θ∧) ≈ I + θ∧ which hold under h → 0,

Ẋ(t) = lim
h→0

X0 exp(θ(t+ h)∧)−X0 exp(θ(t)
∧)

h

≈ lim
h→0

X0 exp
(
(θ(t) + θ̇(t)h)∧

)
−X0 exp(θ(t)

∧)

h

≈ lim
h→0

X0 exp(θ(t)
∧)

I + (H(θ)θ̇(t)h)∧ − I

h

= X0 exp(θ(t)
∧)(H(θ)θ̇(t))∧

= X(t)(H(θ)θ̇(t))∧.
(8)

Equating this result with Eq. 6 results in,

F (X, t) = Ẋ(t) = X(t)(H(θ)θ̇(t))∧

=⇒ θ̇(t) = H(θ)−1(X(t)−1F (X, t))∨, θ(0) = 0.
(9)

This result gives a straightforward way to perform manifold
integration in R6 as long as our assumption in Eq. 7 is valid,
which should hold true over small timesteps. Later it will be
seen how this result will continue to be simplified for wheel
odometry.

C. Factor Graphs

In state estimation, the objective is often to optimize a
maximum a posteriori (MAP) problem over variables Θ given
measurements Z, given by

Θ∗ = argmaxΘP (Θ|Z) ∝ argmaxΘP (Z|Θ)P (Θ). (10)

When the measurements are assumed to be Gaussian dis-
tributed, this simplifies to nonlinear least squares optimization,

Θ∗ = argminΘ
∑
z∈Z

||hz(Θ)− z||2Σz
(11)

where hz is the prediction function of z given the estimated
state Θ. The difference hz(Θ)− z is often called the residual
and written as

Θ∗ = argminΘ
∑
z∈Z

||rz(Θ)||2Σz
. (12)

This can be represented by a factor graph [29], which is a
bipartite graph with a single factor node for each residual.
The factors nodes are connected to variable nodes given
their dependence on each variable. Factor graphs are a useful
visualization and computational tool for state estimation.

b

rl

rr

W

G

Fig. 2: Small example of vehicle where rl and rr are the left and
right wheel radii, b the baseline between wheels, G the global frame,
and W the wheel encoder frame.

IV. PREINTEGRATED WHEEL ODOMETRY

In this section we will introduce the novel preintegrated
wheel odometry by first walking through the 6D preintegration
in local coordinates, then the first order updates to both wheel
slip and intrinsics. We assume a single pair of wheels with
encoders as seen in Fig. 2, but our method can be generalized
to multiple pairs of wheels. Additionally, our use cases involve
a skid-steer vehicle, but again our method generalizes to other
vehicle types as well [16].

A. Measurement Transformation

Generally, wheel encoders measure the true angular speed
ω =

[
ωl ωr

]⊤
of each wheel, or a value proportionate to

it. Often, wheels will skid or slip on the ground, causing
measured wheel speeds to deviate from the expected wheel
speeds given the vehicle velocity. We introduce these slip
events, along with Gaussian noise, as

ω̃ = ω + s+ wω, wω ∼ N (0,Σω) (13)

where the wheel slip is represented by s =
[
sl sr

]⊤
. Note

this wheel slip model is significantly simpler than others used
for dynamics and control [3], [19], but is sufficiently accurate
to capture outlier wheel slippage for state estimation [11].
Using the wheel baseline b and the left and right wheel
radii rl, rr as defined Fig. 2, these measurements can be
transformed to a vehicle forward linear velocity vx and z
angular velocity ωz as follows,[

ω̃z

ṽx

]
=

[
rrω̃r−rlω̃l

b
rrω̃r+rlω̃l

2

]
=

[−rl
b

rr
b

rl
2

rr
2

]
ω̃ ≜ M(n)ω̃ (14)

where we have defined the wheel intrinsics n =
[
b rl rr

]⊤
and M(n) as the linear transformation that maps measure-
ments to velocities. As this transformation is linear, we can
exactly propagate the Gaussian noise through M(n) to arrive
at [

ω̃z

ṽx

]
= M(n)(ω + s+ wω)

= M(n)(ω + s) + wz ≜

[
ωz

vx

]
+ wz,

wz ∼ N (0,Σz), Σz = M(n)ΣωM(n)⊤.

