DISCRETE DIFFERENTIAL GEOMETRY:
AN APPLIED INTRODUCTION

Keenan Crane

Last updated: April 13, 2020

Contents

Chapter 1. Introduction

1.1.
1.2.
1.3.

Disclaimer
Copyright
Acknowledgements

Chapter 2. Combinatorial Surfaces

2.1.
2.2.
2.3.
24.
2.5.
2.6.
2.7.

Abstract Simplicial Complex

Anatomy of a Simplicial Complex: Star, Closure, and Link
Simplicial Surfaces

Adjacency Matrices

Halfedge Mesh

Written Exercises

Coding Exercises

Chapter 3. A Quick and Dirty Introduction to Differential Geometry

3.1.
3.2.
3.3.
3.4.
3.5.

The Geometry of Surfaces
Derivatives and Tangent Vectors
The Geometry of Curves
Curvature of Surfaces
Geometry in Coordinates

Chapter 4. A Quick and Dirty Introduction to Exterior Calculus

4.1.
42.
4.3.
44.
4.5.
4.6.
47.
4.8.

Exterior Algebra

Examples of Wedge and Star in R"
Vectors and 1-Forms

Differential Forms and the Wedge Product
Hodge Duality

Differential Operators

Integration and Stokes” Theorem

Discrete Exterior Calculus

Chapter 5. Curvature of Discrete Surfaces

5.1.
5.2.
5.3.
54.
5.5.
5.6.

Vector Area

Area Gradient

Volume Gradient

Other Definitions

Gauss-Bonnet

Numerical Tests and Convergence

Chapter 6. The Laplacian

6.1.
6.2.
6.3.

Basic Properties
Discretization via FEM
Discretization via DEC

100
100
103
107

6.4.
6.5.
6.6.

CONTENTS

Meshes and Matrices
The Poisson Equation
Implicit Mean Curvature Flow

Chapter 7. Surface Parameterization

7.1.
7.2.
7.3.
7.4.
7.5.

Conformal Structure

The Cauchy-Riemann Equation

Differential Forms on a Riemann Surface
Conformal Parameterization

Eigenvectors, Eigenvalues, and Optimization

Chapter 8. Vector Field Decomposition and Design

8.1.
8.2.
8.3.
8.4.

Hodge Decomposition

Homology Generators and Harmonic Bases
Connections and Parallel Transport

Vector Field Design

Chapter 9. Conclusion

Bibliography

Appendix A. Derivatives of Geometric Quantities

Al

List of Derivatives

110
112
113

116
118
119
120
122
126

133
134
141
146
153

157
158

160
164

CHAPTER 1

Introduction

7S

These notes focus on three-dimensional geometry processing, while simultaneously providing
a first course in traditional differential geometry. Our main goal is to show how fundamental
geometric concepts (like curvature) can be understood from complementary computational and
mathematical points of view. This dual perspective enriches understanding on both sides, and
leads to the development of practical algorithms for working with real-world geometric data.
Along the way we will revisit important ideas from calculus and linear algebra, putting a strong
emphasis on intuitive, visual understanding that complements the more traditional formal, algebraic
treatment. The course provides essential mathematical background as well as a large array of
real-world examples and applications. It also provides a short survey of recent developments in
digital geometry processing and discrete differential geometry. Topics include: curves and surfaces,
curvature, connections and parallel transport, exterior algebra, exterior calculus, Stokes” theorem,
simplicial homology, de Rham cohomology, Helmholtz-Hodge decomposition, conformal mapping,
finite element methods, and numerical linear algebra. Applications include: approximation
of curvature, curve and surface smoothing, surface parameterization, vector field design, and
computation of geodesic distance.

One goal of these notes is to provide an introduction to working with real-world geometric data,
expressed in the language of discrete exterior calculus (DEC). DEC is a simple, flexible, and efficient
framework which provides a unified platform for geometry processing. The notes provide essential
mathematical background as well as a large array of real-world examples, with an emphasis on
applications and implementation. The material should be accessible to anyone with some exposure
to basic linear algebra and vector calculus, though most of the key concepts are reviewed as needed.
Coding exercises depend on a basic knowledge of C++, though knowledge of any programming
language is likely sufficient: we do not make heavy use of paradigms like inheritance, templates,
etc. The notes also provide guided written exercises that can be used to deepen understanding of
the material.

1. INTRODUCTION 4

Why use exterior calculus? There are, after all, many other ways to describe algorithms for
mesh processing. One reason has to do with language: the exterior calculus of differential forms
is, to a large degree, the modern language of differential geometry and mathematical physics. By
learning to speak this language we can draw on a wealth of existing knowledge to develop new
algorithms, and better understand current algorithms in terms of a well-developed theory. It also
allows us to easily write down—and implement—many seemingly disparate algorithms in a single,
unified framework. In these notes, for instance, we’ll see how a large number of basic geometry
processing tasks (smoothing, parameterization, vector field design, efc.) can be expressed in only a
few lines of code, typically by solving a simple Poisson equation.

There is another good reason for taking this approach, beyond simply “saying the same thing
in a different way.” By first formulating algorithms in the smooth geometric setting, we can
ensure that essential structures are subsequently preserved at the discrete level. As one elementary
example, consider the vertex depicted above. If we take the sum of the tip angles 6;, we get a
number that is (in general) different from 27t. On any smooth surface, however, we expect this
number to be exactly 27—said in a differential-geometric way: the tangent space at any point should
consist of a “whole circle” of directions. Of course, if we consider finer and finer approximations of
a smooth surface by a triangle mesh, the vertex will eventually flatten out and our angle sum will
indeed approach 27t as expected. But there is an attractive alternative even at the coarse level: we
can redefine the meaning of “angle” so that it always yields the expected result. In particular, let

- 27

Lo

be the ratio between the angle sum 27t that we anticipate in the smooth setting, and the Euclidean
angle sum } ; 6; exhibited by our finite mesh, and consider the augmented angles

0; := s6..
In other words, we simply normalize the usual Euclidean angles such that they sum to exactly 27,
no matter how coarse our mesh is:
Zéi = sZBi = 271.
i i

From here we can carry out all the rest of our calculations as usual, using the augmented or
“discrete” angles §; rather than the usual Euclidean angles 6;. Conceptually, we can imagine that
each vertex has been smoothed out slightly, effectively pushing the curvature of our surface into
otherwise flat triangles. This particular convention may not always (or even often) be useful, but
in problems where the tangent space structure of a surface is critical it leads to highly effective
algorithms for mesh processing (see in particular [KCPS13]).

This message is one theme we’ll encounter frequently in these notes: there is no one “right” way
to discretize a given geometric quantity, but rather many different ways, each suited to a particular
purpose. The hope, then, is that one can discretize a whole theory such that all the pieces fit
together nicely. DEC is one such theory, which has proven to be highly successful at preserving the
homological structure of a surface, as we'll discuss in Chapter 8.

The remainder of these notes proceeds as follows. We first give an overview of the differential
geometry of surfaces (Chapter 3), using a description that leads naturally into a discussion of
smooth exterior calculus (Chapter 4) and its discretization via DEC. We then study some basic
properties of discrete surfaces (Chapter 2) and their normals (Chapter 5), leading up to an equation
that is central to our applications: the discrete Poisson equation (Chapter 6). The remaining chapters
investigate various geometry processing applications, introducing essential geometric concepts

1. INTRODUCTION 5

along the way (conformal structure, homology, parallel transport, etc.). Coding exercises refer to a
supplementary C++ framework, available from

https://github.com/dgpdec/course

which includes basic mesh data structures, linear algebra libraries, and visualization tools—any
similar framework or library would be suitable for completing these exercises. Solutions to written
exercises are available upon request.

Our goal throughout these notes was to describe every concept in terms of a concrete geometric
picture—we have tried as much as possible to avoid abstract algebraic arguments. Likewise, to get
the most out of the written exercises one should try to make an intuitive geometric argument first,
and only later fill in the formal details.

https://github.com/dgpdec/course

1.3. ACKNOWLEDGEMENTS 6

1.1. Disclaimer

ACHTUNG!

These notes are very much a work in progress and there will be errors. As always, your brain
is the best tool for determining whether a statement is actually true! If you encounter errors please
don’t hesitate to contact the author, noting the page number and the version of the notes.

1.2. Copyright

Images were produced solely by the author with the exception of the Stanford Bunny mesh,
which is provided courtesy of the Stanford Graphics Computer Laboratory. Text in this document
was the sole creation of its author. (©Keenan Crane 2011-2020, all rights reserved.

1.3. Acknowledgements

These notes grew out of a course on discrete differential geometry (DDG) taught annually
starting in 2011, first at Caltech and now at CMU. Peter Schroder, Max Wardetzky, and Clarisse
Weischedel provided invaluable feedback for the first draft of many of these notes; Mathieu
Desbrun, Fernando de Goes, Peter Schroder, and Corentin Wallez provided extensive feedback on
the SIGGRAPH 2013 revision. Joshua Brakensiek and Mark Gillespie made some nice contributions
to written exercises; Nicholas Sharp and Rohan Sawhney helped revolutionize the associated
codebase. Thanks to Mark Pauly’s group at EPFL for suffering through (very) early versions of
these lectures, to Eitan Grinspun for detailed feedback and for helping develop exercises about
convergence, and to David Bommes for test-driving the whole thing at Aachen. David Bachman
and Katherine Breeden provided a bunch of useful feedback in Spring 2020, during their run of
the course at Harvey Mudd College and Pitzer College. Thanks also to those who have pointed
out errors over the years: Mirela Ben-Chen, Nina Amenta, Chris Wojtan, Yuliy Schwarzburg,
Robert Luo, Andrew Butts, Scott Livingston, Christopher Batty, Howard Cheng, Gilles-Philippe
Paillé, Jean-Francois Gagnon, Nicolas Gallego-Ortiz, Henrique Teles Maia, Joaquin Ruales, Papoj
Thamjaroenporn, Niklas Rieken, Yuxuan Mei, John C. Bowers, and all the students in 15-458 /858 at
CMU and CS177 at Caltech, as well as others who I am forgetting!

Most of the algorithms described in these notes appear in previous literature. The method for
mean curvature flow appears in [DMSB99]. The conformal parameterization scheme described
in Chapter 7 is based on [MTADO08]. The approach to discrete Helmholtz-Hodge decomposition
described in Chapter 8 is based on the scheme described in [DKTO08]. The method for computing
smooth vector fields with prescribed singularities is based on [CDS10]; the improvement using
Helmholtz-Hodge decomposition (Section 8.4.1) is previously unpublished and due to Fernando de
Goes [dGC10]. More material on DEC itself can be found in a variety of sources [Hir03, DHLMO05,
DKTO08]. Finally, the cotan-Laplace operator central to many of these algorithms has a long history,
dating back at least as far as [Mac49].

CHAPTER 2

Combinatorial Surfaces

. [

“Everything should be made as simple as possible, but no simpler.”
—Al

A surface is, roughly speaking, the “outer shell” of a shape—for instance, you can think of
a whole orange as a solid ball; its peel describes a spherical surface (especially if we consider
an idealized peel with zero thickness). Different objects we encounter in our daily lives have
boundaries described by different surfaces. For instance, the glaze covering a donut makes a torus
rather than a sphere. (Hopefully all this talk of oranges and donuts is making you hungry for some
geometry...) As a prelude to really getting into the differential geometry of surfaces, we're going to
start by looking at objects that are easy to understand from a purely discrete point of view, namely,
combinatorial surfaces, or descriptions of shapes that only tell you how surfaces are connected up and
not where they are in space. In discrete differential geometry, combinatorial surfaces effectively play
the same role that topological surfaces do in the smooth setting. We won't get deep into topology in
these notes, but working with discrete surfaces “sans geometry” should give you a pretty good feel
for what topology is all about. In particular, we’ll talk about several different ways to encode the
connectivity of combinatorial surfaces: using an abstract simplicial complex, adjacency matrices, and a
halfedge mesh, all of which tie in to the richer geometric objects and algorithms we want to work
with later on. (Those craving a more technical treatment may want to check out Hatcher’s book on
algebraic topology [Hat02].)

Taking a cue from “Al”} we're going to make some simplifying assumptions about what shapes
look like, while still retaining enough flexibility to describe the kinds of objects found in the
natural world. These simplifications will both make it easier to establish clean descriptions and
definitions of geometric phenomena (such as curvature), and will ultimately help us build lean,
clean algorithms that don’t need to consider lots of special situations and corner cases. The basic
simplifying assumption of differential geometry is that the shapes we want to study are manifold.

IThe quote above paraphrases Albert Einstein, who actually said, “It can scarcely be denied that the supreme goal of all theory
is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of
a single datum of experience.”

2.1. ABSTRACT SIMPLICIAL COMPLEX 8

Loosely speaking this means that, at least under a microscope, they look the same as ordinary
Euclidean space. For instance, standing on the surface of the (spherical) Earth, it’s pretty hard to
tell that you're not standing on a flat plane. The manifold assumption is powerful because it lets us
translate many of the things we know how to do in flat Euclidean spaces (e.g., work with vectors,
differentiate, integrate, efc.) to more interesting curved spaces. There are in fact many distinct ways
in which a shape can “look like Euclidean space,” leading to many distinct sub-areas of differential
geometry (differential topology, conformal geometry, Riemannian geometry, ...). For now, we want
to focus on an utterly basic property of surfaces, namely that around any point you can find a small
neighborhood that is a topological disk.

polygonal disk (neither) polyhedron

A topological disk is, roughly speaking, any shape you can get by deforming the unit disk in the
plane without tearing it, puncturing it, or gluing its edges together. Some examples of shapes that
are disks include a flag, a leaf, and a glove. Some examples of shapes that are not disks include a
circle (i.e., a disk without its interior), a solid ball, a hollow sphere, a donut, a fidget spinner, and a
teapot. Pictured above, for instance, we have a topological disk (left) a topological annulus (center)
and a topological (sphere) made by gluing together a finite number of polygons along their edges.

In this chapter we’ll start out by defining an abstract simplicial complex, which breaks a shape up
into simple pieces like edges, triangles, and tetrahedra. Any abstract simplicial complex can be
encoded by incidence matrices, which are basically just big tables recording which elements are next
to which other elements. Although this description can capture some pretty complicated shapes,
it’s often more general than what we really need for discrete differential geometry. We therefore take
a look at the halfedge mesh, which is specifically tailored to two-dimensional surfaces, and can easily
describe surfaces with general polygonal faces (rather than just triangles). The halfedge mesh will
serve as our basic data structure for most of the algorithms we consider in these notes. At the end
of the chapter, we’ll do some exercises that reveal some fun, interesting, and useful properties of
combinatorial surfaces, and will get some hands-on intuition for how all these representations fit
together by writing some code that lets us interactively navigate a combinatorial surface.

