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Event-based social networks (EBSNs) are becoming popular in recent years. Users can publish a planned event
on an EBSN website, calling for other users to participate in the event. When a user is making a decision on
whether to participate in an event in EBSNs, one aspect for consideration is existing participants de�ned as
users who have agreed to join this event. Existing participants of the event may a�ect the decision of the user,
to which we refer as participant in�uence. However, participant in�uence is not well studied by previous works.
In this paper, we propose an event recommendation model that considers participant in�uence, and exploits
the in�uence of existing participants on the decisions of new participants based on Poisson factorization. The
e�ect of participant in�uence is associated with the target event, the host group of the event, and the location
of the event. Furthermore, our proposed model can extract latent event topics from event text descriptions, and
characterize events, groups, and locations by distributions of event topics. Associations between latent event
topics and participant in�uence are exploited for improving event recommendation. Besides making event
recommendation, the proposed model is able to reveal the semantic properties of the participant in�uence
between two users semantically. We have conducted extensive experiments on some datasets extracted from a
real-world EBSN. Our proposed model achieves superior event recommendation performance over several
state-of-the-art models. The results demonstrate that the consideration of participant in�uence can improve
event recommendation.
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1 INTRODUCTION
Event-based social networks (EBSNs), such as Meetup1 and Facebook Events2, are activity-oriented
social networks that have drawn lots of research attention in recent years. EBSNs link people’s
online interactions to o�ine activities by providing a platform for users to gather online and
participate planned events together. An event organizer can publish an o�ine planned event, also
known as activity, such as hiking on a mountain, on the EBSN platform, calling for potential
participants to join the proposed event. Typically, the published event is also associated with a
1https://www.meetup.com
2https://events.fb.com/
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homepage on the EBSN site, showing the basic information about the event and a list of RSVPs for
some users. The term RSVP stands for a French phrase “répondez, s’il vous plaît", which means
“please reply". In an EBSN such as Meetup.com, a RSVP of a user for the event refers to the fact
that the user has expressed his/her willingness to participate in the event. The basic information
about the event includes the description of the event, the location, and so on. When users browse
the information displayed on the homepage of the event, they can �nd out whether the event is
interesting and send a RSVP to the event if the event appeals to them, indicating that they will
attend this event. Due to the popularity of EBSNs where a large number of events are published
every day, a user is not able to view all the events in detail. Consequently, an event recommendation
system is essential to help a user discover events that he/she is probably interested in. Such kind of
service also enhances user satisfaction.

Several models have exploited various information to solve the problem of event recommendation.
Generally, the information utilized by these models can be categorized into two types. The �rst type
is the context of the event, such as the text description of the event, the host of the event, and the
location where the event will be held. Event context has been investigated by the majority of existing
models [26, 43]. The context of the event forms the basic information of the event. The second type is
the social relationship of the users since an EBSN is a typical online social network. Some EBSN sites
allow users to build social relations with each other via group memberships or friendships, which
can be exploited based on the observation that friends tend to have similar interest. Some models
[22, 23, 31, 40, 43, 46] leverage social relations to enhance event recommendation performance.

However, most existing works neglect the in�uence of existing participants when making event
recommendation. Indeed, potential participants are sometimes a�ected by the existing participants
re�ected from the RSVPs listed on the homepage of events. The RSVP information indicates who
have already shown the willingness to participate in the events. Often, when a user browses
an event, he/she not only checks whether the basic context information of the event, such as
description and location, is interesting and convenient, but also considers whether the existing
participants, who have decided to participate in the event, are good companions or not. This is a
rather common phenomenon because an o�ine event may involve lots of interactions between
participants. For example, when a user decides to participate a party, some particular existing
participants may attract him/her, rather than just the party itself.

The notion of participant in�uence is di�erent from various social relations among users which
have been studied in previous works [26, 40, 43, 46]. Social relations are utilized by existing works
as auxiliary information which conveys the message that users sharing the social relations tend to
have similar interest. For example, Zhang and Wang [43] utilize friendships between users to infer
the interests of each user more precisely based on the assumption that friends tend to have similar
interest. Interestingly, they also report that the method making use of friendship only improves
event recommendation performance slightly. In the framework proposed by Macedo et al. [26],
users are linked via the groups to which they belong. Such information is utilized to facilitate
recommendation assuming that users a�liated to the same or similar groups tend to the same event
created by these groups. Xu et al. [40] introduce the concept of mutual in�uence to investigate
which members of a group will participate in the event once the event is published. Their model
assumes that users strengthen the likelihood of each other to participate in the event via the mutual
in�uence which is modeled as a weighted link. However, the above models still rely on the basic
information of the events for calculating the preference of the user, with social relations acting as
auxiliary information. In contrast, the participant in�uence investigated in this paper is di�erent
from the explicit social relations between two users. It can be viewed as an implicit social relation
between two users and such relations may directly a�ect the decision of a new participant. When a
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user in�uences another user to some extent in participating in various events, it can be treated as a
kind of implicit social relation between them. However, such kind of social relation between two
users is not necessarily re�ected from the follower relationship.

