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Abstract— We consider the problem of learning error co-
variance matrices for robotic state estimation. The convergence
of a state estimator to the correct belief over the robot state
is dependent on the proper tuning of noise models. During
inference, these models are used to weigh different blocks of
the Jacobian and error vector resulting from linearization and
hence, additionally affect the stability and convergence of the
non-linear system. We propose a gradient-based method to
estimate well-conditioned covariance matrices by formulating
the learning process as a constrained bilevel optimization
problem over factor graphs. We evaluate our method against
baselines across a range of simulated and real-world tasks and
demonstrate that our technique converges to model estimates
that lead to better solutions as evidenced by the improved
tracking accuracy on unseen test trajectories.

I. INTRODUCTION

Robot state estimation is the problem of inferring the state
of a robot (a set of geometric or physical quantities such as
position, orientation, contact forces, etc.) given sensor mea-
surements. The problem is typically formulated as Maximum
a Posteriori (MAP) inference over factor graphs where each
node (robot state xi) is connected to other states via factors
(potentials) ϕi which are distilled from sensor measurements:

xMAP = argmax
x

N∏
i

ϕi(xi; θi, zi) (1)

The factors typically assume the form:

ϕi ∝ exp

(
−1

2
||gi(xi)− zi||2θi

)
(2)

which leads, after taking the negative log, to the equivalent
non-linear least squares objective:

x̂ = argmin
x

N∑
i=1

1

2
||gi(xi)− zi||2θi (3)

where x are the state variables, xi a subset of x, z = {zi} the
sensor measurements, and g the prediction function which
maps states onto the sensor’s measurement manifold. Noise
Models {θi} = θ affect the loss landscape and, as typical in
data assimilation procedures [1], correspond to error covari-
ance matrices. These parameters dictate the weight assigned
to each measurement which, given an optimal parameter set
θ∗, should ideally correlate with the uncertainty of each
sensor. Hence, {θi} when inaccurately defined will lead to
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Fig. 1: At each iteration, the parameters θt serve as inputs to to the least
squares solver. The inner loop optimization outputs a trajectory estimate x̂
which depends on θt. The Jacobian of x̂ with respect to θt is computed
via numerical differentiation and used to compute the gradient of the loss
with respect to the parameters. Finally, this gradient is used to update the
parameters θ.

suboptimal solutions. On the other hand, and specifically
because each θi is used to scale different error and Jacobian
terms after relinearization, the condition number of each θi
is correlated with the overall numerical conditioning and
stability of problem (3). Traditionally the set θ is manually
tuned per application. Nevertheless, alternative approaches
exist for estimating θ from data. Zero-order optimization
techniques such as [2]–[5] can be leveraged but can also
quickly become sample inefficient. Other methods attempt to
minimize the final tracking error loss by performing gradient-
based parameter updates. These techniques generally either
1) rely on unrolling the optimizer which is sensitive to
various hyperparameters [6] or 2) assume that the selected
graph optimization algorithm is differentiable [7]. Note how-
ever that this assumption does not hold for state-of-the-art
optimizers such as iSAM2 [8] due to dependence on relin-
earization thresholds and non-differentiable operations such
as removal/insertion of tree nodes. In addition, these methods
do not consider the conditioning of the learned parameters.
Hence in this work, we make three key contributions:

• We formulate the problem as a bilevel optimization
problem over factor graphs and use numerical differ-
entiation to efficiently estimate the required gradients.

• We propose a technique for estimating well-conditioned
positive definite matrices by incorporating hard condi-
tion number constraints into the learning procedure.

• We evaluate our approach on different synthetic naviga-
tion and real-world planar pushing examples in incre-
mental estimation settings.



II. BACKGROUND AND RELATED WORK

A. Filtering and Smoothing for State Estimation
Early state estimation techniques such as Kalman Filters
[9, 10] rely on the Markov assumption to enable real-
time performance. Various methods were proposed to better
estimate the process and measurement noise models [11, 12],
or to make these filters differentiable [13]–[17]. However,
these techniques do not allow for re-linearizing past states
which can lead to convergence to poor solutions. Hence,
state-of-the-art robotic state estimation algorithms transi-
tioned to factor graph smoothing-based approaches. These
methods encode the inherent underlying temporal structure,
providing efficient ways to relinearize past estimates and
eliminating the need to marginalize past states [8, 18, 19].
Under Gaussian assumptions, the smoothing problem is
equivalent to a non-linear least squares objective weighted by
error covariance matrices which often require manual tuning
tailored to each application [20, 21].