2.1. Abstract Simplicial Complex

How can we encode surfaces by a finite amount of information that makes it possible to
distinguish a sphere from a torus? For now, let’s forget about shape or geometry (how big, small,
thick, thin, efc., the shape is) and focus purely on connectivity: which pieces of the surface are
connected to each other, and how?

2.1. ABSTRACT SIMPLICIAL COMPLEX 9

0

4

FIGURE 1. An abstract simplicial complex specifies how vertices are connected, but
not where they are in space. For instance, both of the figures above represent the
same simplicial complex, comprised of six vertices, ten edges, five triangles, and
one tetrahedron.

There are many different ways to describe the connectivity of a discrete surface; one way is
to use a simplicial complex—which in in fact can encode much more complicated objects than just
surfaces. The basic idea is to start out with a set V' of vertices, which we can identify with a collection
of integers:

Vv={012...,n}
We also need some information about how these vertices are connected. The idea of a simplicial
complex is to specify subsets of these vertices that are “right next to each-other,” called k-simplices.
The number k € Z~-_ is a nonnegative integer telling us how many elements are in this set: an
abstract k-simplex is a set of (k + 1) distinct vertices, and we call k the degree of the simplex. For
instance, here’s a triangle or 2-simplex:
{3,4,2}
and here’s a 1-simplex:
{3,5}

Geometrically, we can think of a 2-simplex as specifying a triangle, and a 1-simplex as specifying
an edge, as depicted in Figure 1, left; a 0-simplex contains just a single vertex. For now we won't
associate specific locations with the vertices—for instance, Figure 1, right is another perfectly good
depiction of these simplices? For this reason we call these simplices abstract—they don’t pin down
some concrete shape in space, but just tell us (abstractly) how vertices are connected up. For this
reason we can go as high as we like without having to think about how this thing looks in space
(8-simplex, 4-simplex, 5-simplex, ...). We also don’t care (for now) about the order in which the
vertices® are specified: for instance {2,3,4} and {3,2,4} specify the same 2-simplex as {3,4,2}.
Note that for convenience, we will often identify any vertex i € V with the corresponding 0-simplex

{i} e K.

Any (nonempty) subset of a simplex is another simplex, which we call a face; a strict subset is
called a proper face. For instance, {2,3} is a proper face of {3,4,2}, and {2,3,4} is a face of {3,4,2},
but not a proper one.

An abstract simplicial complex is, roughly speaking, just a collection of abstract simplices. How-
ever, we will put a very basic condition on this collection that ensures we can work with it in
a natural way—and which ultimately helps us to make connections with smooth surfaces. In
particular, we will say that a collection of simplices K is a simplicial complex if for every simplex

Note: the plural of simplex is simplices—not “simplexes”!
3The plural of vertex is vertices—not “vertexes”!

2.2. ANATOMY OF A SIMPLICIAL COMPLEX: STAR, CLOSURE, AND LINK 10

o € K, every face ¢’ C ¢ is also contained in K. For instance, a bunch of triangles do not constitute
a simplicial complex; you have to include their edges and vertices as well. We will often assume
that a simplicial complex is finite (i.e., contains finitely many simplices), though in principle there’s
no reason you can’t consider an infinite complex—say, a triangulation of the whole Euclidean
plane.

A subcomplex K' of a simplicial complex K is a subset that is also a simplicial complex. For
instance, a single edge is not a subcomplex of any complex, but an edge with its two vertices is
a subcomplex. A complex K is a pure k-simplicial complex if every simplex ¢’ € K is contained in
some simplex of degree k (possibly itself). For instance, a bunch of triangles with edges and vertices
hanging off the side or floating around by themselves is not pure:

"

pure not pure

In the end, we end up with a pretty simple (and abstract) object: an abstract simplicial complex
is just a subset of the integers, closed under the operation of taking subsets. This deceivingly simple
object makes it possible to exactly encode the topology of any surface, no matter how complicated.
To do discrete differential geometry we’ll eventually need to associate some kind of shape with a
simplicial complex. But for now there are already some interesting things we can say about surfaces
in the purely combinatorial setting.

2.2. Anatomy of a Simplicial Complex: Star, Closure, and Link

When working with simplicial complexes;" it's helpful to be able to quickly and succinctly refer
to various elements and regions. Let’s start out by considering just a single vertexi € V. The
(simplicial) star of this vertex, denoted St(i) is the collection of all simplices ¢ € K such thati € ¢ °.
Consider for instance the following example:

St
St(7)

“Note: the plural of complex is complexes—not “complices”! Welcome to the English language.
5Be careful to distinguish this star from the Hodge star, which is a completely different object that we’ll study later.

2.2. ANATOMY OF A SIMPLICIAL COMPLEX: STAR, CLOSURE, AND LINK 11

From this picture, one gets the sense that the St(i) is sort of the “local neighborhood” of i. However,
this neighborhood is not itself a simplicial complex, since it doesn’t contain the “outer” edges. To
get such a complex, we can consider the closure Cl of St(i), which is the smallest subcomplex of K
containing St(7):

Cl

St(i) CI(St(i))

What if we go the other direction, and take the closure before the star? In other words, we first
consider the closure Cl(i) which is the smallest subcomplex of K containing i. Since {i} has no
proper faces, the closure is just the vertex itself. If we then take the star, we therefore get the same
picture as the first one above, i.e., St(Cl(i)) = St(i):

St(Cl(7))

The only difference between these two sets is the ring of outer edges that was initially missing from
our subcomplex. We give this set a special name: the link Lk(i) = C1(St(i)) \ St(Cl(i)) (where A\ B
denotes the set difference, i.e., all the elements of A that are not also in B):

Lk(i) = CI(St(i)) \ St(Cl())

More generally for any subset S of a simplicial complex K (not necessarily a subcomplex) we have
the following definitions:

e The star St(S) is the collection of all simplices in K that contain any simplex in S.
e The closure C1(S) is the smallest (i.e., fewest elements) subcomplex of K that contains S.
e The link Lk(S) is equal to CI1(St(S)) \ St(CL(S)).

2.2. ANATOMY OF A SIMPLICIAL COMPLEX: STAR, CLOSURE, AND LINK 12

Another closely related object is the boundary bd(K') of a pure k-subcomplex K’ C K. The
boundary is the closure of the set of all simplices ¢ that are proper faces of exactly one simplex
of K'. This definition naturally captures what you might think of as the “boundary” of a set. For

instance:

y bd (L)

int(K')

The interior int(K') = K’ \ bd(K') is then everything but the boundary (as pictured above).

In general, these operations (star, closure, link, boundary, and interior) provide a natural way
to talk about and navigate any kind of simplicial complex in any dimension. In fact, they are a fair
bit more general than what we need to just talk about simple combinatorial surfaces. In a little bit,
we’ll introduce a different way to navigate around combinatorial surfaces called a half edge mesh,
which is in some ways “slicker” and easier to work with if we don’t care about the general case.
But to do so, we first need to define what we really mean by a combinatorial surface—and to do so,
we’ll need the star, closure, and link!

2.2.1. Oriented Simplicial Complex.

et

So far we’ve assumed that the order of vertices in a simplex doesn’t matter, and specified
simplices using sets. For instance, {i, j, k} is a triangle with vertices i, j, and k, and {j,i,k} or {k,j,i}
describe the same triangle. But in many cases, we’ll want to make a distinction between simplices
with different orientation, because the orientation encodes some information about a quantity we're

2.2. ANATOMY OF A SIMPLICIAL COMPLEX: STAR, CLOSURE, AND LINK 13

measuring or computing. For instance: the change in altitude from the bottom of a hill to the top of
the hill is opposite the change in altitude from the top of the hill to the bottom of the hill.

To capture the notion of orientation, we'll start by replacing our unordered sets with ordered
tuples. For instance, if i, j € V are two vertices sharing an edge, then we have two distinct ordered
tuples (i,j) and (j, 7). The first tuple describes an oriented edge pointing from i to j, whereas the
second tuple points from j to i. For higher-degree simplices (triangles, tetrahedra, etc.), the story
gets just a bit more complicated. For instance, consider three vertices i, j, k € V sharing a common
triangle. Instead of the single ordered set {i, j, k}, we now have six possible ordered tuples:

(i,,k) (i/k,j)
(G ki) (j i, k)
(ki) (K j 1)

Each of these tuples specifies some way of walking around the triangle. For instance, we could
tirst visit 7, then j, then k. Or we could first visit j, then i, then k. If we consider these six different
possibilities, what we notice is that they fall into two obvious categories: we either walk “clockwise”
or “counter-clockwise” around the triangle. These two possibilities describe the two possible
orientations for our triangle:

C C

j ¢ Nk >k

Since we don’t care about the starting point, an orientation of a simplex is really an equivalence class
of ordered tuples—in this case, the first column of tuples above are all equivalent (clockwise), and
the second column are all equivalent (counter-clockwise). Therefore, to specify an oriented triangle
we’ll just give a representative triple of indices, rather than singling out one particular tuple. For
instance, we’ll say that

ijk = {(i,j,k), (j. K,), (k, 3, /) }
and

ik = {(i,k, 1), (i, %), (K o)).
Hopefully this makes sense: a tuple written with parentheses describes one particular way of
walking around a triangle; a raw triple of indices refers to all tuples with equivalent orientation.

We'll basically always use the latter, since it gives us just enough information to know which
oriented simplex we're talking about: its vertices, and its orientation.

More generally, for any k-simplex we have two possible orientations: the set of all even permu-
tations of its vertices, and the set of all odd permutations of its vertices. For instance, with an edge
we havejustij = {(i,j)} and ji = {(j,7)}. For a triangle we have the two orientations ijk and jik
given above. For a tetrahedron we have ijkl and jikl. And so on. The only exception is 0-simplex,
where there is only one way to write the list of vertices (i.e., i = {i}). A O-simplex therefore has
only one possible orientation.

If two oriented simplices share vertices, then we can talk about their relative orientation. For
instance, the oriented triangles ijk and jil have the same orientation (they are both “clockwise”)
whereas ijk and ijl are oppositely oriented:

2.3. SIMPLICIAL SURFACES 14

j j

consistent orientation inconsistent orientation

Likewise, the edge ij has the same clockwise orientation as ijk, whereas ji has the opposite
orientation. In general, if two k-simplices o1, 0, share exactly k — 1 vertices, then they have the same
orientation if their restrictions to these shared vertices are oppositely oriented. For any oriented
simplex ¢ a proper face ¢’ has the same orientation if ¢’ appears in some even permutation of ¢.
An important special case is 0- and 1-simplices: an oriented edge ij has the same orientation as j,
but the opposite orientation of i; this convention captures the fact that ij goes from i to j.

An (abstract) oriented simplicial complex is an abstract simplicial complex where each simplex
is assigned an orientation. I.e., we start with an ordinary simplicial complex, and simpy pick
one of two orientations for each simplex. There are no conditions on these orientations: they can
be assigned arbitrarily. Though (when possible) it’s often convenient to assume that k-simplices
sharing common (k — 1)-faces have the same orientation (for instance, that all triangles in a planar
triangulation have clockwise orientation).

2.3. Simplicial Surfaces

As mentioned at the beginning of this section, a general simplicial complex is a bit more general
than what we need to study ordinary shapes (a hat, a face, a heart, a banana), which are all pretty
well-captured by surfaces. Instead, it is often enough to work with an abstract simplicial surface.
An abstract simplicial surface is a pure simplicial 2-complex where the link of every vertex is a
single loop of edges, or equivalently, where the star of every vertex is a combinatorial disk made of
triangles. The fact that every vertex has a “disk-like” neighborhood captures the basic idea of a
topological surface; we therefore say that such a complex is manifold 6

Unlike a general simplicial complex, a simplicial surface can’t have stuff like three triangles
meeting at an edge, or multiple “cones” of vertices meeting at a vertex. We will henceforth call
such configurations nonmanifold:

®Note that at this point we could very easily put a topology on our complex that makes it into a topological surface in
the usual sense. But the interesting point is that we don’t have to define a topology in order to understand a lot of the
behavior of topological surfaces: the purely combinatorial description will take us surprisingly far.

2.3. SIMPLICIAL SURFACES 15

7

manifold nonmanifold

We can extend our definition a bit to a simplicial surface with boundary by also allowing the link to
be a simple path of edges, rather than a loop:

Lk(j)

For any simplicial surface K, its boundary bd(K) will always be a collection of (zero or more)
closed loops.

An oriented simpicial surface is an abstract simplicial surface where we can assign a consistent
orientation to every triangle, i.e., where any two triangles that share a common edge are given
the same orientation. We will henceforth assume that any simplicial surface whose faces can be
consistently oriented will be consistently oriented. Is a consistent orientation always available? At
tirst glance, it seems easy: start with an arbitrary triangle, assign it an arbitrary orientation, and
now “grow outwards,” assigning a consistent orientation to every triangle you encounter. The
problem is that, at some point, you may loop back around and discover that there is no way to
assign an orientation to a new triangle that is compatible with all previous orientations. Consider

for instance this combinatorial Mobius band:

S CTAN
o1

2.4. ADJACENCY MATRICES 16

Such unorientable surfaces don’t come up all that often in nature—though it’s certainly worth being
aware that they can!

Our definition of a simplicial surface easily extends to higher dimensions: a (combinatorial
or abstract) simplicial n-manifold is a pure simplicial n-complex where the link of every vertex
is a simplicial (n — 1)-sphere. A simplicial n-sphere is just a (simplicial) triangulation of the
n-dimensional sphere

S = {x c R": |x| =1},

i.e., the set of all points unit distance from the origin in n-dimensional space. For instance, 52 is
just the ordinary unit sphere; S! is the unit circle; and S° is nothing more than a pair of points. A
simplicial surface is then a simplicial 2-manifold: every link is a simplicial 1-sphere, i.e., a closed
loop of edges. A simplicial 3-manifold is a tetrahedral mesh where every vertex is enclosed by a
triangulation of the sphere. And so on. How about a simplicial 1-manifold? This would just mean
the link of every vertex is a pair of points; hence, a simplicial 1-manifold must be a collection of
closed loops (do you see why?).

From here there’s a lot more we could say about simplicial surfaces, but this will get the ball
rolling for now. In particular, it’s enough to let us define a halfedge mesh, which will be our basic
way of navigating around simplicial (and more generally, polyhedral) surfaces.