The existing participants can be regarded as a kind of historical data of the events. Some rec-
ommendation models consider the in�uence of historical data when making recommendation
in the future, such as next-basket recommender [4, 27, 33, 38] which recommends the next item
given the history, usually a sequence of transaction data. However, event recommendation con-
sidering the participant in�uence is di�erent from next-basket recommendation. When making
a recommendation for a speci�c user, the history of the user encompasses item sequence in the
task of next-basket recommendation. In contrast, in event recommendation considering participant
in�uence, we consider the historical participants of the events, rather than the historical event
sequences of users. Moreover, participant in�uence varies with di�erent events since each event is
associated with di�erent existing participants.

We model an instance of participant in�uence by three components, namely, the user who exerts
the in�uence, the user who is a�ected by the in�uence, and the target event. One characteristic
is that di�erent users exert di�erent participant in�uence to others. For example, some users
are in�uential in Sport event while some are in�uential in Shopping event. Likewise, the second
characteristic is that di�erent users are in�uenced in di�erent ways. The third characteristic is
that when the target event changes, the participant in�uence between two users should not stay
the same. For example, the participant in�uence between a soccer expert and a soccer learner for
a Soccer event will be de�nitely larger than that for a Basketball event. We employ the Poisson
distribution to model the observed data with participant in�uence, resulting in a probabilistic
Poisson factorization model. The observed data could be, for example, the number of times that
one user in�uences another user for a particular event. The Poisson factorization model enjoys
two advantages over traditional factorization models such as Gaussian factorization model [8].
First, it implicitly learns the budget of a user. For example, how much spare time the user has in
total for spending on participating in various events. With such properties, a Poisson factorization
model can capture the fact that a user does not participate in an event, or an unobserved record,
in two ways; either the user dislikes the event or the user does not have su�cient spare time to
participate in the event. Such consideration is realistic in real-world. Second, Poisson factorization
provides di�erent treatment for zeros, or unobserved records, from traditional factorization models.
Poisson factorization automatically adapts the e�ect of unobserved records, as a user may not
dislike the event as mentioned previously. In contrast, traditional factorization models impose
equal treatment for zeros and non-zeros, which may be unrealistic in practical. To overcome such
drawback, additional treatment such as con�dence [13] is patched in traditional factorization
models. As another bene�t of its treatment for zeros, Poisson factorization can easily handle
massive sparse data for event recommendation, where most user-event records are unobserved.
As a consequence of the advantages, Poisson factorization has shown superior performance over
traditional factorization models in various recommendation tasks [8].

Our proposed model also extracts latent event topics from event text descriptions with a latent
Poisson topic model. The text description is written by the event organizer introducing the details
of the event. The extracted latent event topics can be treated as a kind of semantic class of the
events. The event topics are incorporated into participant in�uence modeling so as to model the
event latent factor more e�ectively. Besides, by associating participant in�uence with event topics,
the proposed model is able to recommend both existing events and new events. Moreover, the
proposed model is also able to provide semantic explanations on the participant in�uence when
recommending events to users.
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We further exploit two types of context information of events, namely, host groups and locations,
for improving recommendation performance. Each event is hosted by a group and is held at a
location. The participant in�uence between two users for an event is a�ected by the host group and
location because a user may exert di�erent in�uence in di�erent groups or di�erent locations. For
example, a soccer expert is more in�uential in a sport �eld held at a soccer court than in one on a
basketball court. We model the participant in�uence between users regarding each group and each
location in a similar manner with the participant in�uence regarding each event. We characterize
events, groups, and locations by distributions of event topics. We also develop methods to learn the
topics of groups and the topics of locations by analyzing the relationships with events.

In our recent work [20], we have investigated an event recommendation model taking into
account of participant in�uence. This previous model can be regarded as a preliminary model
for participant in�uence that only considers the interactions among two users and an event. The
proposed recommendation framework in this paper is a more comprehensive and sophisticated
model. Speci�cally, this new framework learns the latent topics from the event text descriptions
and associate the topics with groups and locations. Moreover, it incorporates such latent topics
into participant in�uence modeling to further improve the recommendation quality. By associating
latent topics with participant in�uence, this new framework is able to reveal and interpret the
semantic properties of the participant in�uence between two users.