B. Learned Components in Factor-Graph Inference
Recent works incorporate learned components into factor-
graph-based inference models. [22] learns depth codes which
are subsequently used to compute various factors for dense
monocular SLAM. [23] learns observation models which
predict relative sensor poses then used in a factor graph
formulation to predict the pose of manipulated objects.
Similarly, [24] learns a model to predict relative robot poses
from non-sequential ground penetrating radar image pairs
then used in a factor graph in GPS-denied localization.
However, these methods use surrogate losses for learning
independently of the graph optimizer or final tracking error
and generally require separate tuning of noise models. While
traditionally these models have been manually tuned, novel
strategies have emerged to learn them directly from data. [6,
25] proposed differentiating through the argmin operator in
Eq. 3 by unrolling the optimizer. However, these techniques
are typically sensitive to hyperparameters such as the number
of unrolling steps [26] and, in addition, can suffer from
vanishing as well as high bias and variance gradients. Few
methods use variational inference techniques to refine noise
models when no groundtruth trajectories are available [27,
28] or use groundtruth trajectories to learn time-correlated
measurement noise models [29]. These methods target batch
state estimation problems and do not consider the condition-
ing of the estimated matrices. Recently, a novel method LEO
[30] capitalizes on the probabilistic view offered by iSAM2
(as a solver of Eq.1) to provide a way to learn observation
models, by minimizing a novel tracking error. In essence,
at every training iteration, LEO samples trajectories from
the posterior distribution (a joint Gaussian distribution over
the states) and the deviation with respect to the groundtruth
trajectory is minimized using an energy-based loss. However,
LEO exhibits slow convergence speed due to its dependence
on sampling from high-dimensional probability distributions
and is prone to convergence to poor local minimas.

C. Covariance Estimation in Mathematical Statistics
The estimation of well-conditioned and stable covariances
has garnered considerable attention within the mathematical

statistics community as their use spans different statistical
methods and practical applications ranging from numerical
weather prediction to financial portfolio optimization. [31]
proposes incorporating a prior involving the nuclear norms
of the covariance and its inverse in the estimation process to
bound the eigenvalues. [32] performs maximum likelihood
estimation of covariances subject to hard condition number
constraints. [33] proposes new theoretical perspectives on
reconditioning covariances using ridge regression or the
minimum eigenvalue method. In this work, we propose to
estimate error covariance matrices while imposing condition
number constraints for the task of incremental robot state
estimation.

D. Conditioning of Non-linear Least-Squares Problems

Iterative methods [34] solve Eq. 3 by relying on a sequence
of linearized subproblems. Each subproblem involves solving
the linear system A∆ = b where the stability of the solution
is influenced by the condition number of A : κ(A). In fact,
it has additionally been shown that the convergence rate of
specific solvers of the normal equation ATA∆ = ATb, such
as conjugate gradient (CG), is upper bounded by

√
κ(ATA).

When
√
κ(ATA) is high and without proper precondition-

ing, the performance of CG methods can be especially poor.
In section III-C.1, we show how estimating well-conditioned
error covariances matrices is correlated with the stability of
the linearized system.

III. METHOD

Our goal is to learn the parameters {θi} using a gradient-
based method from groundtruth robots trajectories xGT.
In this work, we view any unconstrained non-linear least
squares solver (e.g. Levenberg–Marquardt (LM) or iSAM2),
as a function f(θ) : Sn1

++ × . . . × Snp

++ → X with θ =
{θi | θi ∈ Sni

++} which, given an initial estimate x0 ∈ X :
M1 × . . . × Mn, returns an estimate of the optimal state
x̂ ∈ X after performing N update steps. Here, Mi is a Lie
Group (e.g. the special Euclidean group SE(n)) and Sni

++

is the set of ni × ni positive definite matrices. Consider the
following bilevel optimization procedure (also illustrated in
Fig. 1):

Inner Loop: f(θ) = argmin
x

H(x,θ; z) = x̂(θ)

= argmin
x

∑
i

1

2
||gi(xi)− zi||2θi (4)