2.4. Adjacency Matrices

One nice way to encode an abstract simplicial complex is using adjacency matrices, which will
make it easy to do computation on simplicial complexes (by way of numerical linear algebra).
These matrices are also closely linked to the discrete differential forms which provides the foundations
for many of our geometric algorithms.

The first thing we have to do is assign distinct indices to simplices of each degree. For instance,
if we have a complex K comprised of vertices V, edges E, and triangles F, then we might assign
indices 0, ..., |V| — 1 to the vertices, 0, ..., |E| — 1 to the edges, 0, ..., |F| — 1 and to the triangles. It
doesn’t matter which indices get assigned to which triangles, as long as each index is used only
once for each degree of simplex. For instance, here’s a simplicial 2-complex where we’ve indexed
all the vertices, edges, and faces: 3

2 5
4
1 3\ 2
0 3
0
1
To record how simplices are connected up, we’re going to store one matrix Ag that says which
edges contain which vertices, another matrix A; that says which triangles contain which edges,
and so on. We'll put a “1” in row r, column c of Ay if the rth edge contains the cth vertex; all other

entries get a “0”. Likewise, we’ll put a “1” in row 7, column c of A; if the rth triangle contains the
cth edge. And so on. Hence, the number of columns in adjacency matrix Ay is the same as the

2.5. HALFEDGE MESH 17

number of k-simplices; the number of rows is the number of (k + 1)-simplices. In this example, our
matrices look like this:

0o 1 2 3

o1 1 0 0] 01 2 3 4 5

111010 o1 10100

21100 1 11101010
d=310110 A=,1011001

410101 30000111

500011

One important thing to notice here is that—especially for a very large complex with a relatively
small number of connections—most of the entries are going to be zero. In practice, it’s therefore
essential to use a sparse matrix, i.e., a data structure that efficiently stores only the location and value
of nonzero entries. The design of sparse matrix data structures is an interesting question all on its
own, but conceptually you can imagine that a sparse matrix is simply a list of triples (7, ¢, x) where
r,¢ € IN specify the row and column index of a nonzero entry and x € R gives its value.

If we have an oriented simplicial complex, we can also build signed adjacency matrices, which
keep track of relative orientation in addition to connectivity. The only change is that the sign of
each nonzero entry will depend on the relative orientation of the two corresponding simplices: +1
if they have the same orientation; —1 if they have opposite orientation. For instance, here are the
signed adjacency matrices for a pair of consistently-oriented triangles sharing a common edge:

o
O = o
S = =
= O N
_ O w
|
—_

A=

OR R OO w

2.5. Halfedge Mesh

As discussed above, many of the shapes we encounter in the natural world are well-captured
by manifold, orientable surfaces. Our third and final encoding of surface combinatorics, the halfedge
mesh, takes advantage of the special structure of such surfaces. In some ways, this encoding is less
general than, say, the adjacency matrix representation: we cannot capture edges that dangle off
the side of a triangulation, or surfaces like the M6bius band, or higher-dimensional shapes (e.g.,
volumes rather than surfaces). On the other hand, it will allow us to describe combinatorial surfaces
made of general polygons rather than just triangles, and in certain important cases even allows
us to use fewer triangles (or polygons) than is possible with any simplicial complex. (Formally, a
halfedge mesh allows us to encode a surface as a 2-dimensional CW complex; see [Hat02, Chapter 0]
for a definition.)

From our discussion in Section 2.3 we can notice a few things about any oriented simplicial
surface K (which for now we’ll assume has no boundary):

e every edge is contained in two polygons, and
e the edges around a vertex can be given a cyclic order.

2.5. HALFEDGE MESH 18

In fact, these same statements hold if our surface is made out of n-sided polygons rather than just
3-sided triangles:

The halfedge mesh takes advantage of this special structure to provide a particularly nice descrip-
tion of surfaces. The basic idea is to consider that for every unoriented edge {i, j} between vertices
i and j, we have two oriented edges ij # ji which in this context we refer to as halfedges. We'll use
H to denote the set of all halfedges; note that for a surface without boundary |H| = 2|E|, i.e., we
have twice as many halfedges as edges.

We can use information about how halfedges are connected up to describe an oriented simplicial
surface. In particular, we have two key functions: twin and next. The twin function is the map
1 : H — H such that

n(ij) = jis
i.e., that just takes any halfedge to the halfedge with the same vertices but in the opposite direction.
The next function is the map p : H — H such that

p(ij) = jk Vijke K,
i.e., that takes each halfedge of an oriented triangle ijk to the next halfedge around this triangle.

These maps are reasonably straightforward to figure out if we’re handed some other description of
the surface (such as an oriented simplicial complex or a pair of adjacency matrices).

Going the other direction, we can easily figure out the vertices, edges, and faces of a polygonal
mesh from nothing more than the two maps p and #. For instance, to get a face we can start with
some halfedge i1i» and use the map p to get the next halfedge i»iz = p(i1i2), then the next halfedge
isiy = p(i2i3), and then the next, until we eventually get back to ijip. In other words, the faces of
the mesh are described by the orbits of the “next” map p. What do the orbits of the “twin” map 7
give us? Well, starting with ij we get ji = #(ij) and then ij = #(ji). Hence, the orbits of 57 describe
the edges. To get the vertices, we can instead consider the orbits of the map p o 7, i.e., first we get
the twin halfedge, then the next halfedge, then the twin, then the next, ..., until we get back to the
beginning. To summarize:

2.5. HALFEDGE MESH 19

e the faces are orbits of p,
e the edges are orbits of 7, and
e the vertices are orbits of p o 7.

In fact, any pair of maps p, 7 which satisfy some very basic properties will describe a valid
combinatorial surface. All we need is that (i) the set H has an even number of elements, (ii) p and 7
are both permutations of this set, and (iii) # is an involution with no fixed points, i.e., (1 (ij)) = ij for
all ij € H, and 7 (ij) # ij for any ij € H. This last condition is just common sense: it says that the
twin of your twin is yourself, and you are not your own twin. (If one of these statements were not
true about your real, biological twin, you’d be in serious trouble!) As long as p and 7 satisfy these
basic properties, we can trace out their orbits and recover a combinatorial surface.

In fact, if we index our halfedges in a special way we don’t even really have to worry about
1. In particular, suppose we assign the indices 0 and 1 to the first pair of halfedges, 2 and 3 to
the next pair of halfedges, and so on. Then 7 has a very simple description: the twin of any even
number h is h + 1; the twin of any odd number h is h — 1. The combinatorics of the surface are then
described entirely by the permutation p. In summary, then, every permutation of an even number
of things describes a combinatorial surface! Pretty weird. But true! Think about that next time you
encounter a permutation.

Note that even for surfaces made out of triangles, a halfedge mesh can describe triangulations
that a simplicial complex cannot. Consider for instance the following example:

N‘
] k =k

Here we obtain a cone by gluing two edges of the triangle ijk together. If we fill in the bottom
of the cone with a circular disk, then overall we have four halfedges: three halfedges hy, h1, h>
going around the triangle, and one halfedge h3 going around the disk. The next map is given by
p(ho) = h1,p(h) = ha, p(hy) = hg and p(h3) = h3, i.e., we have a loop around the triangle, and a
loop around the disk. The twin map is determined by the relationships 1 (hy) = hy and 17(hy) = h3,
i.e., two of the triangle halfedges are glued together, and the remaining triangle halfedge is glued
to the halfedge around the disk. There’s no way to describe this triangulation using a simplicial
complex (oriented or otherwise): a simplicial complex only allows us to specify the triangle ijk; we
have no further opportunity to specify how the edges get glued together. Likewise, including the
disk is totally out of the question: it’s not even an ordinary polygon; more like a “unigon!” Here’s
another interesting example:

i

NP,

2.5. HALFEDGE MESH 20

This time we have a torus made of two distinct triangles, but only one vertex. (Can you write
down corresponding maps # and p?) There’s clearly no way to describe this triangulation using a
simplicial complex: for one thing, the “set” {i,1,i} is not a set: it doesn’t have three distinct vertices.
Even if we allow repeats (i.e., multi-sets), we have no way in a simplicial complex to distinguish
between the two distinct triangles “iii” and “iii”, and no way to explain how these triangles get
glued together. A halfedge mesh handles these cases with ease, allowing us to describe interesting
spaces with fewer elements. In contrast, to describe a torus using a simplicial complex we need at
least 7 vertices, 21 edges, and 14 triang]les:

0
0 0
3
2 — .
Al 6_ AN
5
4
0 0 5
1 4

Here we’ve drawn this triangulation in two ways: on the left, we draw it on a square and imagine
that left/right and bottom /top sides get glued together. Amazingly enough, this same triangulation
can be drawn using straight lines and flat, non-intersecting triangles in IR3, as depicted on the
right—something known as the Csdszdr polyhedron. In either case, it’s a lot more complicated than
the two-triangle decomposition of the torus we obtained via a halfedge mesh.

At a practical level, the halfedge description will provide the basic data structure for the
algorithms we’ll implement in these notes. By chasing “next” and “twin” halfedges around, you
can easily access any mesh element your heart desires. One final question though: how do we deal
with surfaces that have boundary (such as a disk or annulus)? These would seem to violate one of
our basic axioms, that every edge is contained in exactly two polygons. The easy answer is: just treat
each boundary component as a single polygon with many sides. In other words, turn your surface with
boundary into a surface without boundary by simply “filling in the holes” (and marking these extra
polygons in some way). From there you have a surface without boundary, and it’s just business as
usual.

2.6. WRITTEN EXERCISES 21

2.6. Written Exercises
EXERCISE 2.1 Euler’s Polyhedral Formula

The Euler characteristic x = V — E + F is a topological invariant: it remains the same even if we make
small local changes to the connectivity (like inserting a new vertex in the middle of a polygon).
It changes only if there is a global change to the topology, like adding an extra component, or an
additional handle. Show in particular that for any polygonal disk with V vertices, E edges, and F
faces, the following relationship holds:

V—-E+F=1
and explain, then, why V — E 4 F = 2 for any polygonal sphere.

Hint: use induction. Note that induction is generally easier if you start with a given object and decompose
it into smaller pieces rather than trying to make it larger, because there are fewer cases to think about.

\ sl /

sphere torus double torus
(§=0) (g=1) (§=2)

Clearly not all surfaces look like disks or spheres. Some surfaces have additional handles that
distinguish them topologically; the number of handles g is known as the genus of the surface
(see illustration above for examples). In fact, among all surfaces that have no boundary and are
connected (meaning a single piece), compact (meaning closed and contained in a ball of finite
size), and orientable (having two distinct sides), the genus is the only thing that distinguishes two
surfaces. A more general formula applies to such surfaces, namely

V—E+F=2-2g

which is known as the Euler-Poincaré formula.

o B

regular irregular

The valence of a vertex in a combinatorial surface is the number of edges that contain that vertex.
A vertex of a simplicial surface is said to be regular when its valence equals six. Many numerical
algorithms (such as subdivision) exhibit ideal behavior only in the regular case, and generally
behave better when the number of irregular valence vertices is small. The next few exercises explore
some useful facts about valence in combinatorial surfaces.

2.6. WRITTEN EXERCISES 22

@
\

Even the ancient Greeks were interested in regular meshes. In particular, they knew that there
are only five genus-zero polyhedra where every face is identical—namely, the five Platonic solids:
tetrahedron, icosahedron, octahedron, dodecahedron, cube. Show that this list is indeed exhaustive.
Hint: you do not need to use any facts about lengths or angles; just connectivity.

¥

'

O

EXERCISE 2.2 Platonic Solids

EXERCISE 2.3 Regular Valence

Show that the only (connected, orientable) simplicial surface for which every vertex has regular
valence is a torus (g = 1). You may assume that the surface has finitely many faces. Hint: apply the
Euler-Poincaré formula.

EXERCISE 2.4 Minimum Irregular Valence

Show that the minimum possible number of irregular valence vertices in a (connected, orientable)
simplicial surface K of genus g is given by

4, ¢
m(K) =10, g
8

0
1
1, 2,

Vv

assuming that all vertices have valence at least three and that there are finitely many faces. Note:
you do not actually have to construct the minimal triangulation; just make an argument based on
the Euler-Poincaré formula.

EXERCISE 2.5 Mean Valence (Triangle Mesh)

Show that the mean valence approaches six as the number of vertices in a (connected, orientable)
simplicial surface goes to infinity, and that the ratio of vertices to edges to triangles hence approaches

V:E:F=1:3:2.

You may assume that the genus g remains fixed as the number of vertices increases. Hint: Euler-
Poincaré formula!

2.6. WRITTEN EXERCISES 23

EXERCISE 2.6 Mean Valence (Quad Mesh)

Similar to the previous exercise, consider a quad mesh, i.e., a combinatorial surface made entirely
out of four-sided quadrilaterials rather than three-sided triangles. Letting Q denote the number of
quadrilaterals, give an expression for the ratio

V:E:Q

in the limit as the number of vertices approaches infinity. You may again assume that the genus
remains fixed.

Knowing the approximate ratios of mesh elements can be useful when making decisions about
algorithm design (e.g., it costs about three times as much to store a quantity on edges as on vertices),
and simplifies discussions about asymptotic growth (since the number of different element types
are essentially related by a constant). Similar ratios can be computed for a tetrahedral mesh, though
here one has to be a bit more approximate:

EXERCISE 2.7 Mean Valence (Tetrahedral).

Letting V, E, F, and T be the number of vertices, edges, triangles, and tetrahedra in a manifold
simplicial 3-complex, come up with a rough estimate for the ratios

V:E:F:T

as the number of elements goes to infinity. For tet meshes, there is a formula analogous to Euler’s
polyhedral formula: V — E+ F — T = ¢, for some constant c that depends only on the global
topology (number of handles, efc.). To get a rough estimate, you should pretend that the link Lk(7)
of every vertex i € V is a combinatorial icosahedron. Since you care about the asymptotic behavior,
you can safely ignore boundary vertices. Hint: which ratios can you figure out easily?

Here are some statistics on large-ish tetrahedral meshes coming from real data. Do they roughly
match your estimated ratios? (You should NOT worry if they don’t match exactly!)