2 RELATED WORK
2.1 Event Recommendation
In contrast with the ordinary item recommendation problem, event recommendation in EBSNs
involves heterogeneous types of information. Event recommendation is related to: 1) Point of
Interest (POI) recommendation [14, 16–19, 21, 48] in that each event is usually held at a place in
reality with a geographical location. 2) Time-aware recommendation [6, 35, 41, 42] since each
event is held at a certain time. 3) Content-aware recommendation [1, 28, 36, 39, 45] since each
event usually contains text descriptions written by the organizer. 4) Social-aware recommendation
[11, 25, 37, 44] since users in EBSNs are usually connected via social relations, such as group
memberships and friendships. Several event recommendation models [23, 26, 30, 40, 43, 46] have
been proposed to jointly analyze the �ourish information. Liu et al. [23] employ data mining
techniques to investigate properties of EBSNs and discover many unique characteristics, such
as heavy-tailed degree distributions and strong locality of social interactions. Qiao et al. [30]
extend their preliminary study and develop a Bayesian latent factor model that combines social
relations and geographical information. They design a social regularization term on the factor
representation of users based on the assumption that the preference of a user is close to the weighted
average preference of his/her friends. Later, Macedo et al. [5] conduct a statistical study about
the characteristics of events and RSVPs in EBSNs. They further design a learning-to-rank model
for event recommendation [26]. The input features are derived from several aspects of the event
and social relations. Recently, Zhang and Wang [43] propose a Poisson factorization model that
collectively considers context information of the event and friendships of users. In their model,
two users tend to have similar interest if they are friends. Rather than recommending events
to individual users, Purushotham and Kuo [29] recently investigate recommending events to a
group of users, i.e. group recommendation in EBSN. Xu et al. [40] study a slightly di�erent event
recommendation scenario from previous works, where the system tries to �nd out which members
of a group will participate in an event when the event is published to the group. They introduce
the concept of mutual in�uence, assuming users in�uence the likelihood of others to participate in
the event within the group. They formulate the problem as a global decision-making process. In
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contrast with previous works, we study the participant in�uence in EBSNs, which directly a�ects
users’ decisions on events. The participant in�uence is further interacted with latent event topics
to improve event recommendation performance.

2.2 Next-Basket Recommendation
Given a user’s purchase history, next-basket recommendation predicts the next few items that the
user most probably would like. Rendle et al. [33] propose Factorizing Personalized Markov Chains
(FPMC) model to tackle the task. Recently, Wang et al. [38] propose a Hierarchical Representation
Model (HRM) which explores sequential behavior and general taste of users. HRM subsumes FPMC.
Recently, the idea of next-basket recommendation has been applied to many applications that have
sequential patterns, such as successive POI recommendation [4, 10, 24, 47]. For example, Cheng et
al. [4] add Localized Region Constraint to the FPMC model (FPMC-LR) to predict the next Point
of Interest (POI) that the user will probably visit given the most recent visited POI. Liu et al. [24]
propose a POI recommender system called WWO that exploits user check-in sequential patterns
with temporal interval assessment, representing the temporal intervals of the soonest visit of a POI
after each recent POI. The major di�erence between event recommendation considering participant
in�uence and next-basket recommendation lies in what the type of history encompasses and its
relation to the type of elements to be recommended. In next-basket recommendation, the history is
composed of a sequence of items purchased by the user. However, in our proposed task, the history
contains a sequence of RSVPs.

2.3 Poisson Factorization
Non-negative matrix factorization (NMF) [15] �nds low dimensional representations/factors of
users and items such that the square error function between the inner-products of latent repre-
sentations/factors and the observed values is minimized. In contrast, Poisson factorization model
is a generative version of NMF, where the observed values are generated from a Poisson distri-
bution with parameters associated with the latent factors. Gaussian factorization [34] is another
probabilistic derivative of the matrix factorization (MF), where the observed values are modeled
with Gaussian distributions. Compared with Gaussian factorization or NMF, Poisson factorization
enjoys the ability to handle massive sparse data [8].

Gopalan et al. [8] conduct several empirical studies to show that Poisson factorization model
has superior recommendation performance over traditional matrix factorization models such as
Gaussian factorization. This can be attributed to two advantages of Poisson factorization. First,
Poisson factorization implicitly captures the limited budget of users to participate in events. We
present a brief illustration as follows. Let yui ,ej ∼ Poisson(uiej ) denote the number of times that the
user ui participate in the event ej . Then Yui =

∑
j ∈ |E | yui ,ej denotes the frequencies that the user

ui participates in events, which can be treated as the budget of the user ui given his/her limited
spare time. An interesting property of Poisson distribution is that a sum of Poisson variable is itself
a Poisson variable with the rate equal to the sum of the rates, that is, Yui ∼ Poisson(

∑
j ∈E uiej ).