(15)

To perform full 6 degrees of freedom (DoF) integration,
additional constraints are needed for the y, z linear velocities
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Fig. 3: Tukey-biweight robust kernel function, with parameter c = 1.
Notice that outside of the basin, the function has gradient 0.

and x, y angular velocities. By leveraging the nonholonomic
constraint, we assume that the y and z linear velocities can be
represented by mean-zero Gaussians. Similarly over long time
periods, we assume ground vehicles will have mean-zero x, y
angular velocities and model them using mean-zero Gaussians
as well. This results in full velocity measurement of the form,

ṽ = Π

[
ωz

vx

]
+ w, w ∼ N (06,Σv)

Σv = block diag(Σa,Σz,Σl)

Π =

02×2

I2
02×2

 .

(16)

As shown later, these assumptions will result in a piecewise
planar constraint, with these modeled Gaussians providing a
straightforward covariance propagation method for these extra
dimensions.

B. Preintegration

Using this measurement, we can perform full 6 DoF integra-
tion using local coordinates. By using Eq. 9, the deterministic
continuous dynamics will be

Ẋ(t) = X(t)v(t)∧

=⇒ θ̇(t) = H(θ)−1(X(t)−1X(t)v(t)∧)∨ = H(θ)−1v.
(17)

Using a simple Euler integration scheme results in our
preintegration equation. Here we give the equations over a
single timestep and over the entire preintegration window of
size N as well,

θi+1 = θi +H(θi)
−1vi∆ti

=⇒ θN =

N∑
k=1

H(θk)
−1vk∆tk.

(18)

Note the iteration is naturally started with θ1 = 0. This result
is somewhat expected as wheel odometry can be integrated
locally trivially. However this formulation provides a simple
method for covariance propagation and first order updates for
wheel slip and intrinsic estimation without the need to repeat
the integration.

C. Covariance Propagation

For use in MAP estimation, we need a covariance estimate
for θN . We obtain this by reintroducing Gaussian noise into

Eq. 18 and expanding using a first order Taylor series about
θi = 0,

θi+1 = θi +∆tiH(θi)
−1(vi + wi)

≈ ∂θi+1

∂θi
θi +

∂θi+1

∂wi
wi

≜ Aiθi +Biwi.

(19)

Assuming a small θi which holds over small preintegration
windows, the following approximation [26] is valid,

H(θ)
−1 ≈ I6 +

1

2

[
(θξ)∧ 0
(θρ)∧ (θξ)∧

]
(20)

where θξ corresponds to the rotational component, and θρ the
translational component. Using this approximation, Ai and Bi

are given by

Ai = I6 +∆ti
∂H(θi)

−1vi
∂θi

≈ I6 −
∆ti
2

[
(vai )

∧ 0
(vli)

∧ (vai )
∧

]
Bi = ∆tiH(θi)

−1.
(21)

where va corresponds to the angular velocities, and vl the lin-
ear. Using these approximations results in an iterative method
for covariance propagation, letting Σθ

i be the covariance of θi,

Σθ
i+1 = AiΣ

θ
iA

⊤
i +BiΣvB

⊤
i . (22)

D. Slip & Intrinsics Estimation

Further, to remove the need to repeat calculations of Eq. 18,
we compute first order updates for both the wheel intrinsics
n and slip estimate s, which should be reasonably accurate
over small preintegration windows. To do so, we make the as-
sumption of constant wheel intrinsics across the preintegration
window given by some initial estimate of n̄. Additionally, we
replace the slip in a single timestep si with its average across
the preintegration window,

s̄ =
1

N

N∑
k=1

si. (23)

Introducing these assumptions into Eq. 18 results in

θi+1 = θi +H(θi)
−1vi∆ti

= θi +H(θi)
−1ΠM(n̄)(ωi + s̄)∆ti.

(24)

As large slip outliers should occur infrequently, we begin by
linearizing about a wheel slip of 0. Then, taking the first order
expansion for wheel slip and using the chain rule results in,

Gi+1 ≜
∂θi+1

∂s̄
=

∂θi+1

∂θi

∂θi
∂s̄

+
∂θi+1

∂s̄

= AGi +H(θi)
−1ΠM(n̄)∆ti.