Outer Loop: argmin
θ

L(f(θ),xGT) (5)

where L is a differentiable loss function capturing the devia-
tion of the estimate f(θ) from the GT. At every iteration, Eq.
5 outputs a set θt. Or, in other words, selects an updated loss
function for the inner loop optimization such that solving
problem 4 leads to a minima/solution that is closer to the
groundtruth trajectory xGT. Let h(x,θ) := ∂H

∂x . The graph
of f consists of all points satisfying first order-optimality
conditions of problem 4: gph(f) = {(θ, f(θ)) | f(θ) =
H(x̂,θ) and h(x̂,θ) = 0}. By the chain rule, the gradient
∂L
∂θ requires an estimate of ∂f

∂θ (i.e. the Jacobian of the
solution with respect to the parameter vector) and by the



implicit function theorem [35], this Jacobian (i.e. ∂f
∂θ ) exists

and can be computed as done in existing work in convex
optimization [36, 37].

Theorem 1: The Implicit Function Theorem:
Let x̂(θ) := {x | h(x,θ) = 0} where x ∈ X and θ =
{θi | θi ∈ Sn

++}. Let h be continuously differentiable
in the neighborhood of (x̂,θ) namely ∂h(x̂(θ),θ)

∂x be
nonsingular. Then:

∂f

∂θ
=

∂x̂(θ)

∂θ
=−

(
∂h(x̂(θ),θ)

∂x

)−1
∂h(x̂(θ),θ)

∂θ
(6)

Note that the original theorem is formulated for functions
operating on vector spaces. However, the theorem can readily
be extended to other manifolds by applying the appropriate
group operations [38]. The partial derivatives in Eq. 6 can be
derived and computed analytically. However, since the size
of the parameter vector θ is typically small – first, because
each θi is associated with a single physical sensor and
second, since each θi has a small number of free parameters
(e.g. a maximum of 6 for elements residing in SE(2)) –
numerical differentiation proved to be efficient, especially
when coupled with parallelization on CPU.

A. Numerical Jacobians over Lie Groups

The left Jacobian of functions acting on manifolds f : N →
M is defined as the linear map from the Lie algebra TEN
of N to TEM, the Lie algebra of M:

EDf(Y)

DY
= lim

τ→0

f(τ ⊕ Y)⊖ f(Y)

τ
(7)

= lim
τ→0

Log(f(Exp(τ) ◦ Y) ◦ f(Y)−1)

τ
(8)

where Y ∈ N , τ is a small increment defined on TE(N ). The
Log operator maps elements from a Lie Group to its algebra
while the Exp operator maps elements from the algebra to
the group. ⊕, ⊖, and ◦ are the plus, minus, and composition
operators respectively [39] where:

τ ⊕ Y = Exp(τ) ◦ Y (9)

τ = Y1 ⊖ Y2 = Log(Y1 ◦ Y−1
2 ); Y1,Y2 ∈ N (10)

In this work, N = Sn1
++ × . . . × Snp

++ and M = X .
Additionally, we assume that each vector θi corresponds
to the non-zero elements of some corresponding diagonal
positive definite matrix Σi ∈ Sni

++. i.e., we define the
following map:

θi = diag−1(Σi) ∈ Rni (11)

where the operator diag−1 constructs a vector from the
diagonals of a matrix. Hence, τ ∈ Rni and the operator
⊕ in Eq. 7 is the standard addition on vector space Rni .

B. Constrained Tracking Loss

Consider a parameter estimate θ ∈ Rm with m =
∑p

i=1 ni.
Let D be the training set, T be the total number of states
in groundtruth trajectory xGT, and D be the sum of the
Lie algebra dimensions of all states. Then the outer loss is
the constrained mean squared error between the estimated

trajectory and xGT:

L(θ)= 1

2|D|

|D|∑
j=1

||f(θ)⊖ xGT||22 (12)

subject to: λmin
i ≤ θi ≤ λmax

i ∀ θi ∈ θ

where λmin
i > 0 and λmax

i > λmin
i are vectors of minimum

and maximum eigenvalues, defined per coordinate and per θi,
which are enforced to better condition the estimated diagonal
matrices as well as ensure their positive definiteness. In other
words, these constraints allow to upper bound the condition
number κ(θi) =

λmax
i

λmin
i

of the estimated matrices. This, in turn,
contributes to better conditioning of the overall linearized
system during online inference (see III-C.1). Hence, since
the function L(θ) is non-convex, the constraints help in
steering the optimization towards more desirable minimas.
This constrained objective is solved by performing itera-
tive Frank-Wolfe update steps [40]. Algorithm 1 outlines
the training process. Note that the non-linear least squares
(NLLS) in line 3 can be solved by any NLLS optimizer.
i.e. our method is agnostic to the choice of optimizer,
whether it is differentiable (e.g., Levenberg-Marquardt) or
non-differentiable (e.g., iSAM2).