Speci�cally, a Poisson variable is commonly known as naturally expressing the number of events
occurring in a �xed interval of time or space. In other words, Yui can naturally capture the budget
of events in which the user ui can participate given his/her limited spare time. As a consequence,
unobserved data can be partially explained by Poisson factorization as that the user does not have
su�cient time to participate in an event rather than that he/she dislikes the event. Second, Poisson
factorization automatically adapts the e�ect of zero entries. Such property captures a more realistic
consideration that no participation of an event by a user may not indicate dissatisfaction. An
illustration is given as follows. The probability thatyui ,ej is generated is denoted as p(yui ,ej |ui , ej ) =
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(uiej )
yui ,ej exp{−uiej }/yui ,ej !. Recall the facts that 0! = 1 and (uiej )0 = 1. When yui ,ej equals to zero,

p(yui ,ej = 0|ui , ej ) = exp{−uiej }, which implies that the e�ect of yui ,ej is automatically reduced.
Besides making recommendation, Poisson factorization can be employed as an alternative text

topic modeling to Latent Dirichlet Allocation (LDA) [3] . Similarly to LDA, it can also capture latent
topics of documents, which are represented by a distribution over words. Gapalan et al. [9] build a
Poisson factorization model for capturing the topics of documents and make recommendations
simultaneously.

3 BACKGROUND AND PROBLEM DEFINITION
We investigate the problem of event recommendation in EBSNs with the consideration of existing
participants of events. We conduct a preliminary investigation in our real-world EBSN dataset
corresponding to Los Angeles obtaining some insights on the in�uence of existing participants. We
extract all the pairs of users < ua ,ub >, where the user ua and the user ub ever participate at least
one event together, and ua indicates his/her willingness via RSVP to participate before ub does. We
examine the in�uence probability calculated as the probability that the user ua in�uences the user
ub to participate in an event. Then the in�uence probability can be estimated as the proportions
of the number of events that the user ub participated after the user ua did, among the number of
events that ub had participated. Figure 1 depicts the proportion of the user-pairs with in�uence
probability in di�erent ranges. It can be observed from the �gure that 26.6% of the user-pairs have
in�uence probability larger than 0.4, which implies that existing participants can be exploited to
improve the performance of an event recommendation model. Note that we remove the cases that
some users only participate one event. Moreover, our proposed model does not employ in�uence
probability de�ned by this simple statistics. Instead, our model considers participant in�uence via
a more advanced paradigm based on Poisson factorization.

We present a formal problem de�nition as follows. The problem involves the following elements:
event set E, user set U , location set L, and group set G. Each event e ∈ E is associated with the
context information including the event location l ∈ L, the event group д ∈ G, and the textual
description of the event. In many EBSNs, users sharing similar interest form a group, and events
can be published under the group. Consequently, each event e is always associated with a group д.
Each event e is also associated with a list of existing RSVPs, indicating who has expressed his/her
willingness to participate in the event and the time of the RSVP. All the users can view the context
information and current RSVPs of an event by which they are potentially a�ected when deciding
whether to participate. We refer to such consideration as participant in�uence. Similar to the
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Table 1. Description of notations

Notation Description
< ua ,up , e > A instance of participant in�uence, where the user up occurs after the user ua

in the event e
E, ei The set of events and the ith instance of event in E
L, lj The set of locations and the jth instance of location in L
G, дm The set of groups and themth instance of group in G

We , wen The set of words in the text descriptions of event e and the nth instance of word
inWe

Z Number of latent topics / Dimension of topic factor
K Number of latent in�uence facets / Dimension of in�uence factor
θau1 The active in�uence factor of the user u1
θ
p
u2 The passive in�uence factor of the user u2

θe , θl , θд The in�uence factors of the event e , the location l , and the group д respectively
ηe , τl ,ψд The topic distributions of the event e , the location l , and the group д respectively

ηbe The topic distribution of the background content for the event e
Cew The counts of the word w in the text descriptions of the event e
ϕz The distribution over words for the topic z

PI eiu1,u2 The strength of participant in�uence for the instance < u1,u2, ei >

PI
lj
u1,u2 The strength of participant in�uence for the instance < u1,u2, lj >

PI
дm
u1,u2 The strength of participant in�uence for the instance < u1,u2,дm >

De
u1,u2 The number of times that the user u1 participates the event e before the user u2.