(25)

This gives an iterative equation for updating this Jacobian
online. We can use GN to approximately remove any effect
slip had on θN by subtracting GN ŝ from θN . A similar setup
can be done for the wheel intrinsics linearized about some
estimate of the intrinsics n̄,

Fi+1 ≜
∂θi+1

∂n̄
=

∂θi+1

∂θi

∂θi
∂n̄

+
∂θi+1

∂n

= AFi +H(θi)
−1ΠN(ω, n)∆ti

N(ω, n) =

[
−ωrrr−ωlll

b2 −ωl

b
ωr

b
0 ωl

2
ωr

2

]
.

(26)
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Fig. 4: Two steps of various wheel factors used in the manuscript. Light blue represents the standard 2D integration that only constrains
x, y, and yaw. Pink are the planar roll, pitch, and z priors. Green is our on manifold 6D integration constraining all of SE(3). Finally,
orange represents the slip prior and intrinsics constraint used in ROSE. More succinctly, (a) and (b) represent prior works, with (c) and (d)
representing our contributions.
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Fig. 5: 3D surface used for simulating off-road driving. The path
taken by the simulated vehicle is shown by the black line. To not
completely disqualify planar methods, we limited the manifold to
have a z position range of 1.5m and the pitch and roll a maximum
value of 2.5◦.

In this case, we want to capture any effect n̂ − n̄ that was
missed in the original preintegration, so we add FN (n̂ − n̄)
to θN . Putting Eqs. 18, 22, 25, and 26 all together results in
our preintegration equation as

θ̃N (ŝ, n̂) =

( N∑
k=1

H(θk)
−1ṽ∆ti

)
−GN ŝ+ FN (n̂− n̄) + wN

wN ∼ N (0,Σθ
N ).

(27)

Each preintegration window will be initialized with θ1 =
0,Σθ

1 = 0.

E. Residuals

Putting the final preintegration equation in Eq. 27 into the
original differential equation solution in Eq. 7 results in a
prediction step for Xi, Xj ∈ SE(3) with N wheel encoder
measurements between the poses,

X̂j = X̂i exp
(
(θN (ŝ, n̂) + wN )

∧)
. (28)

Using a first order approximation to separate the noise, this
can be rearranged to find the residual equation

rθij = −wN = log
(
exp(−θN (ŝ, n̂)∧)X̂−1

i X̂j

)
(29)

with rθij having the same distribution as wN . This residual,
along with our integration, results in a piecewise planar

constraint on vehicle motion. Essentially, the x, y, and yaw
directions are constrained using vehicle movement and pitch,
roll, and z directions are constrained to be constant across the
window. Also note, a transformation to other sensors frames
can also trivially be done in this residual as well.

Additionally, to allow for time varying wheel intrinsics, in
each preintegration window a wheel intrinsics n̂i is estimated,
with a simple residual disallowing significant changes over
time,

rnij = n̂i − n̂j (30)

where rnij is Gaussian distributed with covariance Σn.
Finally, since wheel slippage should only generally be

mean-zero, we add a zero prior on the slip,

rsi = ŝi. (31)

with corresponding variance for each slip prior given by σs2.
We additionally wrap this residual in a Tukey robust kernel
given by,

ρ (x) =

|x| ≤ c c2

6

(
1−

(
1− (x/c)

2
)3

)
|x| > c c2

6 .
(32)

This prevents the optimizer from utilizing the slip estimate as
an arbitrary slack variable, but if there is strong enough of a
pull out of the robust basin, as shown in Fig. 3, it will enter
a zone of zero gradient and won’t impact the slip estimate.

These residuals can be summarized by the orange and green
factors as shown in Fig. 4(d) and are combined into a single
cost as,

r2ij = rθ⊤ij (Σθ
N )

−1
rθij + rn⊤ij (Σn)

−1
rnij + ρ

(
rsi
σs

)
(33)

This cost can then be summed over a fixed-lag window, and
summed with other sensor costs such as cameras, IMUs, or
LiDARs.