Algorithm 1 Training Loop

1: Input: Factor Graph F , initialization x0

2: while itr < max iter
3: f(θt) = Solve[NLLS(F , x0)]
4: Estimate ∂L

∂θ using Eq. 15
5: θt+1 = Frank-Wolfe-Step(∂L∂θ ,θ

t)
6: itr = itr+1

Algorithm 2 Frank-Wolfe-Step

1: Inputs: ∂L
∂θ ,θ

t

2: Solve (Direction Finding) :
3: s∗ = minss

T ∂L
∂θ subject to λmin ≤ s ≤ λmax

4: α = 2
M+itr (Step Size) ▷ Where M is a parameter

5: return θt + α(s∗ − θt) (Updated parameters)

The linear program in Alg. 2 line 3 has negligible compu-
tational burden (m decision variables and 2m constraints)
and can be solved efficiently using methods such as Interior
Point or Dual-Simplex. To estimate, the gradient in Alg. 1
line 4, we propose to perform numerical differentiation by
taking advantage of the small parameter space. Taking the
gradient of Eq. 12, we get:

∂L
∂θ

=
1

|D|

|D|∑
j=1

S(f(θ))T · (f(θ)⊖ xGT)︸ ︷︷ ︸
∈RTD (∼= TEX )

(13)

where S(f(θ)) ∈ RTD×m is a matrix such that each row r
is equal to:

S(f(θt))r =
∂f(θ)

∂θij
(14)

= lim
τij→0

Log(f(θ̃) ◦ f−1(θ))

τij
(15)



where θ̃ij = θij + τij and θ̃ = θ otherwise. By the implicit
function theorem, ∂f(θ)

∂θij
exists and is estimated using finite

differencing by perturbing the parameter θij by τij .

C. Remarks

1) Condition Number Constraints: The noise models θ are
used to weight the contribution of the error terms during
inference and their eigenvalue spread is correlated with the
numerical condition of the linear system resulting from the
linearization of Eq. 3. Specifically, linearizing Eq. 3 at iterate
xt, we obtain:

∆∗ = argmin
∆

N∑
i=1

1

2
||gi(xt

i) +
∂gi
∂xi

∆i − zi||2θi (16)

which as shown in [41] can be re-written as:

∆∗=argmin
∆

N∑
i=1

1

2
||θ−

1
2

i

∂gi
∂xi

∆i + θ
− 1

2
i (gi(x

t
i)− zi)||22 (17)

Collecting all Jacobians and prediction errors, the system can
be rewritten as:

∆∗ = argmin
∆

1

2
||A∆− b||22 (18)

Since both the Jacobian A and error vector b are composed
of elements which are matrix multiplied by some θ

− 1
2

i ,
the eigenvalue spread s̄ which we define as the maximum
eigenvalue divided by the minimum eigenvalue over all θi:

s̄ =
max{eig(θi) for θi ∈ θ}
min{eig(θi) for θi ∈ θ}

(19)

is correlated with the conditioning of matrix A and the
numerical stability of the system in Eq. 18 1. Our method
enables to constrain s̄ by incorporating hard constraints into
the learning process.
2) Inner Loop Initialization during Training: We borrow
from the imitation learning literature and initialize the inner
loop optimizer (x0 in alg. 1 line 3) with the GT trajectory
during training. These trajectories form our training set and
hence, are known a priori. Such initialization has been shown
to improve convergence speed and stability [42] . Note that
this is different from baselines such as LEO which, during
training, solves the inference problem in Eq. 3 incrementally
while initializing xt = xt−1 at each new timestep t.