D
д
u1,u2 The number of times that the user u1 participates the events held by the group д

before the user u2
Dl
u1,u2 The number of times that the user u1 participates the events held at the location l

before the user u2
Nдe The number of times that the event e is held by the group д
Nle The number of times that the event e is held at the location l

common event recommendation task, the aim is to recommend events given a particular user taking
into account of both the existing participants and the context information.

4 PARTICIPANT INFLUENCE
4.1 Basic Model
In our proposed model, we represent an instance of participant in�uence with three components
as a tuple < ua ,up , e >3. This tuple denotes the observation that the user ua in�uences the user
up ’s decision to participate in the event e . In other words, the user up is aware of the fact that ua is
already in the participant list of this event e when the user up decides to participate in the event e .
To model the participant in�uence, it is not e�ective to employ a fully parameterized model by
which di�erent speci�c parameters are designed for di�erent tuples, i.e. di�erent combinations
of the user ua , the user up and the event e . Such fully parameterized model su�ers from the data
sparsity issue in practice. Moreover, it cannot be generalized to infer the participant in�uence
between two users who have never appeared simultaneously in an observed historical set of tuples.

3The superscript “a" denotes “active" and “p" denotes “passive".
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Hence we design a latent factor model to capture the participant in�uence regarding a speci�c
tuple. Latent factor models [13] have been developed to tackle various recommendation problems.

We design a latent factor for ua , up , and e , denoted as θau , θpu and θe respectively. Note that
each user is associated with two latent factors θau and θpu . θau captures how the user u in�uences
others while θpu captures how he/she is in�uenced by others. The intuition is that how much users
in�uence others and get in�uenced by others are not exactly the same. Each latent factor is a
K-dimensional vector. We decompose the full participant in�uence into K latent in�uence facets,
each corresponding to one dimension. As a consequence, each dimension in the latent factor θau
captures the strength that the useru in�uences others for the corresponding facet, denoted as latent
active in�uence θau,1:K . Similarly, each dimension in the latent factor θpu captures the likelihood that
the user u is in�uenced by others, denoted as latent passive in�uence θpu,1:K . Besides the factors
associated with each user, we also design a latent factor for each event, denoted as a K-dimensional
vector θe . Each dimension in θe captures the degree that participant in�uence between two users
will take e�ect regarding this event e for this particular facet. For example, a soccer expert is more
likely to in�uence a soccer learner on a Soccer event, than other types of events such as Basketball
events.

Let PI eua,up denote the strength of participant in�uence regarding the tuple < ua ,up , e >. Hence
PIEU a,U p can be treated as a 3-way tensor. Each entry is jointly decided by three latent factors
< θau ,θ

p
u ,θe >. PI eua,up captures how likely the participation of the user ua will result in the

participation of the user up when the target event is e . With tensor factorization technique, the
entry PI eu1,u2 in this tensor can be calculated as PI eu1,u2 = θ

a
u1 ⊗θ

p
u2 ⊗θe . Interestingly, since the tensor

in our EBSN datasets is sparse, we can simplify the tensor factorization as pair-wise interactions
between these involved factors [33] as shown in Equation 1.

PI eu1,u2 = θ
a
u1θ

p
u2 + θeθ

a
u1 + θeθ

p
u2 (1)

In this formulation, the direct interaction between the user u2 and the event e is also modeled as
θeθ

p
u2 without θu1 . It implies that the proposed participant in�uence modeling can be regarded as a

more general model than typical existing methods. Typical methods can be regarded as a special
case that only considers the event e and the target user u2.

4.2 Incorporating Event Topics
Topic modeling algorithms [2] automatically discover a set of “topics" from a large collection of
documents. Each topic is represented as a distribution over words that describe the corresponding
topic. Topic models discover interpretable topics/themes for each document, which can be utilized
for tasks such as document classi�cation, document labeling, information retrieval, and so on. In
our proposed model, we discover latent event topics from the text descriptions of events so as to
provide a semantically interpretable latent structure for inferring participant in�uence between two
users. Besides, by leveraging event topics, our proposed model is able to recommend both existing
or newly created events. The topics can be further utilized to make explainable recommendations.

To incorporate event topics into our model, we augment the latent factors denoted in Equation 1
by encoding topic information into the event latent factors. Let ηe denote the topic distribution of
the event e , which is represented by a weighted distribution over latent topics. For the event e , we
concatenate the topic distribution ηe and the original event latent factor θe to obtain a new event
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factor θ̃e , denoted as a (Z + K)-dimensional vector in Equation 2.