%4 E F T

mesh #1 | 9344 | 64814 | 109660 | 54189
mesh #2 | 10784 | 69807 | 114345 | 55323
mesh #3 | 13630 | 97271 | 166689 | 83047
mesh #4 | 20514 | 144661 | 245764 | 121616
mesh #5 | 21222 | 146117 | 245959 | 121063
mesh #6 | 21464 | 144263 | 240663 | 117865
mesh #7 | 22933 | 163360 | 279634 | 139206
mesh #8 | 24522 | 175177 | 300272 | 149616
mesh #9 | 37483 | 262803 | 447463 | 222143

2.6. WRITTEN EXERCISES 24

EXERCISE 2.8 Star, Closure, and Link

For the subset S indicated below in dark blue (consisting of three vertices, three edges, and two
triangles), give the star St(S), the closure C1(S), and the link Lk(S), either by drawing pictures or
providing a list of simplices in each set.

a b
c d f f g c
) h
i] k / - 1

A' |

0
n P 7 n
S
r
S

EXERCISE 2.9 Boundary and Interior

For the subset K’ indicated above in dark blue (consisting of 12 vertices, 23 edges, and 12 triangles),
give the boundary bd(K’) and the interior int(X’), either by drawing pictures or providing a list of
simplices in each set.

EXERCISE 2.10 Surface as Permutation

For the combinatorial surface pictured below, give the twin and next permutations 7 and p (resp.)
by filling out the following tables:

2.6. WRITTEN EXERCISES 25

EXERCISE 2.11 Permutation as Surface

For the permutation p given below, describe the combinatorial surface it describes—either in words,
or by drawing a picture. You should assume that 7 is determined as described in Section 2.5, i.e.,
the twin of an even halfedge & is h + 1; the twin of an odd halfedge his h — 1.

R|0[1]2|3][4[5[6]7[8]9|10[11]12]13]14][15
o(h)[8]2[14[4[12]6[10[0|7[15] 5|9 |3 |11 1 |13

EXERCISE 2.12 Surface as Matrices

Give the adjacency matrices Ag and A; for the simplicial disk depicted in the figure below.

For the next three exercises you may be as rigorous or as informal as you like, so long as you
correctly convey the core reason why each of the statements is true.

EXERCISE 2.13 Classification of Simplicial 1-Manifolds

Explain why every simplicial 1-manifold (possibly with boundary) cannot contain anything other
than paths of edges and closed loops of edges.

EXERCISE 2.14 Boundary Loops

Explain why the boundary of any simplicial surface (i.e., any simplicial 2-manifold) always has to
be a collection of closed loops.

EXERCISE 2.15 Boundary Has No Boundary

Explain why the boundary bd () of a simplicial manifold has no boundary. In other words, why
does bd(bd(K)) = @?

2.7. CODING EXERCISES 26

2.7. Coding Exercises

To get a feel for how we’re going to work with the combinatorics of a surface in practice, we’ll
now write some code that nicely ties together a bunch of the ideas discussed above. In particular,
given a half edge mesh describing the combinatorics of a manifold triangle mesh, you will build
the vertex-edge and edge-face adjacency matrices. These matrices can be used to implement two
concepts we've studied:

e the boundary and coboundary operators, and
e the star, closure, and link operators.

Later on, we’ll also see that these matrices have an important connection to discrete differential
forms. Note that the methods below must be implemented using these matrices; from here on out
you should not be doing everything purely in terms of halfedge operations. The input subset of
simplices S will be provided as a data structure containing sets of vertex, edge, and face indices.

CODING 1. Implement the method assignElement Indices, which assigns a unique index
to each vertex, edge, and face of the triangle mesh. For each type of element, indices should start at
zero—for instance, the vertices should be assigned indices 0, ..., |V| — 1, and the edges should be
assigned indices 0, .. ., |E| — 1, etc. The order doesn’t matter at all, so long as the mapping between
elements and indices is one-to-one. These indices provide a correspondence between elements of
the mesh, and rows/columns of matrices you will build in the next few coding exercises.

CODING 2. Implement the method buildVertexEdgeAdjacencyMatrix, which constructs
the unsigned vertex-edge adjacency matrix Ag € RIE*IVI (not the signed one), described in Sec-
tion 2.4. Since this matrix contains mostly zeros, it must be implemented using a sparse matrix data
structure (otherwise, computation will become extraordinarily slow on large meshes!).

CODING 3. Implement the method buildEdgeFaceAdjacencyMatrix, which constructs
the unsigned edge-face adjacency matrix A; € R/FI*IE| (just as in the previous exercise).

CODING 4. Implement the methods buildVertexVector, buildvVector, buildVector,
which each take a subset S of simplices as input, and construct a column vector encoding the
vertices, edges, or faces (respectively) in that subset. For instance, in buildVertexVector you
should build a column vector with | V| entries that has a “1” for each vertex in the subset, and “0”
for all other vertices.

For the remaining methods, recall that you must use the adjacency matrices (as discussed above);
you should not be implementing these methods directly using the halfedge data structure.

CODING 5. Implement the method star, which takes as input a subset S of simplices, and
computes the simplicial star St(S) of this subset. Hint: What happens if you apply the two unsigned
adjacency matrices in sequence? How do you get all the simplices in the star?

CODING 6. Implement the method closure, which finds the closure CI(S) of a given subset
S.

CODING 7. Implement the method 1ink, which finds the link Lk(S) of a given subset S. Hint:
use the star and the closure!

CODING 8. Implement the methods isComplex and isPureComplex, which check whether
a given subset S is a simplicial complex, and a pure simpicial complex, resp. The latter method
should return the degree of the complex if it’s pure, and -1 otherwise. Hint: use the c1osure method
for the first part, plus the adjacency matrices for the second part.

2.7. CODING EXERCISES 27

CODING 9. Implement the method boundary, which takes as input a subset S of simplices,
and finds the set of simplices contained in the boundary bd(S) of this subset. You should first use
the method isPure to make sure that the given subset is a pure simplicial complex (otherwise, we
do not have a straightforward definition for the boundary). Hint: think carefully about what the result
of applying an unsigned adjacency matrix can look like. What do you notice about the simplices that should
be included in the output set? See in particular Exercise 9.

Once everything is implemented you should be able to select a subset of simplices, and click on
buttons to apply various operators. You should verify that your code agrees with the examples you
computed by hand, and also passes all of the basic tests provided in the test suite.

CHAPTER 3

A Quick and Dirty Introduction to Differential Geometry

3.1. The Geometry of Surfaces

There are many ways to think about the geometry of a smooth surface (using charts, for instance)
but here’s a picture that is well-suited to the way we work with surfaces in the discrete setting.
Consider a little patch of material floating in space, as depicted below. Its geometry can be described
viaamap f : M — R? from a region M in the Euclidean plane R? to a subset f(M) of R:

The differential of such a map, denoted by df, tells us how to map a vector X in the plane to the
corresponding vector df(X) on the surface. Loosely speaking, imagine that M is a rubber sheet and
X is a little black line segment drawn on M. As we stretch and deform M into f(M), the segment
X also gets stretched and deformed into a different segment, which we call df (X). Later on we can
talk about how to explicitly express df (X) in coordinates and so on, but it’s important to realize that
fundamentally there’s nothing deeper to know about the differential than the picture you see here—the
differential simply tells you how to stretch out or “push forward” vectors as you go from one space
to another. For example, the length of a tangent vector X pushed forward by f can be expressed as

df(X) - df(X),

where - is the standard inner product (a.k.a. dot product or scalar product) on R3. Note that this
length is typically different than the length of the vector we started with! To keep things clear, we’ll
use angle brackets to denote the inner product in the plane, e.g., the length of the original vector
would be /(X, X). More generally, we can measure the inner product between any two tangent
vectors df(X) and df(Y):

8(X,Y) = df(X) - df(Y).
The map g is called the metric of the surface, or to be more pedantic, the metric induced by f. Note
that throughout we will use df(X) interchangeably to denote both the pushforward of a single

28

3.1. THE GEOMETRY OF SURFACES 29

vector or an entire vector field, i.e., a vector at every point of M. In most of the expressions we'll
consider this distinction won’t make a big difference, but it's worth being aware of. Throughout
we’ll use TM to denote the tangent bundle of M, i.e., the set of all tangent vectors.

So far we’ve been talking about tangent vectors, i.e., vectors that lay flat along the surface. We're
also interested in vectors that are orthogonal to the surface. In particular, we say that a vector
u € R3 is normal to the surface at a point p if

df(X)-u=0

for all tangent vectors X at p. For convenience, we often single out a particular normal vector N
called the unit normal, which has length one. Of course, at any given point there are two distinct
unit normal vectors: +N and —N. Which one should we use? If we can pick a consistent direction
for N then we say that M is orientable. For instance, the circular band on the left is orientable, but
the Mobius band on the right is not:

For orientable surfaces, we can actually think of N as a continuous map N : M — 52 (called the
Gauss map) which associates each point with its unit normal, viewed as a point on the unit sphere
S2. In fact, if we think of S? as a subset of IR® (consisting of all the points unit distance from the
origin), then we can do all the same things with N that we did with our map f. In particular, the
differential dN (called the Weingarten map) tells us about the change in the normal direction as
we move from one point to the other. For instance, we can look at the change in normal along a
particular tangent direction X by evaluating dN (X)—this interpretation will become useful when
we talk about the curvature of surfaces. Overall we end up with the following picture, which
captures the most fundamental ideas about the geometry of surfaces:

N

/-» o
-/

M

&
L

\
u

3.1. THE GEOMETRY OF SURFACES 30

3.1.1. Conformal Coordinates. When working with curves, one often introduces the idea of
an isometric (a.k.a. arc-length or unit speed) parameterization. The idea there is to make certain
expressions simpler by assuming that no “stretching” occurs as we go from the domain into R>.
One way to state this requirement is

[af(X)| = 1X],

i.e.,, we ask that the norm of any vector X is preserved.

For surfaces, an isometric parameterization does not always exist (not even locally!). Most of
the time you simply have to stretch things out. For instance, you may know that it’s impossible to
flatten the surface of the Earth onto the plane without distortion—that’s why we end up with all

sorts of different funky projections of the globe.
/ ; N

N

e e e

/
Vi
/
U
\\

N
~J

,—\
L]

A
=

However, there is a setup that (like arc-length parameterization for curves) makes life a lot
easier when dealing with certain expressions, namely conformal coordinates. Put quite simply, a map
f is conformal if it preserves the angle between any two vectors. More specifically, a conformal map
f:R? D> M — R satisfies

df(X) - df(Y) = a(X,Y)

for all tangent vectors X, Y, where a is a positive function and (-, -) is the usual inner product on R2.
In practice, the function a is often replaced with e¢* for some real-valued function u—this way, one
never has to worry about whether the scaling is positive. Notice that vectors can still get stretched
out, but the surface never gets sheared—for instance, orthogonal vectors always stay orthogonal:

% df(Y)

X f df (X)
—

A key fact about conformal maps is that they always exist, as guaranteed by the uniformization
theorem. In a nutshell, the uniformization theorem says that any disk can be conformally mapped
to the plane. So if we consider any point p on our surface f(M), we know that we can always find
a conformal parameterization in some small, disk-like neighborhood around p. As with unit-speed
curves, it is often enough to simply know that a conformal parameterization exists—we do not
have to construct the map explicitly. And, as with arc-length parameterization, we have to keep
track of the least possible amount of information about how the domain gets stretched out: just a
single number at each point (as opposed to, say, an entire Jacobian matrix).

http://en.wikipedia.org/wiki/Uniformization_theorem
http://en.wikipedia.org/wiki/Uniformization_theorem
http://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

3.2. DERIVATIVES AND TANGENT VECTORS 31

3.2. Derivatives and Tangent Vectors

3.2.1. Derivatives on the Real Line. So far we’ve been thinking about the differential in a very
geometric way: it tells us how to stretch out or push forward tangent vectors as we go from one place
to another. In fact, we can apply this geometric viewpoint to pretty much any situation involving
derivatives. For instance, think about a good old fashioned real-valued function ¢(x) on the real
line. We typically visualize ¢ by plotting its value as a height over the x-axis:

¢(x)1\ ///

X

In this case, the derivative ¢’ can be interpreted as the slope of the height function, as suggested
by the dashed line in the picture above. Alternatively, we can imagine that ¢ stretches out the real
line itself, indicated by the change in node spacing in this picture:

RS

dp(X)

¢(R)

Where the derivative is large, nodes are spaced far apart; where the derivative is small, nodes
are spaced close together. This picture inspires us to write the derivative of ¢ in terms of the
push-forward d¢(X) of a unit tangent vector X pointing along the positive x-axis:

¢' = dp(X).

In other words, the derivative of ¢ is just the “stretch factor” as we go from one copy of R to the
other. But wait a minute—does this equality even make sense? The thing on the left is a scalar, but
the thing on the right is a vector! Of course, any tangent vector on the real line can be represented
as just a single value, quantifying its extent in the positive or negative direction. So this expression
does make sense—as long as we understand that we’re identifying tangent vectors on R with real
numbers. Often this kind of “type checking” can help verify that formulas and expressions are
correct, similar to the way you might check for matching units in a physical equation.

3.2. DERIVATIVES AND TANGENT VECTORS 32

Here’s another question: how is this interpretation of the derivative any different from our
usual interpretation in terms of height functions? Aren’t we also stretching out the real line in that
case? Well, yes and no—certainly the real line still gets stretched out into some other curve. But
this curve is now a subset of the plane R>—in particular, it’s the curve 7 = (x, ¢(x)). So for one
thing, “type checking” fails in this case: ¢’ is a scalar, but dv(X) is a 2-vector. But most importantly,
the amount of stretching experienced by the curve doesn’t correspond to our usual notion of the
derivative of ¢—for instance, if we look at the magnitude of |dy(X)| we get /1 + (¢’)%. (Why is
this statement true geometrically? How could you write ¢’ in terms of dy(X)? Can you come up
with an expression that recovers the proper sign?)

3.2.2. Directional Derivatives. So far so good: we can think of the derivative of a real-valued
function on R as the pushforward of a (positively-oriented) unit tangent vector X. But what
does d¢(X) mean if ¢ is defined over some other domain, like the plane IR?? This question may
“stretch” your mind a little, but if you can understand this example then you’re well on your way
to understanding derivatives in terms of tangent vectors. Let’s take a look at the geometry of the
problem—again, there are two ways we could plot ¢. The usual approach is to draw a height
function over the plane:

Ao(x)

The derivative has something to do with the slope of this hill, but in which direction? To answer
this question, we can introduce the idea of a directional derivative—i.e., we pick a vector X and
see how quickly we travel uphill (or downhill) in that direction. And again we can consider an
alternative picture:

RZ

X/4 R

3.2. DERIVATIVES AND TANGENT VECTORS 33

Since ¢ is a map from IR? to IR, we can imagine that it takes a flat sheet of rubber and stretches it out
into a long, skinny, one-dimensional object along the real line. Therefore if we draw an arrow X
on the original sheet, then the “stretched-out” arrow d¢(X) gives us the rate of change in ¢ along
the direction X, i.e., the directional derivative. What about type checking? As before, everything
matches up: d¢(X) is a tangent vector on R, so it can be represented by a single real number. (What
if we had continued to work with the height function above? How could we recover the directional
derivative in this case?)