IV. RESULTS
A. Baselines

We compare our method against three baselines: Nelder-
Mead [5], the Modified Powell’s method [4], and LEO [30].
Nelder-Mead is a gradient-free simplex-based optimization
algorithm that aims at decreasing the value of a given
function f at the vertices of a working simplex by performing
a sequence of transformation (i.e. reflection, shrinkage, etc.).
Powell’s method is similarly gradient-free and minimizes f
by performing a series of one-dimensional line minimization
along some search directions. Both methods minimize Eq.
5 where L is the L2 loss. We use SciPy’s implementation

1With factorization-based methods such as QR, poor conditioning can
lead to the loss of significant digits or even yield incorrect solutions.

of these algorithms and run them until convergence. LEO
minimizes the following outer-loop energy-based loss:

L(θ)= 1

|D|
∑

(xj
gt,z

j)∈D

E(θ,xj
gt; z

j)+log

∫
x

e−E(θ,x;zj)dx (20)

where (xj
gt, z

j) is a groundtruth sample from the training set
D, the energy E(θ,x; z) := H(θ,x; z) (as defined in Eq.
4), and the integral is over the space of trajectories. We use
the official implementation of LEO by Paloma et al.
B. Experimental Details
We perform experiments on different simulated and real tasks
and use the initialization proposed in III-C.2 for all methods.
For all experiments, we start the learning procedure with
initial θ0 values that steer the optimized trajectories far away
from the GT or in other words, θ0 that are far from the
underlying latent unknown parameters. The implementations
of Nelder-Mead and Powell in Scipy allow the specification
of bound constraints on the parameters. Hence, we perform 2
sets of experiments where 1) the bounds are loosely specified
and effectively only used to ensure the positive definiteness
of the estimated matrices (i.e. λmin > 0) and 2) with tight
bounds (denoted with (C) in tables I and II) where λmin=0.1
and λmax=10 are defined such that the maximum condition
number κmax =100 and hence, maximum eigenvalue spread
s̄max=100. Note that LEO does not support constraints. After
training, the optimal regressed values θ∗ by each method are
used as noise models for incremental inference on unseen test
samples and the output trajectories are compared against the
GT in terms of the root mean square error (RMSE). We use
the GTSAM C++ package as the factor graph optimization
library and its implementation of iSAM2 as the inner-loop
optimizer.
C. 2D Navigation

Prior

Fig. 3: The factor graph used to solve the synthetic robot navigation
estimation problems.

We use 4 synthetic planar (i.e. in SE(2)) robotic nav-
igation datasets consisting of GPS and odometric mea-
surements all generated from a different set of parame-
ters θlatent. Datasets D1 and D2 are generated using fixed
parameters {θgps, θodom}Di

while D3 and D4 use vary-
ing parameters which are functions of binary variable p:
{θ(p)gps, θ(p)odom}Di

. p simulates a light detector indicating
whether the robot is operating in indoor or outdoor en-
vironments. We use 5 sample trajectories for training and
20 for testing. Fig. 3 shows the structure of the graph
used to estimate the robot trajectory: A unary GPS factor
ϕgps(xi) is added to each pose xi while a binary odometry
factor ϕodom(xi, xi−1) is specified between poses. To sim-
ulate realistic robot navigation trajectories, Gaussian noise
∼ N (0, θodom) is injected to groundtruth relative odometry
measurements while Gaussian noise ∼ N (0, θgps) is added
to absolute groundtruth GPS measurements.



Table I shows the RMSE of the output trajectories compared
against GT. Other than D1 and D4, with constraints enabled,
for which Nelder-Mead or Powell generates parameters with
slightly better rotation accuracy, our technique consistently
converges to parameters θ∗ that lead to better tracking
accuracy on all remaining unseen test trajectories.

TABLE I: Average RMSE over the testing set for each navigation dataset.
Translation and rotation errors are in m and rad respectively.

Loose bounds Initial LEO NMead Powell Ours

D1
Transl 1.309 0.401 0.293 2.617 0.230

Rot 1.184 0.070 0.049 0.380 0.051

D2
Transl 2.597 1.226 1.473 7.913 0.775

Rot 2.061 0.572 0.941 0.259 0.056

D3
Transl 0.918 0.640 0.482 3.960 0.172

Rot 0.793 0.318 0.170 0.283 0.095

D4
Transl 0.805 0.671 0.592 0.465 0.209

Rot 1.123 0.816 1.092 0.212 0.073
Tight bounds Initial NMead(C) Powell (C) Ours (C)