θ̃e = (ηe1,ηe2, ...,ηez , ...,ηeZ ,︸                        ︷︷                        ︸
topic distr ibution

θe1,θe2, ...,θek , ...,θeK︸                       ︷︷                       ︸
inf luence f acets

) (2)

where Z is the number of latent event topics and K is the number of latent in�uence facets. ηe is
embedded into the �rst Z dimensions and the original event latent factor θe is embedded in the
remaining K dimensions. We describe how the event topic distribution ηe is learned in Section
4.4. Accordingly, we augment the active participant in�uence factor θau and passive participant
in�uence factor θpu to (Z+K)-dimensional latent factor as well. The �rst Z dimensions of θau and θpu
capture the association between topics and participant in�uence. Speci�cally, the z-th dimension
of θau captures the degree that the user u will in�uence others to participate in an event related to
the z-th topic. Similarly, the entries in θpu capture the degree that the user is in�uenced by others
for the corresponding topics. Then Equation 1 is re�ned to Equation 3.

PI eu1,u2 =θ
a
u1θ

p
u2 + θ̃eθ

a
u1 + θ̃eθ

p
u2

=

Z+K∑
d=1
(θau1,dθ

p
u2,d
+ θ̃e,dθ

a
u1,d
+ θ̃e,dθ

p
u2,d
)

(3)

We can also rewrite the result of Equation 3 into another form as shown in Equation 4. The �rst
term in the right hand side is the strength of participant in�uence regarding event topic distribution,
while the second term corresponds to event in�uence facets. Hence concatenating two factors has
a similar e�ect as treating them as two separate factors with learning a joint representation in
factorization models.

Z+K∑
d=1
(θau1,dθ

p
u2,d
+ θ̃e,dθ

a
u1,d
+ θ̃e,dθ

p
u2,d
)

=

Z∑
d=1
(θau1,dθ

p
u2,d
+ ηe,dθ

a
u1,d
+ ηe,dθ

p
u2,d
) +

K∑
d=1
(θau1,Z+dθ

p
u2,Z+d

+ θe,dθ
a
u1,Z+d

+ θe,dθ
p
u2,Z+d

)

(4)

4.3 Modeling Observations with Participant Influence
Let De

u1,u2 be the number of times that the user u1 participates the event e before the user u2. In our
modeling framework, the observed data De

u1,u2 can be viewed as the result of generating data from
the participant in�uence PI eu1,u2 using Equation 3. Intuitively, stronger participant in�uence from
the user u1 to the user u2 regarding the event e will generate larger De

u1,u2 .
We employ Poisson distribution to model the generation of the observed data associated with

the corresponding participant in�uence as shown in Equation 5.

P(De
u1,u2 ; PI

e
u1,u2 ) = (PI

e
u1,u2 )

De
u1,u2 exp(−PI eu1,u2 )/(D

e
u1,u2 )! (5)

where P denotes Poisson distribution and PI eu1,u2 refers to the participant in�uence de�ned in
Equation 3. Participant in�uence acts as the shape parameters of the Poisson distribution governing
the generation of the observed data De

u1,u2 . To smooth the latent factors θau1 , θ
p
u2 , and θe , we apply a

Gamma prior with parameters λa · and λb · to each latent factor described above to avoid over-�tting,
which is also conjugate to Poisson distribution. The proposed model can be viewed as a Probabilistic
non-negative matrix factorization model [34] with Poisson distribution, i.e., Poisson factorization
model (PFM). As discussed in [8], PFM enjoys several advantages over the well-known Gaussian
factorization model (GFM). Section 1 has presented the advantages.

, Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:10 Yi Liao, Wai Lam, Lidong Bing, and Xin Shen

4.4 Modeling Event Topics
Let V denote a prede�ned vocabulary set that is composed of the words in the event descriptions
after some preprocessing. The size of the vocabulary set V is denoted as |V |. Let ϕz denote the
distribution over the words in the set V for the topic z. The count of each word in the event
distribution is generated by both the word distributions ϕz of the topics and the topic distribution
ηe of the events. However, the text descriptions of the events may contain many background
words that is unrelated to the topics of events. For example, the event organizer may write some
content encouraging users to participate in the event. To better capture the topics of events while
reducing the e�ect of background words, we treat the text descriptions of events as a combination
of event topical content and background content. Note that the background words are di�erent
from stopwords which are usually removed during document preprocessing. For example, the word
"invite" in the sentence "we are pleased to invite you for a special beach party" commonly appears
in many event descriptions though this word seldom conveys any information about the topic of
the corresponding event. Such kind of words are captured as background content. By reducing
e�ect of background words, the topics of events can be captured more accurately.

Speci�cally, we design a variable ηbe to capture the topic distribution for the background content
in event descriptions on the EBSN. The sum of these two factors, represented by ηe + ηbe , captures
the topic distribution of the whole content in the event descriptions. Then the count Cew for a
word w in the description of the event e is generated based on Equation 6.