By the way, don’t worry if this discussion seems horribly informal! We'll see a more explicit,
algebraic treatment of these ideas when we start talking about exterior calculus. The important
thing for now is to build some geometric intuition about derivatives. In particular: a map from any
space to any other space can be viewed as some kind of bending and twisting and stretching (or
possibly tearing!); derivatives can be understood in terms of what happens to little arrows along
the way.

3.3. THE GEOMETRY OF CURVES 34

3.3. The Geometry of Curves

)

dy(X
. /\ v(I)
I

The picture we looked at for surfaces is actually a nice way of thinking about shapes of any
dimension. For instance, we can think of a one-dimensional curve as a map ¢ : I — R3 from an
interval I = [0, T] C R of the real line to R®. Again the differential d tells us how tangent vectors
get stretched out by 7, and again the induced length of a tangent vector X is given by

jdy(X)| = \/dr(X) - dv(X).
Working with curves is often easier if 7y preserves length, i.e., if for every tangent vector X we have

|dy(X)| = [X].

/a7

There are various names for such a parameterization (“unit speed”, “arc-length”, “isometric”) but the
idea is simply that the curve doesn’t get stretched out when we go from R to R3>—think of y as a
completely relaxed rubber band. This unit-speed view is also often the right one for the discrete
setting where we have no notion of a base domain [—from the very beginning, the curve is given
to us as a subset of R? and all we can do is assume that it sits there in a relaxed state.

\

Suppose we have a unit-speed curve <y and a positively-oriented unit vector X on the interval I.
Then

T =dvy(X)

is a unit vector in IR? tangent to the curve. Carrying this idea one step further, we can look at the
change in tangent direction as we move along <. Since T may change at any rate (or not at all!) we

3.3. THE GEOMETRY OF CURVES 35

split up the change into two pieces: a unit vector N called the principal normal that expresses the
direction of change, and a scalar x € IR called the curvature that expresses the magnitude of change:

dT(X) = —«xN.

One thing to realize is that T and N are always orthogonal. Why? Because if the change in T were
parallel to T, then it would cease to have unit length! (This argument is a good one to keep in mind
any time you work with unit vector fields.) By convention, we choose N to be the normal pointing
to the “left” of the curve, i.e., if at any point we consider a plane spanned by the tangent and the
normal, N is a quarter turn in the counter-clockwise direction from T. Together with a third vector
B =T x N called the binormal, we end up with a very natural orthonormal coordinate frame called
the Frenet frame.

How does this frame change as we move along the curve? The answer is given by the Frenet-
Serret formula:

T 0 —x 0 T
N |=|x 0 -7 N
B’ 0 7 0 B
N——
Q’€R3X3 AcIR3x%3 QGIR3X3

Here T, N, and B are interpreted as row vectors, and a prime indicates the change in a quantity as
we move along the curve at unit speed. For instance, T’ = dT(X), where X is a positively-oriented
unit vector on I. The quantity 7 is called the torsion, and describes the way the normal and binormal
twist around the curve.

A concise proof of this formula was given by Cartan. First, since the vectors T, N, and B are
mutually orthogonal, one can easily verify that QQT = I, i.e., Q is an orthogonal matrix. Differenti-
ating this relationship in time, the identity vanishes and we’re left with Q'QT = —(Q'QT)7, i.e,,
the matrix Q'QT is skew-symmetric. But since A = Q'QT, A must also be skew-symmetric. Skew
symmetry implies that the diagonal of A is zero (why?) and moreover, we already know what the
top row (and hence the left column) looks like from our definition of x and N. The remaining value
A3 = —Azp is not constrained in any way, so we simply give it a name: T € R.

What do you think about this proof? On the one hand it’s easy to verify; on the other hand,
it provides little geometric understanding. For instance, why does N change in the direction of
both T and B, but B changes only in the direction of N? Can you come up with more geometric
arguments?

3.3.2. Visualizing Curvature. What's the curvature of a circle S? Well, if S has radius r then
it takes time 27tr to go all the way around the circle at unit speed. During this time the tangent
turns around by an angle 27t. Of course, since T has unit length the instantaneous change in T is
described exclusively by the instantaneous change in angle. So we end up with

k= |kN| = |dT(X)| =2r/2nr =1/r.

In other words, the curvature of a circle is simply the reciprocal of its radius. This fact should make
some intuitive sense: if we watch a circle grow bigger and bigger, it eventually looks just like a
straight line with zero curvature: lim, ;o 1/7 = 0. Similarly, if we watch a circle get smaller and
smaller it eventually looks like a single point with infinite curvature: lim, ,o1/r = co.

3.3. THE GEOMETRY OF CURVES 36

Now consider a smooth curve 7 in the plane. At any point p € < there is a circle S called the
osculating circle that best approximates y, meaning that it has the same tangent direction T and
curvature vector kN. In other words, the circle and the curve agree “up to second order.” (The
phrase “agree up to nth order” is just shorthand for saying that the first n derivatives are equal.)
How do we know such a circle exists? Easy: we can always construct a circle with the appropriate
curvature by setting r = 1/x; moreover every circle has some tangent pointing in the direction T.
Alternatively, we can consider a circle passing through p and two other points: one approaching
from the left, another approaching from the right. Since these three points are shared by both y and
S, the first and second derivatives will agree in the limit (consider that these points can be used to
obtain consistent finite difference approximations of T and xN).

The radius and center of the osculating circle are often referred to as the radius of curvature and
center of curvature, respectively. We can tell this same story for any curve in R? by considering the
osculating plane T x N, since this plane contains both the tangent and the curvature vector.

For curves it makes little difference whether we express curvature in terms of a change in the
tangent vector or a change in the (principal) normal, since the two vectors are the same up to a
quarter-rotation in the osculating plane. For surfaces, however, it will often make more sense to
think of curvature as the change in the normal vector, since we typically don’t have a distinguished
tangent vector to work with.

http://en.wikipedia.org/wiki/Finite_difference

3.4. CURVATURE OF SURFACES 37

3.4. Curvature of Surfaces

Let’s take a more in-depth look at the curvature of surfaces. The word “curvature” really
corresponds to our everyday understanding of what it means for something to be curved: eggshells,
donuts, and cavatappi pasta have a lot of curvature; floors, ceilings, and cardboard boxes do not.
But what about something like a beer bottle? Along one direction the bottle quickly curves around
in a circle; along another direction it’s completely flat and travels along a straight line:

This way of looking at curvature—in terms of curves contained in the surface—is often how we
treat curvature in general. In particular, let df(X) be a unit tangent direction at some distinguished
point on the surface, and consider a plane containing both df(X) and the corresponding normal N.
This plane intersects the surface in a curve, and the curvature «, of this curve is called the normal
curvature in the direction X:

Remember the Frenet-Serret formulas? They tell us that the change in the normal along a curve
is given by dN = xT — 7B. We can therefore get the normal curvature along X by extracting the
tangential part of dN:
df(X) - AN(X)

(%) = TP

3.4. CURVATURE OF SURFACES 38

The factor |df(X)|? in the denominator simply normalizes any “stretching out” that occurs as we go
from the domain M into R®. Note that normal curvature is signed, meaning the surface can bend
toward the normal or away from it.

3.4.1. Principal, Mean, and Gaussian Curvature.

At any given point we can ask: along which directions does the surface bend the most? The
unit vectors X; and X, along which we find the maximum and minimum normal curvatures x; and
Ky are called the principal directions; the curvatures «; are called the principal curvatures. For instance,
the beer bottle above might have principal curvatures x; = 1, xk; = 0 at the marked point.

We can also talk about principal curvature in terms of the shape operator, which is the unique
map S : TM — TM satisfying

df(SX) = dN(X)

for all tangent vectors X. The shape operator S and the Weingarten map dN essentially represent
the same idea: they both tell us how the normal changes as we travel along a direction X. The only
difference is that S specifies this change in terms of a tangent vector on M, whereas dN gives us the
change as a tangent vector in R®. It's worth noting that many authors do not make this distinction,
and simply assume an isometric identification of tangent vectors on M and the corresponding
tangent vectors in R>. However, we choose to be more careful so that we can explicitly account for
the dependence of various quantities on the immersion f—this dependence becomes particularly
important if you actually want to compute something! (By the way, why can we always express the
change in N in terms of a tangent vector? It’s because N is the unit normal, hence it cannot grow or
shrink in the normal direction.)

One important fact about the principal directions and principal curvatures is that they corre-
spond to eigenvectors and eigenvalues (respectively) of the shape operator:

SXZ' = Kz'Xl'.

Moreover, the principal directions are orthogonal with respect to the induced metric: g(X;, Xp) =
df (X1) - df (X2) = 0. The principal curvatures therefore tell us everything there is to know about
normal curvature at a point, since we can express any tangent vector Y as a linear combination of
the principal directions X; and X5. In particular, if Y is a unit vector offset from X; by an angle 6,

3.4. CURVATURE OF SURFACES 39
then the associated normal curvature is
_ 2)
kn(Y) = K1 cos” 8 + kp sin” 6,

as you should be able to easily verify using the relationships above. Often, however, working
directly with principal curvatures is fairly inconvenient—especially in the discrete setting.

On the other hand, two closely related quantities—called the mean curvature and the Gaussian
curvature will show up over and over again (and have some particularly nice interpretations in the
discrete world). The mean curvature H is the arithmetic mean of principal curvatures:

K1 + K2
2 7

and the Gaussian curvature is the (square of the) geometric mean:

H=

K= K1K2.

What do the values of H and K imply about the shape of the surface? Perhaps the most elementary
interpretation is that Gaussian curvature is like a logical “and” (is there curvature along both
directions?) whereas mean curvature is more like a logical “or” (is there curvature along at least one
direction?) Of course, you have to be a little careful here since you can also get zero mean curvature
when k1 = —x>.

It also helps to see pictures of surfaces with zero mean and Gaussian curvature. Zero-curvature
surfaces are so well-studied in mathematics that they have special names. Surfaces with zero
Gaussian curvature are called developable surfaces because they can be “developed” or flattened out
into the plane without any stretching or tearing. For instance, any piece of a cylinder is developable
since one of the principal curvatures is zero:

Surfaces with zero mean curvature are called minimal surfaces because (as we’ll see later) they
minimize surface area (with respect to certain constraints). Minimal surfaces tend to be saddle-like
since principal curvatures have equal magnitude but opposite sign:

/
%
P

3.4. CURVATURE OF SURFACES 40

The saddle is also a good example of a surface with negative Gaussian curvature. What does a
surface with positive Gaussian curvature look like? The hemisphere is one example:

Note that in this case x; = x, and so principal directions are not uniquely defined—maximum
(and minimum) curvature is achieved along any direction X. Any such point on a surface is called
an umbilic point.

There are plenty of cute theorems and relationships involving curvature, but those are the basic
facts: the curvature of a surface is completely characterized by the principal curvatures, which are the
maximum and minimum normal curvatures. The Gaussian and mean curvature are simply averages
of the two principal curvatures, but (as we’ll see) are often easier to get your hands on in practice.

3.4.2. The Fundamental Forms. For historical reasons, there are two objects we should proba-
bly mention: first fundamental form I and the second fundamental form II. I'm actually not sure what’s
so fundamental about these forms, since they’re nothing more than a mashup of the metric ¢ and
the shape operator S, which themselves are simple functions of two truly fundamental objects: the
immersion f and the Gauss map N. In fact, the first fundamental form is literally just the induced
metric, i.e.,

[(X,Y) :=g(X,Y).
The second fundamental form looks quite similar to our existing expression for normal curvature:
I(X,Y):=—-g(SX,Y) = —dN(X) - df(Y).

The most important thing to realize is that I and II do not introduce any new geometric ideas—just
another way of writing down things we’ve already seen.

3.5. GEOMETRY IN COORDINATES 41

3.5. Geometry in Coordinates

So far we’ve given fairly abstract descriptions of the geometric objects we’ve been working
with. For instance, we said that the differential df of an immersion f : M — R3 tells us how to
stretch out tangent vectors as we go from the domain M C R? into the image f(M) C R®. Alluding
to the picture above, we can be a bit more precise and define df(X) in terms of limits:

. J (P 1X) — f(p)
dfp(X) = lim 7 :
Still, this formula remains a bit abstract—we may want something more concrete to work with in
practice. When we start working with discrete surfaces we’ll see that df(X) often has an incredibly
concrete meaning—for instance, it might correspond to an edge in our mesh. But in the smooth
setting a more typical representation of df is the Jacobian matrix

aft/ax! afl/ox?
J=| af2/0x! 9f2/ox
af3/ax! afd/ox?

Here we pick coordinates on R? and R3, and imagine that

fla,x?) = (A, 22), folx!, x%), fo(x', 2%))
for some triple of scalar functions fi, f2, f3 : M — R. So if you wanted to evaluate df (X), you could
simply apply | to some vector X = [X! X?]T.

3.5.1. Coordinate Representations Considered Harmful. You can already see one drawback
of the approach taken above: expressions get a lot longer and more complicated to write out. But
there are other good reasons to avoid explicit matrix representations. The most profound reason is
that matrices can be used to represent many different types of objects, and these objects can behave
in very different ways. For instance, can you guess what the following matrix represents?

Vo

Give up? It’s quite clear, actually: it’s the adjacency matrix for the complete graph on two vertices.
No, wait a minute—it must be the Pauli matrix oy, representing spin angular momentum along the
x-axis. Or is it the matrix representation for an element of the dihedral group D,? You get the idea:
when working with matrices, it’s easy to forget where they come from—which makes it very easy

http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Pauli_matrices
http://en.wikipedia.org/wiki/Dihedral_group

3.5. GEOMETRY IN COORDINATES 42

to forget which rules they should obey! (Don’t you already have enough things to keep track of?)
The real philosophical point here is that matrices are not objects: they are merely representations of
objects! Or to paraphrase Plato: matrices are merely shadows on the wall of the cave, which give
us nothing more than a murky impression of the real objects we wish to illuminate.

A more concrete example that often shows up in geometry is the distinction between linear
operators and bilinear forms. As a reminder, a linear operator is a map from one vector space to
another, e.g.,

fiR? = R*%u s f(u),
whereas a bilinear form is a map from a pair of vectors to a scalar, e.g.,
¢ R*xR? = R; (u,0) — g(u,v).