D1
Transl 1.309 - 0.231 0.254 0.229

Rot 1.184 - 0.048 0.050 0.051

D2
Transl 2.597 - 1.467 0.838 0.777

Rot 2.061 - 0.849 0.167 0.051

D3
Transl 0.918 - 0.567 0.376 0.173

Rot 0.793 - 0.271 0.091 0.091

D4
Transl 0.805 - 0.681 0.356 0.210

Rot 1.123 - 1.090 0.074 0.075

D. Real-world planar pushing

We perform experiments on real-world tactile pushing ex-
ample where an end-effector pushes an object and the goal
is to estimate the pose of both the end-effector and that of
the object from sensor data. Groundtruth end-effector and
object poses are obtained using a motion capture system.
We follow the formulation in [23] where the graph includes
relative pose factor ϕtac (in which measurements predict the
difference in the pose of the end-effector relative to the object
between times t and t−n with n > 1), quasi-static dynamics
factor ϕdyn, geometric constraints ϕgeo, and end-effector
pose priors ϕprior. Each factor involves a different parameter
∈ {θtac, θdyn, θgeo, θprior} = θ which collectively form our
optimization set. We perform two sets of experiments where
1) ϕtac is provided by a noisy oracle (i.e. simulating an

accurate sensor with confident measurements) and 2) ϕtac
being computed from a stream of real tactile measurement.

TABLE II: Test RMS translation and rotation errors in cm and rad respec-
tively (averaged over the testing set). We report end-effector (ee) and object
(obj) trajectory error for both the noisy oracle and network experiments.

ELLIP
Loose bounds Initial LEO NMead Powell Ours

N
oi

sy
O

ra

ee

Transl 0.784 0.569 0.817 0.012 0.012
Rot 0.004 0.041 0.004 6e−5 2e−5

ob
j Transl 2.625 1.875 2.581 0.510 0.273

Rot 0.234 0.209 0.229 0.018 0.008

N
et

w
or

k ee

Transl 0.821 0.274 0.845 0.015 0.012
Rot 0.004 9e−4 0.004 1e−4 1e−5

ob
j Transl 2.431 2.456 2.477 1.543 0.982

Rot 0.271 0.162 0.265 0.168 0.155
Tight bounds Initial NMead (C) Powell (C) Ours (C)

N
oi

sy
O

ra

ee

Transl 0.784 - 0.710 0.006 0.018
Rot 0.004 - 0.005 2e−5 2e−5

ob
j Transl 2.625 - 1.534 0.364 0.287

Rot 0.234 - 0.031 0.023 0.007

N
et

w
or

k ee

Transl 0.821 - 0.900 0.010 1e−4

Rot 0.004 - 0.007 2e−5 7e−5

ob
j Transl 2.431 - 1.813 1.521 0.980

Rot 0.271 - 0.159 0.159 0.141
RECT

Loose bounds Initial LEO NMead Powell Ours

N
oi

sy
O

ra

ee

Transl 1.027 1.381 0.912 0.009 8e−4

Rot 0.006 0.015 0.006 8e−5 0.007

ob
j Transl 5.571 5.724 4.308 0.575 0.396

Rot 0.471 0.197 0.464 0.007 0.009

N
et

w
or

k ee

Transl 0.729 2.887 0.862 0.041 0.014
Rot 0.004 0.001 0.004 2e−4 6e−5

ob
j Transl 4.300 4.935 6.464 2.505 1.609

Rot 0.529 0.287 0.556 0.229 0.212
Tight bounds Initial NMead (C) Powell (C) Ours (C)

N
oi

sy
O

ra

ee

Transl 1.027 - 1.643 0.007 0.019
Rot 0.006 - 0.016 3e−5 1e−5

ob
j Transl 5.571 - 2.993 0.484 0.413

Rot 0.471 - 0.061 0.026 0.013

N
et

w
or

k ee

Transl 0.729 - 1.293 0.026 0.014
Rot 0.004 - 0.012 5e−5 1e−4

ob
j Transl 4.300 - 4.229 1.645 1.609

Rot 0.529 - 0.240 0.214 0.207
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Fig. 2: Experimental setup and factor graph used for the planar pushing task. Figures showing the data collection setup were borrowed from [23, 30].