In summary, we have developed an on-manifold SE(3)
preintegration of wheel odometry with additional wheel slip
and wheel intrinsics estimation for usage in an optimization-
based state estimation. It relies on the assumptions of mean-
zero lateral and vertical linear velocities, mean-zero pitch and
roll rates, and a handful of approximations that require small
preintegration windows, all of which hold for our domain of
off-road driving.
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Fig. 6: Convergence of wheel intrinsics and wheel slip events for one of the Monte Carlo simulation runs showing ROSE fused with stereo
visual odometry (SVO). ROSE is able to observe wheel slip and wheel intrinsics accurately online.

V. EXPERIMENTS

To evaluate the effectiveness of our preintegrated off-road
wheel odometry, experiments were done on both simulated
and real-world datasets. While our method can be fused with
any other sensor, for our experiments we chose to fuse with
stereo cameras and an IMU for VWO and VIWO systems.

For simplicity, we use a basic stereo camera measurement[
ul ur v

]⊤
, where ul and ur represent the left and right

pixel column coordinate respectively, and v represents the
shared row coordinate of the rectified pair. Using this measure-
ment, a residual is defined using the difference between the
measured pixel coordinates and the expected coordinates from
projection using calibrated camera intrinsics and extrinsics.

A. Baseline

For our baseline, we compare against a basic wheel in-
tegration scheme that integrates in 2D – namely providing
constraints in x, y, and yaw. Further, to constrain the remaining
dimensions, and as is common in previous literature [12],
[13], we additionally add a prior on the z, pitch, and roll
dimensions. The 2D integration with planar priors we denote
as the “Planar” method moving forward. We compare against
stereo visual odometry (SVO), integrated wheel odometry
(WO), our base 6D integration method (ROSE--) to justify
our 6D integration, and our full method with both slip and
intrinsics estimation (ROSE). The factors for each of these
are shown in Fig. 4.

B. Simulation Validation

The simulation experiments were done by integrating wheel
odometry moving across the surface shown in Fig. 5. This
surface was created by a combination of low frequency cos
functions. Further note, the surface has z-range of about
1.5m and a pitch and roll maximum value of 2.5◦ for a fair
comparison to the planar methods. In many off-road scenarios,
there will potentially be a much larger gap that will naturally
favor our method.

Stereo vision was simulated by sampling 3D points near
the trajectory and projecting them using the camera intrinsics.
More points were sampled if less than 50 points were found
in a single frame. Stereo cameras were simulated at 5Hz
and wheel odometry at 100Hz. The vehicle was simulated
as moving for 100 s for a total distance of 200m.

0
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10
ATEt (m)

0

1

2

3
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5
ATEr (deg)

SVO
WO

SVO + Planar
SVO + ROSE--

SVO + ROSE

Fig. 7: Results of a Monte Carlo simulation with 50 runs in idealized
conditions, i.e. correct wheel intrinsics and no wheel slippage. The
6D integration used in our method (ROSE) performs more accurately
than previous work.

1) Idealized Run: First, to justify our usage of our 3D
integration, we compare in an idealized scenario with exactly
correct intrinsics and no wheel slippage. For completeness,
we ran the simulation 50 times and computed both the
translational and rotational average trajectory error (ATEt and
ATEr, respectively). Results are shown in Fig. 7.

It can be seen that ROSE-- without the extra estimation
performed comparably to the baseline in ATEt, while it
outperformed it in ATEr by a fair margin. This is likely due
to our method additionally estimating pitch and roll, while the
baseline assumes they are 0.

2) Corrupted Run: Next, to test the advantages of the
additional wheel slip and intrinsics estimation we perturb
the initial wheel intrinsics estimate, by 10% and randomly
introduce 10 wheel slip events each with a duration of 0.5 s
and length of 0.5m. The Monte Carlo simulation results can
be seen in Fig. 9 and the convergence of wheel intrinsics and
slip estimation from a single run is shown in Fig. 6.

The observability of both the wheel intrinsics and slip when
fused with stereo vision can be seen in the convergence in
Fig. 6. Notice that each slip event was accurately estimated
by our method to a fairly high degree. Also of note, at the
beginning of the estimation, the system initially estimates
error in the system as slip; however, after the wheel intrinsics
converge, the slip and intrinsics are estimated much more
accurately.