Cew ∼ P(ϕ
T
1:Z ,w (ηe + η

b
e ))) (6)

4.5 Group Modeling for Participant Influence
As a feature of typical EBSNs, the group information provides additional clues to recommend
events since each event is associated with a host group. Hence our proposed framework also models
the group to which the event belongs to make better recommendations. We intend to capture the
participant in�uence between users regarding groups using the same form as in Equation 3. Similar
to event modeling as described in Sections 4.1 and 4.2, we design a group latent factor θд for each
group д. Then the topics of groupψд is distilled to generate a new group factor θ̃д using the same
formulation as in Equation 2. We de�ne the calculation of participant in�uence between the user
u1 and the user u2 regarding the group д in Equation 7.

PI
д
u1,u2 = θ

д
u1θ

p
u2 + θ̃дθ

a
u1 + θ̃дθ

p
u2 (7)

where θau1 refers to the active in�uence factor and θpu2 refers to the passive in�uence factor that are
described previously. We describe how the proposed model learns the topics of the groupψд below.

We characterize the topics of groupsψд as a distribution over latent event topics by analyzing the
relations between groups and events. To �tψд into the calculation of participant in�uence denoted
in Equation 7, we de�neψд as a Z -dimensional vector. Moreover, we employ collaborative Poisson
matrix factorization to guarantee that the topics of the group ψд is in the same latent semantic
space with the topic distribution ηe of events. Speci�cally, we �t the number of times that the event
e is held by the group д using Equation 8.

Nдe ∼ P(ψ
T
д ηe ) (8)

where P is Poisson distribution with the shape parameter as the inner-product ofψд and ηe .
We employ Poisson distribution to generate the observed data for groups using the same form

of Equation 5. Accordingly, Equation 9 models the generation of the observations that the total
number of events hosted in this group, where the user u1 participated before the user u2 did.
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P(D
д
u1,u2 ; PI

д
u1,u2 ) = (PI

д
u1,u2 )

Dд
u1,u2 exp(−PIдu1,u2 )/(D

д
u1,u2 )! (9)

4.6 Geographic Location Modeling for Participant Influence
In addition to the host group, we also exploit the locations of events for enhancing the modeling of
participant in�uence. Similar to group modeling for participant in�uence, we design the formula in
Equation 10 to capture the participant in�uence between users regarding a particular location l .
The corresponding observations generated with Poisson distribution are the total number of events
hosted in this location l where the user u1 indicated his/her willingness to participate before the
user u2 did. The observations are modeled using Equation 11

PI lu1,u2 = θ
l
u1θ

l
u2 + θ̃lθ

a
u1 + θ̃lθ

p
u2 (10)

P(Dl
u1,u2 ; PI

l
u1,u2 ) = (PI

l
u1,u2 )

Dl
u1,u2 exp(−PI lu1,u2 )/(D

l
u1,u2 )! (11)

To capture the topics τl of the location l , we model the number of times that the location l hosts
the event e , denoted by Nle , using Equation 12.

Nel ∼ P(τ
T
l ηe ) (12)

4.7 Generative Process
We depict the graphical model of the complete framework in Figure 2, with the generative process
described as follows. The notations of the symbols in our proposed model are listed in Table 1. Steps
(1), (2), (3), (6) and (7) refer to participant in�uence modeling and event topic modeling described
in Section 4.1-4.4. Steps (4), (6) and (8) refer to the group modeling described in Section 4.5. Steps
(5), (6) and (9) refer to the geographic location modeling in Section 4.6.

(1) For each user u,
(a) draw latent active in�uence factor

θaud ∼ Gamma(λaua , λ
a
ub ) for the d-th dimension of θau

(b) draw latent passive in�uence factor
θ
p
ud ∼ Gamma(λ

p
ua , λ

p
ub ) for the d-th dimension of θpu

(2) For each word w , draw topic intensity ϕwz ∼ Gamma(λta , λtb )
(3) For each event e ,

(a) draw in�uence latent factor θek ∼ Gamma(λea , λeb )
(b) draw topic distribution ηez ∼ Gamma(λtea , λ

t
eb )

(c) Draw topic distribution of background content ηbez ∼ Gamma(λbea , λ
b
eb )

(d) For each word w in the event description,
(i) draw Cew ∼ P(ϕ

T (ηe + η
b
e ))

(4) For each group д,
(a) draw in�uence latent factor θдk ∼ Gamma(λдa , λдb )
(b) drawψдz ∼ Gamma(λдa , λдb )
(c) draw Nдe ∼ P(ψд ,ηe )