Here, we pre-train a fully connected network on a small
training set to output the relative pose measurements from
tactile input images. These measurements are designed to
be relatively noisy and inaccurate. Both experiments are
performed on 2 objects of different shapes: ellipsoidal and
rectangular each featuring different contact patches. Finally,
we initialize all θi ∈ θ0 such that 1) they are far from the
underlying unknown latents and 2) the spread s̄ is high. We
use a 5/10 train/test split. The experimental setup is further
illustrated in Fig. 2. Table II shows the RMSE of the output
trajectories when compared against GT for the pushing task:
LEO can converge to poor local minimas which lead at times
to worse tracking error on the testing set compared to our
initial estimate. Similarly, for Nelder-Mead, the method can
fail to decrease the function value. In fact, it has practically
been observed to stagnate at non-optimal points [43]. While
Powell’s method generates reasonable parameter estimates,
our technique converges to solutions θ∗ that lead to better or
comparable tracking accuracy on all unseen test trajectories.

TABLE III: The spread s̄ (to the nearest integer) of the final output values
θ∗ learned by our method.

Ellip Ora Ellip Net Rect Ora Rect Net
Ours (Loose bounds) 610 3615 460 420
Ours (Tight bounds) 70 62 67 75

Table III shows the eigenvalue value spread s̄ of the opti-
mized set θ∗ estimated by our method under both tight and
loose eigenvalue bounds. Note that the generated solution
indeed satisfies the hard bound constraints (s̄max < 100)
when specified. Conversely, in the absence of upper-bound
constraints, the eigenvalue spread can effectively grow un-
bounded.

V. COMMENTARY

A. Invariance to the Specified Constraint Bounds

We note from Tables I and II, that the performance of the
Nelder-Mead and Powell’s algorithms, in terms of tracking
accuracy and variance of the output is influenced by the spec-
ified bound constraints. In contrast, our algorithm converges
to minimas that lead to similar tracking performance (albeit
with different eigenvalue spread) regardless of the specified
bounds. Note that the parameter M in alg 2 requires tuning
in order to damp the step size if the bound interval is large. In
addition, and as typical in optimization problems, a solution
needs to exist in the feasible region.

B. Runtime

Fig. 4 shows the translation and rotation accuracy on the
training set as a function of runtime for the navigation
dataset D3. Nelder-Mead and Powell’s method, being zero-
order methods, exhibit slower convergence rates compared to
gradient-based optimizers. LEO does leverage the gradient
of the energy-based loss (Eq. 20). However, it requires
samples from a high dimensional probability distribution
to approximate the integral term at each training iteration
which is a time-consuming process. Our technique generates
gradients by directly comparing deviations from the training
trajectories leading to faster convergence. However, note that

our method’s running time is expected to increase proportion-
ally to the dimension of θ since although parallelizable, the
perturbations in Eq. 15 need to be performed per parameter
and per dimension.

Fig. 4: Training translation and rotation error vs runtime for all methods on
the navigation D3 dataset.

C. Varying the Initialization
We show in Fig. 5 the training error curves for different
initializations of the parameter vector θ0 for dataset D3. We
observe that across all initializations, our method converges
to model estimates that minimize the translation and rotation
error (deviation from groundtruth pose) on the training set.

Fig. 5: Convergence with varying parameter initialization θ0.

D. Varying the number of training trajectories
We used 5 training samples across experiments and found
that increasing the number of training trajectories does not
lead to improved generalization and testing accuracy. As
noted in [44], given the relatively small parameter set θ and
the fact that both train and test trajectories are sampled from
the same distribution, the learning process only requires a
few samples.

VI. CONCLUSION AND FUTURE WORK

We introduce a gradient-based algorithm to learn error co-
variance matrices for robotic state estimation. Our technique
formulates the problem as a bilevel optimization procedure
and generates required gradients through numerical differ-
entiation. Our method results in parameters that generalize
better compared to baselines with the added benefit of incor-
porating hard condition number constraints. In future work,
we want to extend our algorithm to learn parameters {θi}
that are themselves functions of observations i.e. θi(zi,Θi)
where Θi can, for example, be the weights of a jointly
trained neural network. Indeed, the outputs of the network
can be perturbed to approximate ∂x̂

∂θi
(where x̂ is the solution

returned by the graph optimizer) as proposed in this work
and then chained with ∂θi

∂Θ (obtainable from existing auto-
differentiation packages such as PyTorch [45]) to get the
Jacobian of the optimized output trajectory with respect to
network weights. Finally, enforcing constraints on the output
of a neural network offers interesting related avenues for
future research.
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