The significant impact that wheel slip events have can also
been seen in Fig. 9. In all of the scenarios where wheel slip was
not being estimated, the estimate ended up being poorer than
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Fig. 7. ROSE is able to estimate wheel slip events and wheel intrinsics
online, resulting in a more robust system.

just using stereo odometry alone, explaining the limited usage
of wheel encoders in state estimation today. However, when
the wheel slip is taken into account, ROSE is able to improve
on the stereo only methods, and achieves similar performance
as in the idealized scenario.

C. Real World Experiments

Real world experiments were done on a six-wheeled skid
steer off-road vehicle equipped with wide-angle stereo cameras
running at 8Hz, a KVH-branded inertial measurement unit
(IMU) at 100Hz, and two wheel encoders equipped on the
middle wheels on the left and right side at 20Hz.

For the stereo vision, features were found using FAST
features [30], left and right image features were matched
using a rectified disparity image, and features were temporally
propagated using KLT tracking [31]. We additionally use IMU
preintegration [32] when IMU fusion is done.

The wheel encoder values were linearly interpolated to
generate synthetic measurements at the same timesteps as

the stereo cameras. Fifteen experimental trajectories were
taken ranging in length from 0.4 to 1.7 km in Penn Hills,
Pennsylvania. An example is shown in Fig. 1 and results are
shown in Fig. 8. We divided the ATEt error by the length of
the trajectory to get a better comparison across experiments.
Covariances used are shown in Table I.

TABLE I: Experiment Noise Statistics
Covariance Value
Wheel Encoder 5× 10−2 rad/sec/

√
Hz

Angular Velocity 5× 10−2 rad/sec/
√
Hz

Linear Velocity 1× 10−2 m/sec/
√
Hz

Intr. Radius Bet. 7× 10−6 m
Intr. Baseline Bet. 9× 10−4 m
Slip Prior 1× 10−2 rad/sec
Slip Kernel c 1.0

For the scenarios where an IMU is used, we fuse with
stereo visual inertial odometry (SVIO). In this scenario, we
also compare against the 2D integration without the planar
priors also known as the underconstrained (Under) case.

Due to the high-speed nature of many of the trajectories,
there were a number of timesteps that failed to gather reliable
feature matches between images, resulting in a failure for
visual odometry and justifying the use of sensor fusion. Addi-
tionally in the VWO case, the underconstrained baseline often
failed due to degenerate systems and is not included. Further,
notice that our base 6D preintegration (ROSE--) performed
as well or better than the planar scenario in the majority of
trajectories, while the slip and intrinsics estimation version
clearly performed the best. In some scenarios it appears the
slip and intrinsics estimation didn’t help significantly; this is to
be expected as in experiments without extensive slip occurring
or with minimal changes to wheel intrinsics, ROSE will likely
perform similarly to the base method, ROSE--.

When IMU measurements are included, it can be seen that
our method does not worsen the accuracy of the SVIO method,
but does improve it slightly and naturally adds robustness
to sensor failures. The underconstrained and planar versions
combined with SVIO mostly degraded the state estimation.
Our methods, both ROSE and ROSE--, seemed to stabilize
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results a fair amount. One trajectory had outlier wheel odom-
etry measurements resulting in enormous errors in the other
VIWO methods. Another trajectory began while moving, in
which case the SVIO method failed to accurately initialize and
estimate IMU biases and resulted in extremely large ATEt.
In both of these scenarios, ROSE was still able to accurately
perform state estimation, demonstrating the robustness it can
add to existing sensor fusion methods. While other methods
do exist to solve IMU bias estimation, we find incorporating
ROSE into existing SVIO systems to be a straightforward and
effective solution.

VI. CONCLUSION & FUTURE WORK

These experiments show that our method is able to avoid
many of the problems that wheel odometry encounters in off-
road scenarios. The standard approaches often fail due to
being underconstrained, planar assumptions, wheel slippage,
or an inability to function in the case of other sensor failures.
ROSE avoids these issues by leveraging a full 6D preinte-
gration scheme and estimating wheel intrinsics and slippage
online. This provides an added level of robustness to the state
estimation as well as potential for increased accuracy.

Future work should be focused on reducing the number of
tunable covariances of the system as this is the largest current
drawback of this method. This could be done by implementing
a heuristic to auto-tune the covariances or via some form of
online estimation.
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