Sticking with these two examples let’s imagine that we're working in a coordinate system (x!, x?),
where f and g are represented by matrices A, B € R>*2 and their arguments are represented by
vectors u,v € R2. In other words, we have

and

X2 A

Now suppose we need to work in a different coordinate system (%!, £2), related to the first one
by a change of basis P € IR>*2. For instance, the vectors u and v get transformed via

i = Pu,
v = Pv.

How do we represent the maps f and g in this new coordinate system? We can’t simply evaluate
A, for instance, since A and @i are expressed in different bases. What we need to do is evaluate

f(u) = PAu=PAP '

and similarly
g(u,v) =u'Bv = (P 10)TB(P~1) = al (P~ TBP)7,

3.5. GEOMETRY IN COORDINATES 43

In other words, linear operators transform like
A~ PAPT,
whereas bilinear forms transform like
B+ P TBP L

So what we discover is that not all matrices transform the same way! But if we're constantly scrawling
out little grids of numbers, it’s very easy to lose track of which transformations should be applied
to which objects.

3.5.2. Standard Matrices in the Geometry of Surfaces. Admonitions about coordinates aside,
it’s useful to be aware of standard matrix representations for geometric objects because they
provide an essential link to classical results. We’ve already seen a matrix representation for one
object: the differential df can be encoded as the Jacobian matrix J containing first-order derivatives
of the immersion f. What about the other objects we’ve encountered in our study of surfaces?
Well, the induced metric g should be pretty easy to figure out since it’s just a function of the
differential —remember that

g(u,v) = df (u) - df (v).
Equivalently, if we use a matrix I € R**? to represent g, then we have
uTlv = (Ju)T(Jv)
which means that
I=1J7J.
We use the letter “I” to denote the matrix of the induced metric, which was historically referred to as

the first fundamental form —fewer authors use this terminology today. In older books on differential
geometry you may also see people talking about “E”, “F”, and “G”, which refer to particular entries

of I
E F
1_[FG}.

(Is it clear why “F” appears twice?) One might conjecture that these fifth, sixth, and seventh letters
of the alphabet have fallen out of fashion precisely because they are so coordinate-dependent and
hence carry little geometric meaning on their own. Nonetheless, it is useful to be able to recognize
these critters, because they do show up out there in the wild.

Earlier on, we also looked at the shape operator, defined as the unique map S : TM — TM
satisfying
dN(X) = df (SX),
and the second fundamental form, defined as
I(u,v) = g(Su,v).

(Remember that S turned out to be self-adjoint with respect to g, and likewise II turned out to be
symmetric with respect to its arguments u and v.) If we let S, I € IR?*? be the matrix representations
of S and II, respectively, then we have

u'llv = u'ISv

for all vectors u,v € R?, or equivalently,
I =1S.

3.5. GEOMETRY IN COORDINATES 44

Components of I are classically associated with lowercase letters from the Roman alphabet, namely

e f
H:[fg]’

which in coordinates (x, y) are given explicitly by

e = N'fxx/
f = N-fu,
g = N'fyy/

where N is the unit surface normal and f,,, denotes the second partial derivative along directions
x and y.

At this point we might want to stop and ask: how does a matrix like IS transform with respect
to a change of basis? The first term, I, is a bilinear form, but the second term S is a linear map! As
emphasized above, we can’t determine the answer by just staring at the matrices themselves—we
need to remember what they represent. In this case, we know that IS corresponds to the second
fundamental form, so it should transform like any other bilinear form: IS — P~ TISP~L.

Finally, we can verify that classical geometric expressions using matrices correspond to the
expressions we derived earlier using the differential. For instance, the classical expression for
normal curvature is

which we can rewrite as
u'lu u"ISu (Ju)T(JSu) df(u)-dN(u)

uTlu o'y (Ju)T(u) [df(w)]?
Up to a choice of sign, this expression is the same one we obtained earlier by considering a curve
embedded in the surface.

CHAPTER 4

A Quick and Dirty Introduction to Exterior Calculus

Many important concepts in differential geometry can be nicely expressed in the language of
exterior calculus. Initially these concepts will look exactly like objects you know and love from
vector calculus, and you may question the value of giving them funky new names. For instance,
scalar fields are no longer called scalar fields, but are now called 0-forms! In the long run we’ll see
that this new language makes it easy to generalize certain ideas from vector calculus—a central
example being Stokes” theorem, which in turn is intimately related to discretization, and ultimately,
computation.

The basic story of exterior calculus can be broken up into a few pieces:

e Linear Algebra: Little Arrows. If you've ever studied linear algebra, you probably re-
member that it has something to do with “little arrows”—also known as vectors. In fact, if
that’s all you can remember about linear algebra, now would be an extremely good time to go
back and do a review! We’re not going to do one here.

e Vector Calculus: How do Little Arrows Change? Likewise, if you've ever studied vector
calculus, then you remember it has to do with how “little arrows” change over space and
time (e.g., how fast the direction of the wind is changing). In other words, vector calculus
tells us how to differentiate vectors. We’'re not going to review that either!

o Exterior Algebra: Little Volumes. Linear algebra explored a bunch of things you can do
with vectors: you can add them, you can scale them, you can take inner products, and
outer products, and so forth. Exterior algebra just adds a couple more operations to this list
which make it easy to talk about things like area and volume. In particular, the operations
let us build up things called k-vectors, which can be thought of as “little k-dimensional
volumes.”

e Exterior Calculus: How do Little Volumes Change? Finally, if vector calculus is the study
of how “little arrows” change over space and time, then exterior calculus is the study of
how “little volumes” change over space and time. In other words, exterior calculus tells us
how to differentiate k-vectors.

That’s the big picture: exterior calculus is to exterior algebra what vector calculus is to linear
algebra. And little volumes are useful because they help us talk about integration in a very general
context. If that story still sounds a bit fuzzy, then read on!

45

4.1. EXTERIOR ALGEBRA 46

4.1. Exterior Algebra

As alluded to above, just as linear algebra is the natural language of “little arrows,” exterior
algebra is the natural language of “little volumes” which we will call k-vectors. The letter “k” denotes
the dimension, for instance, a 1-vector represents a “little length,” a 2-vector represents a “little
area,” and so on. A fundamental thing to remember about ordinary vectors is that they encode two
basic pieces of information: direction, and magnitude. Likewise, k-vectors will also have a direction
and a magnitude, though the notion of “direction” for k-dimensional volumes is a little bit trickier
than for one-dimensional vectors. In its full generality, exterior algebra makes sense in any vector
space V, but to keep things simple for now we’ll just stick to familiar examples like the plane IR?,
three-dimensional space R3, or more generally, n-dimensional space IR".

4.1.1. Warm Up: 1-Vectors and 2-Vectors. How do you describe a volume in R"? The basic
idea of exterior algebra is that, roughly speaking, k-dimensional volumes can be described by a list
of k vectors. In linear algebra we had a somewhat similar idea: k vectors can be used to describe a
k-dimensional linear subspace via the span (one vector spans a line; two vectors span a plane, and
so forth). In either case the particular choice of vectors is not so important: for instance, just as
many different pairs of vectors can span the same plane, many different pairs of vectors can be
used to describe the same 2-vector. Overall, the k-vectors that appear in exterior algebra are not so
different from linear subspaces, except that

(1) they have “finite extent”, i.e., they have a magnitude and
(2) they have an orientation.

What do we mean by “orientation?” A good analogy is to think about the difference between a line
¢ and a vector v:

A line encodes a direction but with no sense of orientation, i.e., no notion of which way along the
line is “forward” or “backward.” In contrast, a vector encodes a direction and a definite orientation
(e.g., +v and —v point in opposite directions); moreover, a vector has a definite magnitude, given
by its length. The analogy between lines and vectors capture the basic idea behind k-vectors: a
k-vector is to a k-dimensional linear subspace what a vector is to a line. In fact, ordinary vectors
provide our first example of an object in exterior algebra: a 1-vector is just an ordinary vector.

What about 2-vectors? A pretty good visualization of a 2-vector is to associate any two vectors
u,v in three-dimensional space R? with the volume spanned by a little parallelogram:

4.1. EXTERIOR ALGEBRA 47
v
%u
As a shorthand, we will denote this little parallelogram or 2-vector as u A v (here the A symbol
is pronounced “wedge”). As with ordinary vectors, two 2-vectors are considered “the same” if they
have the same magnitude and direction. For instance, all the parallelograms in the picture below

have been carefully constructed to have identical area. All three therefore depict the same 2-vector,
even though they are skewed and stretched by different amounts:

UL N0y =uUp Ny = Uz \Nv3

In this sense, our parallelogram drawings are merely “cartoons” of a 2-vector, since they each
depict only one of many possibilities. However, since parallelograms faithfully represent many of
the features of 2-forms, we can use them to investigate the way general 2-forms behave.

First and foremost, how do we define orientation for a 2-vector? For 1-vectors, this was an
easy idea: the two (1-)vectors +u and —u have opposite orientation because they point in opposite
directions along the same line. Likewise, we can think of a 2-vector in R? as having two possible
orientations: “up” or “down”, corresponding to the two possible unit normals for the plane it sits
in: +N or —N. We will therefore distinguish between the two expressions u A v or v A u, writing
u AN v = —v A u to indicate that they have opposite orientation:

+N

What behavior can we observe by playing around with little parallelograms? For one thing, it
seems it must be the case that

ulNu=20,

since the “parallelogram” described by two copies of the same vector has no area at all! This idea
corresponds nicely with the idea that u Av = —v A u, sincewhenu =vwegetu Au = —uAu.

4.1. EXTERIOR ALGEBRA 48

Another thing we can notice is that scaling just one of the vectors by a factor 2 € R will scale
the area of our parallelogram by the same amount:

/u / au

We might therefore encode this behavior via the rule
(au) Nv=a(uAv).

Of course, the same kind of thing will happen if we scale the second vector rather than the first, i.e.,
u N (av) = a(u A o).

What can we say about the behavior of parallelograms when we add vectors? The following
picture helps answer this question:

02
u
01
u
u

The sum of the two areas on the left can be expressed as u A v1 + u A vp; the area on the right is
u A (v1 + v2). The middle image suggests that these two quantities are equal, since the area we lose
is identical to the area we gain. In other words, it seems that

UNvL+uNvy =uN (v1+ 02).
(Can you come up with a similar picture in 3D?)

To observe one final property, we must consider volumes rather than areas, which we will depict
as little parallelepipeds:

4.1. EXTERIOR ALGEBRA 49

/uv

Just as with 2-vectors, we can denote this little volume or 3-vector as u A v A w. Moreover,
we can think of this 3-vector as being constructed by first using two vectors to construct a little
parallelogram, and then extruding this parallelogram along a third vector:

0 !;g :i %
/uv /

u

Notice that the order doesn’t really seem to matter here: we can build the 2-vector u A v and
then extend it along w, or we can first build v A w and then extend it along u. We can summarize
this observation by saying that

(uAv)ANw=uA (vAw),

which means that we can simply write u A v A w without any ambiguity about which volume we
mean. What would happen, however, if we flipped the order of the two vectors used to build the

initial parallelogram? Earlier we said that u A v = —v A u, i.e., swapping the order of vectors swaps
the orientation of a 2-vector. Hence, we get (1 Av) Aw = —(v A u) Aw, or just
UNDANW = —DANUNW.

Ok, but what does this statement mean geometrically? The minus sign seems to indicate that the
two little volumes are identical up to orientation. But what does orientation mean for a volume? For
vectors we had two orientations (+u and —u) corresponding to “forward” and “backward”; for
2-vectors we had two orientations (1 A v and v A u) corresponding to “up” and “down” orientations
of the plane. Likewise, we can imagine that a little volume has either an “inward” or “outward”
orientation—for instance, you might imagine that the normal to the boundary points in and out, or
that one side of the boundary is painted red and the other is painted blue. In either case there are
just two orientations. By playing around a bit more we can notice that every time we swap a pair of
consecutive vectors in a 3-vector the orientation switches; if we swap another pair the orientation
switches back. Hence, any even permutation of vectors preserves orientation; any odd permutation reverses
orientation. In other words, the three 3-vectors

UNONW=0DANWANU=WANUNTD

4.1. EXTERIOR ALGEBRA 50

all have the same orientation, and the three-vectors
WAOANU=0ONUNW=UNWAND

all have the same orientation, but these two groups of three have opposite orientation.

4.1.2. The Wedge Product. Already we’ve established a bunch of rules about how little vol-
umes appear to behave, which start to provide a definition for the wedge product A. In particular,
for any collection of vectors u, v, w € R"” and scalars a,b € R we have

o (Antisymmetry) u ANv = —vAu

o (Associativity) (u Av) Aw =uA (v Aw)

e (Distributivity over addition) u A (v+w) =u Av+uAw

e (Distributivity of scalar multiplication) (au) A (bv) = ab(u A v)

In fact, these rules provide the right impression of how the wedge product behaves in any vector
space, for any number of vectors. For now we’ll hold off on a full-blown formal definition—the
more important thing to remember is where these rules came from. In other words, how did the
behavior of “little volumes” motivate us to write down this list in the first place? If you can get
your head around the geometric picture, the rules should follow naturally. (And conversely, if you
don’t take a minute to think about the geometry behind the wedge product, you may be forever
perplexed!)

Working out some concrete examples (e.g., in your homework) should also help to build up
some intuition for k-vectors and the wedge product. A bit later on we’ll revisit the wedge product
in the context of a somewhat different vector space: rather than individual vectors in R", we'll be
thinking about whole vector fields, leading to the idea of differential forms.

4.1.3. The Hodge Star. Often, it’s easiest to specify a set by instead specifying its complement.
For instance, if you asked me, “what foods do you like?” it would be much easier to say, “I like
everything except for natto ' and doogh *” rather than saying, “I like pizza, and apples, and hamburgers,
and sushi, and fesenjan, and chicken & waffles, and ...”. In linear algebra, a good example of this idea
is the orthogonal complement: if I want to specify a k-dimensional linear subspace W C V of an
n-dimensional linear space V, I can provide either a collection of vectors wy, . .., wy that span W, or
alternatively, I can provide a collection of vectors @, . . ., @, spanning the vectors that are not in
W, i.e., its orthogonal complement. For instance, a plane in R? can be specified either by two vectors
that span it, or a single vector giving its normal:

INattois a Japanese dish consisting of sticky, fermented soy beans.
2Doogh is a salty Persian yogurt drink.

4.1. EXTERIOR ALGEBRA 51

orthogonal complement

*x(u A v)

A-"plane

In exterior algebra, the Hodge star x (pronounced “star”) provides a sort of orthogonal comple-
ment for k-vectors. In particular, if we have a k-vector v in R”, then xv will be an (n — k)-vector
that is in some sense “complementary.” What exactly do we mean by complementary? A good first

example is a 2-vector in R3:
+N
—N

Just as a plane in IR® can be identified with its unit normal (which spans its orthogonal com-
plement), a 2-vector u A v can also be identified with some vector in the normal direction. But
which vector? Unlike a linear subspace, we need to pick a definite magnitude and direction for the
1-vector *(u A v). Here there is no “best” choice; we simply need to adopt a convention and stick
with it—a good analogy is the right hand rule used to determine the direction of a cross product
u X v. For a 2-vector u A v, we'll ask that

det(u,v,x(u Av)) >0,

i.e., the determinant of the two vectors comprising u A v and the third vector given by its Hodge
star should be positive. In fact, this rule corresponds to the usual right-hand rule in the sense that
*(1 A\ v) points in the same direction as u x v. What about the magnitude? Again we have a rule
based on the determinant—in particular, in the special case of two orthonormal vectors u1, up, we
ask that

det(uy, up, *(u1 AN up)) = 1.
Since vectors in R" can always be expressed in an orthonormal basis, this rule uniquely pins down
the Hodge star for any 2-vector. In particular, we now really have x(u A v) = u x v, i.e., for two

vectors in Euclidean R? applying the wedge and then the star is equivalent to taking the cross
product. (But it will not be this easy in general!)

More generally, suppose ey, ...,e, is an orthonormal basis for R"”. If we start out with k
orthonormal vectors uy, ..., ug, then the Hodge star is uniquely determined by the relationship

(ul/\---/\uk)/*(ul/\---/\uk):el/\--~/\en.

In short: if we wedge together a k-dimensional “unit volume” with the complementary (n — k)-
dimensional unit volume,” we should get the one and only n-dimensional unit volume on IR".

4.2. EXAMPLES OF WEDGE AND STAR IN R”" 52

An important special case (especially for thinking about surfaces) is the Hodge star of 1-vectors
in IR?, i.e., the Hodge star of ordinary vectors in the plane. Here things are easy to visualize: if we
have a 1-vector u, then its Hodge star xu will be an (n — k)-vector. But sincen —k=2—-1=1, we
just get another 1-vector, orthogonal to u. For instance, if u points “east” on a map, then xu will
point “north”:

* K U < & > 11

* Kk kXU

As we continue to apply the Hodge star, we get a vector that points west, then south, then back
to east again. In other words, in 2D the Hodge star is just a quarter-rotation in the counter-clockwise
direction.

Finally, we can think about the interaction between the Hodge star and the wedge product. For
instance, for two 1-vectors 1, v in R3, we have

*(U 4 v) = *u + *v,

since adding two vectors and then rotating them by 90 degrees is no different from rotating them
each individually and then adding them. More generally, this same identity holds for any two
k-vectors in any dimension, i.e., the Hodge star distributes over addition (can you draw other
pictures that make this idea clearer?).

4.2. Examples of Wedge and Star in R"

To make all these ideas a bit more concrete, let’s consider some concrete examples. These
examples aren’t meant to be particularly “deep,” but rather just demonstrate the basic mechanics of
doing calculations with k-vectors. (You'll see some more interesting examples in your homework!)
Here we'll express (1-)vectors v in an orthonormal basis ey, . . ., e,. For instance, in 2D v := e; + e

is a vector of length v/2 making a 45° angle with the horizontal.

EXAMPLE 1. Let u := e; +2¢, and v := e; + ey — e3 be 1-vectors in R3. Then their wedge
product is given by

uNv = (eg+2e)A(eg+ex—e3)

= e1N(eg+ex—e3)+2er N (eg+er—e3)
M‘gel/\62—61/\63—|-262/\€1—|—2M—02€2/\€3
61/\62—261/\62—61/\63—262/\63
= —61/\62—61/\63—282/\63.

4.2. EXAMPLES OF WEDGE AND STAR IN R”" 53

There are a couple things to notice in this calculation. First, any term e; A ¢; cancels to zero. Do
you remember why? It’s essentially because the parallelogram spanned by two copies of the same
vector has zero area. Also notice that at one point we replace 2e; A e; with —2e; A e;. Why did we
do that? Because e; A ep and ex A e; describe the same 2-vector, but with opposite orientation.

EXAMPLE 2. Let w := —e; A ey — e1 /\ ez — 2e2 A e3 be the 2-vector from the previous example.
Its Hodge star is given by

*w = *(—eg Nex—e1Ne3 —2e Nes)

— % (e1 Nex) —x(eg Aez) —2x (ex Aes)
—e3 — (—62) — 261

= —2e1+e —es.

The main thing we did here was use the right hand rule to determine which direction the wedge
of two basis vectors points. For instance, just as e; X e, = e3 when working with the cross product,
*(e1 A ep) = e3 when working with the wedge product and the Hodge star. A more detailed
discussion of these relationships, and about bases in exterior algebra, can be found in Section 4.5.1.

EXAMPLE 3. Letu := ey + ey +e3, v := e; + 23 + 3e3, and w := e; — e3 be 1-vectors in R3, and
suppose we want to compute u A v A w. Since the wedge product is associative, we can start out by
just computing either u A v or v A w, and then wedging the result with the remaining 1-vector. For
instance, we have

vAw = (eg+2e+3e3) A (e1 —e3)
= M—OelAe3+Zeerl—2e2/\63+3e3Ael—3M0
= —2e1 Ney —4eq1 Nez — 2ex Nes.
Wedging with u then yields
uN(vhw) = (e1+er+e3)A(—2e; Nex—4eg Nez—2er Ae3)
—2e1 Nexy Neg —4ey Nept Nes —2e3 Nep Nep
—2e1 Nexy Nes+4eg Ney Nes —2e1 Ney N es
0.

In the second calculation we avoided a lot of work by noticing that any term involving multiple
copies of the same basis 1-vector (e.g., e1 A\ e1 A e2) would have zero volume, since two of the edges
of the corresponding little parallelepiped would be parallel. Hence, we can just write down the
three remaining terms where all three bases show up (e.g., e2 A e3 A 7). By repeatedly swapping
pairs of bases, we can put all such 3-vectors into a canonical form (e.g.,e2 Ne3 Ae; = —ex Neg ANe3 =
e1 A ex A e3), at which point we just have several copies of the unit 3-vector e; A e A e3 scaled
by some magnitude. In this case, the magnitudes of all the terms summed to zero. What does
that mean geometrically? It must mean that our original 1-vectors u, v, and w are not linearly
independent, i.e., they describe a “flat” 3-vector with zero volume.

4.3. VECTORS AND 1-FORMS 54

4.3. Vectors and 1-Forms

Now that we have a basic language for working with “little volumes,” we continue with the
second part of our story, about exterior calculus.

Once upon a time there was a vector named v:

What information does v encode? One way to inspect a vector is to determine its extent or
length along a given direction. For instance, we can pick some arbitrary direction « and record the
length of the shadow cast by v along a:

The result is simply a number, which we can denote a(v). The notation here is meant to
emphasize the idea that « is a function: in particular, it’s a linear function that eats a vector and
produces a scalar. Any such function is called a I-form (also known as a covector).

Of course, it’s clear from the picture that the space of all 1-forms looks a lot like the space of
all vectors: we just had to pick some direction to measure along. But often there is good reason
to distinguish between vectors and 1-forms—the distinction is not unlike the one made between
row vectors and column vectors in linear algebra. For instance, even though rows and column both
represent “vectors,” we only allow ourselves to multiply rows with columns:

ol

[a e Ay] :
v?’l
If we wanted to multiply, say, two column vectors, we would first have to take the transpose of one
of them to convert it into a row:

Same deal with vectors and 1-forms, except that now we have two different operations: sharp
(), which converts a 1-form into a vector, and flat (b) which converts a vector into a 1-form. For
instance, it’s perfectly valid to write v’ (v) or a(at), since in either case we're feeding a vector to a
1-form. The operations § and b are called the musical isomorphisms.

4.3. VECTORS AND 1-FORMS 55

All this fuss over 1-forms versus vectors (or even row versus column vectors) may seem like
much ado about nothing. And indeed, in a flat space like the plane, the difference between the two
is pretty superficial. In curved spaces, however, there’s an important distinction between vectors
and 1-forms—in particular, we want to make sure that we're taking “measurements” in the right
space. For instance, suppose we want to measure the length of a vector v along the direction of
another vector u. It's important to remember that tangent vectors get stretched out by the map
f:R? > M — RR3 that takes us from the plane to some surface in R3. Therefore, the operations #
and b should satisfy relationships like

' (v) = g(u,v)
where ¢ is the metric induced by f. This way we're really measuring how things behave in the
“stretched out” space rather than the initial domain M.

4.3.1. Coordinates. Until now we’ve intentionally avoided the use of coordinates—in other
words, we've tried to express geometric relationships without reference to any particular coordinate
system x1,...,x,. Why avoid coordinates? Several reasons are often cited (people will mumble
something about “invariance”), but the real reason is quite simply that coordinate-free expressions
tend to be shorter, sweeter, and easier to extract meaning from. This approach is also particularly
valuable in geometry processing, because many coordinate-free expressions translate naturally to
basic operations on meshes.

Yet coordinates are still quite valuable in a number of situations. Sometimes there’s a special
coordinate basis that greatly simplifies analysis—recall our discussion of principal curvature di-
rections, for instance. At other times there’s simply no obvious way to prove something without
coordinates. For now we’re going to grind out a few basic facts about exterior calculus in coor-
dinates; at the end of the day we’ll keep whatever nice coordinate-free expressions we find and
politely forget that coordinates ever existed!

>

0 A 2
52 dx

9 1
T dx

Let’s setup our coordinate system. For reasons that will become clear later, we're going to use

the symbols a%, ceny % to represent an orthonormal basis for vectors in R”, and use dx, ..., dx"
to denote the corresponding 1-form basis. In other words, any vector v can be written as a linear
combination
| J n J
V=" Il +--+0 FT

and any 1-form can be written as a linear combination
a = aqdx’ + -+ apdx".

To keep yourself sane at this point, you should completely ignore the fact that the symbols % and dx’
look like derivatives—they're simply collections of unit-length orthogonal bases, as depicted above.

4.3. VECTORS AND 1-FORMS 56

The two bases dx’ and % are often referred to as dual bases, meaning they satisfy the relationship

/9) 1, i=j
d t = :51 = ’
* <8x]> J {0, otherwise.

This relationship captures precisely the behavior we’re looking for: a vector % “casts a shadow”

on the 1-form dx/ only if the two bases point in the same direction. Using this relationship, we can
work out that

a(v) = Z(xidxi (Ezﬂfﬂ) = Z(xivi
i j i

i.e., the pairing of a vector and a 1-form looks just like the standard Euclidean inner product.

4.3.2. Notation. It's worth saying a few words about notation. First, vectors and vector fields
tend to be represented by letters from the end of the Roman alphabet (1, v, w or X, Y, Z, respec-
tively), whereas 1-forms are given lowercase letters from the beginning of the Greek alphabet
(«, B, v, etc.). Although one often makes a linguistic distinction between a “vector” (meaning a
single arrow) and a “vector field” (meaning an arrow glued to every point of a space), there’s an
unfortunate precedent to use the term “1-form” to refer to both ideas—sadly, nobody ever says
“1-form field!” Scalar fields or 0-forms are often given letters from the middle of the Roman alphabet
(f, & h) or maybe lowercase Greek letters from somewhere near the end (¢, ¥, etc.).

You may also notice that we’ve been very particular about the placement of indices: coefficients
o' of vectors have indices up, coefficients &; of 1-forms have indices down. Similarly, vector bases
% have indices down (they’re in the denominator), and 1-form bases dx’ have indices up. The
reason for being so neurotic is to take advantage of Einstein summation notation: any time a pair of
variables is indexed by the same letter i in both the “up” and “down” position, we interpret this as

a sum over all possible values of i:
av' =Y w0,
i

The placement of indices also provides a cute mnemonic for the musical isomorphisms § and b. In
musical notation § indicates a half-step increase in pitch, corresponding to an upward movement
on the staff. For instance, both notes below correspond to a “C” with the same pitChS:

)
wif)nﬁc

I~

Therefore, to go from a 1-form to a vector we raise the indices. For instance, in a flat space we
don’t have to worry about the metric and so a 1-form

a = aqdx + - -+ adx”
becomes a vector
“t:ali+...+a” J
dx! ox"’
Similarly, b indicates a decrease in pitch and a downward motion on the staff:

3Atleastona tempered instrument!

4.3. VECTORS AND 1-FORMS

0
(~
D
oJ

and so b lowers the indices of a vector to give us a 1-form—e.g.,

_ 1 J n J
T
becomes
o = vydx! + - - + v,dx".

57

4.4. DIFFERENTIAL FORMS AND THE WEDGE PRODUCT 58

4.4. Differential Forms and the Wedge Product

In the last subsection we measured the length of a vector by projecting it onto different coordi-
nate axes; this measurement process effectively defined what we call a I-form. But what happens if
we have a collection of vectors? For instance, consider a pair of vectors u, v sitting in R3:

—

We can think of these vectors as defining a parallelogram, and much like we did with a single
vector we can measure this parallelogram by measuring the size of the “shadow” it casts on some
plane:

For instance, suppose we represent this plane via a pair of unit orthogonal 1-forms a and S.
Then the projected vectors have components

u = («X(u),g(u));,

hence the (signed) projected area is given by the cross product

u' x v =a(u)p(v) —a(v)B(u).
Since we want to measure a lot of projected volumes in the future, we’ll give this operation the
special name “a A B”:
a A B(u,0) = (1) B(0) — () B(u).

As you may have already guessed, a A B is what we call a 2-form. Ultimately we'll interpret the
symbol A (pronounced “wedge”) as a binary operation on differential forms called the wedge
product. Algebraic properties of the wedge product follow directly from the way signed volumes
behave. For instance, notice that if we reverse the order of our axes «, B the sign of the area changes.
In other words, the wedge product is antisymmetric:

xANB=—-BANa.

4.4. DIFFERENTIAL FORMS AND THE WEDGE PRODUCT 59

An important consequence of antisymmetry is that the wedge of any 1-form with itself is zero:

N =—uaANAa
=aAa=0.

But don't let this statement become a purely algebraic fact! Geometrically, why should the
wedge of two 1-forms be zero? Quite simply because it represents projection onto a plane of zero
area! (Le., the plane spanned by « and «.)

Next, consider the projection onto two different planes spanned by «, f and «, y. The sum of
the projected areas can be written as

aAB(u,0) +aNy(u,0) = w(ugﬁ(v)—Mv)ﬁ(u)ﬂc(u)v(v —a(v)y(u)

Il
=
=

or in other words A distributes over +:
aAN(B+y)=aAB+aNy.

Finally, consider three vectors u, v, w that span a volume in R3:

>

[/u'

We’d like to consider the projection of this volume onto the volume spanned by three 1-forms
«, B, and 7y, but the projection of one volume onto another is a bit difficult to visualize! For now
you can just cheat and imagine that « = dx!, B = dx?, and y = dx® so that the mental picture for
the projected volume looks just like the volume depicted above. One way to write the projected
volume is as the determinant of the projected vectors u’, v/, and w’:

a(u) a(v) a(w)
e ABAy(u,v,w):=det([u o w'])=det B(u) B(v) ,B(wg :

(Did you notice that the determinant of the upper-left 2x2 submatrix also gives us the wedge
product of two 1-forms?) Alternatively, we could express the volume as the area of one of the faces
times the length of the remaining edge:

4.4. DIFFERENTIAL FORMS AND THE WEDGE PRODUCT 60

Thinking about things this way, we might come up with an alternative definition of the wedge
product in terms of the triple product:

aANBAy(u,v,w) = (U xv) w
_ (lew/).u/
= (' xu') o

The important thing to notice here is that order is not important—we always get the same
volume, regardless of which face we pick (though we still have to be a bit careful about sigrn). A
more algebraic way of saying this is that the wedge product is associative:

(aAB)AY = A (BAY).
In summary, the wedge product of k 1-forms gives us a k-form, which measures the projected

volume of a collection of k vectors. As a result, the wedge product has the following properties for
any k-form «, [-form B, and m-form +:

e Antisymmetry: « A B = (—1)¥B A«
e Associativity: « A (BAY) = (x AB) Ay

and in the case where 8 and -y have the same degree (i.e., | = m) we have
e Distributivity: t A (B+7) =aAB+aNy

A separate fact is that a k-form is antisymmetric in its arguments—in other words, swapping the
relative order of two “input” vectors changes only the sign of the volume. For instance, if « is a
2-form then a(u,v) = —a(v, u). In general, an even number of swaps will preserve the sign; an odd
number of swaps will negate it. (One way to convince yourself is to consider what happens to the
determinant of a matrix when you exchange two of its columns.) Finally, you'll often hear people
say that k-forms are “multilinear ”—all this means is that if you keep all but one of the vectors fixed,
then a k-form looks like a linear map. Geometrically this makes sense: k-forms are built up from k
linear measurements of length (essentially just k different dot products).

4.4.1. Vector-Valued Forms. Up to this point we’ve considered only real-valued k-forms—for
instance, a (1) represents the length of the vector u along the direction a, which can be expressed
as a single real number. In general, however, a k-form can “spit out” all kinds of different values.
For instance, we might want to deal with quantities that are described by complex numbers (C) or
vectors in some larger vector space (e.g., R").

4.4. DIFFERENTIAL FORMS AND THE WEDGE PRODUCT 61

A good example of a vector-valued k-form is our map f : M — R3 which represents the
geometry of a surface. In the language of exterior calculus, f is an R3-valued O-form: at each point
p of M, it takes zero vectors as input and produces a point f(p) in R® as output. Similarly, the
differential df is an R*>-valued 1-form: it takes one vector (some direction u in the plane) and maps
it to a value df (u) in R® (representing the “stretched out” version of).

More generally, if E is a vector space then an E-valued k-form takes k vectors to a single value in
E. However, we have to be a bit careful here. For instance, think about our definition of a 2-form:

a A P(u,0) = a(u)p(v) — a(v)p(u).
If « and B are both E-valued 1-forms, then a(u) and B(v) are both vectors in E. But how do you

multiply two vectors? In general there may be no good answer: not every vector space comes with
a natural notion of multiplication.

However, there are plenty of spaces that do come with a well-defined product—for instance, the
product of two complex numbers a + bi and ¢ + di is given by (ac — bd) + (ad + bc)i, so we have
no trouble explicitly evaluating the expression above. In other cases we simply have to say which
product we want to use—in R for instance we could use the cross product x, in which case an
R3-valued 2-form looks like this:

aAB(u,v) = a(u) x p(v) —a(v) x B(u).

4.5. HODGE DUALITY 62

4.5. Hodge Duality

Previously we saw that a k-form measures the (signed) projected volume of a k-dimensional
parallelepiped. For instance, a 2-form measures the area of a parallelogram projected onto some
plane, as depicted above. But here’s a nice observation: a plane in R? can be described either by a
pair of basis directions (a, B), or by a normal direction -y. So rather than measuring projected area,
we could instead measure how well the normal of a parallelogram (1, v) lines up with the normal
of our plane. In other words, we could look for a 1-form v such that

y(u xv) =aApB(u,0).

This observation captures the idea behind Hodge duality: a k-dimensional volume in an n-dimensional
space can be specified either by k directions or by a complementary set of (n — k) directions. There
should therefore be some kind of natural correspondence between k-forms and (n — k)-forms.

4.5.1. Differential Forms and the Hodge Star. Let’s investigate this idea further by construct-
ing an explicit basis for the space of 0-forms, 1-forms, 2-forms, etc.—to keep things manageable
we’ll work with IR? and its standard coordinate system (x!, x2, x%). 0-forms are easy: any 0-form
can be thought of as some function times the constant 0-form, which we’ll denote “1.” We’ve already
seen the 1-form basis dx!, dx2, dx3, which looks like the standard orthonormal basis of a vector

space:

dx®

dx?
dxl

4.5. HODGE DUALITY 63

What about 2-forms? Well, consider that any 2-form can be expressed as the wedge of two
1-forms:

aAB = (adx’) A (,B]-dxj) = zxiﬁjdxi A daxl.
In other words, any 2-form looks like some linear combination of the basis 2-forms dx' A dx/. How
many of these bases are there? Initially it looks like there are a bunch of possibilities:

dx Adxl dxl Adx? dx Adxd
dx2 ANdxl dx? Adx? dx? A dxd
dx3 ANdxl dxd Adx? dx3 Adxd

But of course, not all of these guys are distinct: remember that the wedge product is antisym-

metric (x A B = —B A «), which has the important consequence & A & = 0. So really our table looks
more like this:

0 dxt Adx? —dx3 Adx?
—dxl A dx? 0 dx? A dxd
dx3 Adxl —dx? Adx® 0

and we're left with only three distinct bases: dx? A dx3, dx® A dx!, and dx! A dx?. Geometrically
all we’ve said is that there are three linearly-independent “planes” in R>:

How about 3-form bases? We certainly have at least one:
dxt Adx® A dxP.

Are there any others? Again the antisymmetry of A comes into play: many potential bases are just
permutations of this first one:

dx® Adx® Adxt = —dx® Adxt Adx® = dxt Adx® Adx,
and the rest vanish due to the appearance of repeated 1-forms:

dx? Ndxt Adx? = —dx® Adx? Adxt =0 Adx! = 0.

4.5. HODGE DUALITY 64

In general there is only one basis n-form dx! A - - - A dx", which measures the usual Euclidean
volume of a parallelpiped:

Finally, what about 4-forms on IR3? At this point it’s probably pretty easy to see that there
are none, since we’d need to pick four distinct 1-form bases from a collection of only three. Geo-
metrically: there are no four-dimensional volumes contained in R3! (Or volumes of any greater
dimension, for that matter.) The complete list of k-form bases on R3 is then

0-form bases: 1

1-form bases: dx!, dx?, dx3

2-form bases: dx2 A dx3, dx3 A dxt, dx! A dx?
3-form bases: dx! A dx? A dx3,

which means the number of bases is 1, 3, 3, 1. In fact you may see a more general pattern here: the
number of k-form bases on an n-dimensional space is given by the binomial coefficient

(%) =m0

(i.e., “n choose k”), since we want to pick k distinct 1-form bases and don’t care about the order. An
important identity here is

n\ n

k) \n—k)’

which, as anticipated, means that we have a one-to-one relationship between k-forms and (n — k)-
forms. In particular, we can identify any k-form with its complement. For example, on R3 we
have

4.5. HODGE DUALITY 65

*x1 = dx! Adx® Adx®
xdx! = dx® Ndx®
xdx?> = dx3 Adx!
*xdx® = dx! Ndx?
*(dx! Ndx?) = dx3
*(dx? Ndx3) = dx!
*(dx® Adxl) = dx?
*(dxt Adx? Adx®) = 1

The map * (pronounced “star”) is called the Hodge star and captures this idea that planes can be
identified with their normals and so forth. More generally, on any flat space we have

*(dxt Ndx A Adal) = dxi Adxez A A dx,

where (i1, iy, ..., iy) is any even permutation of (1,2,...,n).

4.5.2. The Volume Form.

So far we’ve been talking about measuring volumes in flat spaces like R”. But how do we take
measurements in a curved space? Let’s think about our usual example of a surface f : R? D M —
IR3. If we consider a region of our surface spanned by a pair of orthogonal unit vectors u, v € R?,
it’s clear that we don’t want the area dx! A dx?(u,v) = 1 since that just gives us the area in the
plane. What we really want is the area of this region after it’s been “stretched-out” by the map f. In
other words, we want the size of the corresponding parallelogram in IR?, spanned by the vectors

df (u) and df (v).

EXERCISE 4.1

Letting u,v IR? be orthonormal (as above), show that

|df (u) x df (v)] = 4/ det(g),

i.e., show that the “stretching factor” as we go from the plane to the surface is given by the square
root of the determinant of the metric

det(g) := g(u,u)g(v,0) - g(,0)>

g(1,0) 1= df (u) - df (v).

4.5. HODGE DUALITY 66

Therefore, we can measure the area of any little region on our surface by simply scaling the

volume in the plane by the determinant of the metric, i.e., by applying the 2-form \/det(g)dx! A dx?
to two vectors u, v spanning the region of interest. More generally, the n-form

w = \/det(g)dx' A~ Adx"

is called the volume form, and will play a key role when we talk about integration.

On curved spaces, we’d also like the Hodge star to capture the fact that volumes have been
stretched out. For instance, it makes a certain amount of sense to identify the constant function 1
with the volume form w, since w really represents unit volume on the curved space:

*xl =w

4.5.3. The Inner Product on k-Forms. More generally we’ll ask that any n-form constructed
from a pair of k-forms « and S satisfies

aNxp = (& B))w,
where ((«, B)) = Y_; «;B; is the inner product on k-forms. In fact, some authors use this relationship
as the definition of the wedge product—in other words, they’ll start with something like, “the wedge
product is the unique binary operation on k-forms such that « A xp = ({(«,))w,” and from there
derive all the properties we’ve established above. This treatment is a bit abstract, and makes it far
too easy to forget that the wedge product has an extraordinarily concrete geometric meaning. (It’s
certainly not the way Hermann Grassmann thought about it when he invented exterior algebra!).
In practice, however, this identity is quite useful. For instance, if u and v are vectors in R?, then we
can write

u‘v:*(ubA*vb),
i.e., on a flat space we can express the usual Euclidean inner product via the wedge product. Is it
clear geometrically that this identity is true? Think about what it says: the Hodge star turns v into a
plane with v as a normal. We then build a volume by extruding this plane along the direction u. If
u and v are nearly parallel the volume will be fairly large; if they’re nearly orthogonal the volume
will be quite shallow. (But to be sure we really got it right, you should try verifying this identity in
coordinates!) Similarly, we can express the Euclidean cross product as just

uxov=xu N0"))E,

i.e., we can create a plane with normal u x v by wedging together the two basis vectors u and v.
(Again, working this fact out in coordinates may help soothe your paranoia.)

4.6. DIFFERENTIAL OPERATORS 67

4.6. Differential Operators

Originally we set out to develop exterior calculus. The objects we’ve looked at so far—k-forms,
the wedge product A and the Hodge star x—actually describe a more general structure called an
exterior algebra. To turn our algebra into a calculus, we also need to know how quantities change,
as well as how to measure quantities. In other words, we need some tools for differentiation and
integration. Let’s start with differentiation.

In our discussion of surfaces we briefly looked at the differential df of a surface f : M — R3,
which tells us something about the way tangent vectors get “stretched out” as we move from the
domain M to a curved surface sitting in R3. More generally d is called the exterior derivative and is
responsible for building up many of the differential operators in exterior calculus. The basic idea
is that d tells us how quickly a k-form changes along every possible direction. But how exactly is it
defined? So far we’ve seen only a high-level geometric description.

4.6.1. Div, Grad, and Curl. Before jumping into the exterior derivative, it's worth reviewing
what the basic vector derivatives div, grad, and curl do, and more importantly, what they look like.
The key player here is the operator V (pronounced “nabla”) which can be expressed in coordinates
as the vector of all partial derivatives:

P o\

For instance, applying V to a scalar function ¢ : R" — R yields the gradient

(% 3\
wo- (2,20

which can be visualized as the direction of steepest ascent on some terrain:

it / /
/7

R Sa
NN

N A

MU R
NN OO0

We can also apply V to a vector field X in two different ways. The dot product gives us the
divergence
_ox! T oX"
oot ox"

V-X

4.6. DIFFERENTIAL OPERATORS 68

which measures how quickly the vector field is “spreading out”, and on R? the cross product gives
us the curl

3 2 5yl 3 9y2 1
Vxx:<ax 9X* 9X' 9X° 09X E)X),

ox2 9x37 9x3 oxl’ axl 9x2
which indicates how much a vector field is “spinning around.” For instance, here’s a pair of vector
fields with a lot of divergence and a lot of curl, respectively:

A
FAN I
o A

N P NN
NN A AN
~ N X X . A e AV .
~ W %N fomm s A - LI B
-~ -~ o~ B O U U A [vff///‘»\
e T N G N N R AN N s g AA A
e VNN s VAN s A A A e
///;\\\\\;///, \\\‘/////»\\\\
N T N N i NN S 0. IV NS
S U N AR TR e~ v v o *,//lff'/(¢{;r
I o A U N N NN SN N s =S
- S L N NI NN [N N L
LI U NN NN N e s s
LI T N N P

(Note that in this case one field is just a 90-degree rotation of the other!) On a typical day it’s
a lot more useful to think of div, grad and curl in terms of these kinds of pictures rather than the
ugly expressions above.

4.6.2. Think Differential. Not surprisingly, we can express similar notions using exterior
calculus. However, these notions will be a bit easier to generalize (for instance, what does “curl”
mean for a vector field in R*, where no cross product is defined?). Let’s first take a look at the
exterior derivative of O-forms (i.e., functions), which is often just called the differential. To keep
things simpl