(5) For each location l ,
(a) draw in�uence latent factor θlk ∼ Gamma(λla , λlb )
(b) draw τlz ∼ Gamma(λla , λlb )
(c) draw Nle ∼ P(τl ,ηe )

(6) Manipulate the factors θ̃e , θ̃д , and θ̃l using the method in Equation 2
(7) For each identical tuple < u1,u2, e >
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(a) calculate the associated participant in�uence PI eu1,u2 using Equation 3
(b) draw the count De

u1,u2 ∼ P(D
e
u1,u2 ; PI

e
u1,u2 ), denoted in Equation 5

(8) For each identical tuple < u1,u2,д >
(a) calculate the associated participant in�uence PIдu1,u2 using Equation 3
(b) draw the count Dд

u1,u2 ∼ P(D
д
u1,u2 ; PI

д
u1,u2 ), denoted in Equation 9

(9) For each identical tuple < u1,u2, l >
(a) calculate the associated participant in�uence PI lu1,u2 using Equation 3
(b) draw the count Dl

u1,u2 ∼ P(D
l
u1,u2 ; PI

l
u1,u2 ), denoted in Equation 11

5 PARAMETER INFERENCE
5.1 Inference Overview
The goal of the inference procedure is to infer the parameters Θ = {θau1 ,θ

p
u2 ,θe ,θl ,θд ,ηe ,η

b ,ψд ,τl },
given the observations O = {De

u1,u2 ,D
д
u1,u2 ,D

l
u1,u2 ,Nдe ,Nle }. We suppress the hyperparameters in

the Gamma distributions, namely, λa and λb , for simplicity. The posterior distribution of latent
factors can be expressed as:

p(Θ|O) =
p(O |Θ)p(Θ)

p(O)
(13)

The denominator is the marginal probability of all the observed data de�ned as:

P(O) =

|E |∏
k=1

|U |2∏ ∭
p(De

u1,u2 ; PI
e
u1,u2 )p(Θ)

|L |∏
m=1

|U |2∏ ∭
p(D

д
u1,u2 ; PI

д
u1,u2 )p(Θ)

|G |∏
k=1

|U |2∏ ∭
p(Dl

u1,u2 ; PI
l
u1,u2 )p(Θ)

|W |∏
n=1

|E |∏
e ∈E

∬
p(Cwn ; (ηe + ηb )Tϕ)p(Θ)

|G |∏ |E |∏∬
p(Nдe ;ηT τl )p(Θ)

|L |∏ |E |∏∬
p(Nle ;ηT τl )p(Θ)

(14)

Unfortunately, the probability expressed in Equation 14 is intractable due to the coupling of
multiple factors in the integration. Inspired by [43] and [9], we develop an inference method
based on variational inference algorithm [12]. The general idea of variational inference is to
�nd a distribution to approximate the intractable posterior distribution. Speci�cally, a variational
distribution q(Θ) is learned such that the KL divergence to the posterior distribution expressed in
Equation 20 is minimized.

5.2 Auxiliary Variables
We add auxiliary variables to facilitate the inference. Recall that K denotes the dimension of the
latent in�uence factors and Z denotes the number of the latent event topics. The auxiliary variables
are designed for the inner-product of any pair of factors. For example, for the pair of factors
θau1,1:Z and ηe for the user u1 and the event e respectively, we design Z latent auxiliary variables
ξ au1e,z ∼ Poisson(θau1,zηe,z ). We list all the auxiliary variables and the corresponding factor pairs in
Table 2.

A set of co-related auxiliary variables should satisfy a constraint. There is a constraint for each
Poisson component in the original model. For example, the constraint for the Poisson component
depicted in Equation 5 is designed as:

De
u1,u2 =

∑
z

(ξ au1e,z + ξ
p
u2e,z + χ

1
u1u2,z ) +

∑
k

(αau1e,k + α
p
u2e,k

+ χ 2u1u2,k ) (15)

The constraint for the Nдe =
∑

z ϵдe,z is designed for the Poisson component in Equation 8.
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Table 2. Auxiliary variables and corresponding factor pairs

auxiliary variables αa αp ξ a ξp βa βp σa σp χ 1

factor pairs θauθe θ
p
uθe θauηe θ

p
uηe θauθд θauθд θauψд θ

p
uψд θau,1:Zθ

p
u,1:Z

auxiliary variables γ a γ p πa πp ρ ϱ ζ ϵ χ 2

factor pairs θauθl θ
p
uθl θauτl θ

p
uτl ηeϕw ηbeϕw ηeτl ηeψд θau,1:Kθ

p
u,1:K

θau θ
p
u

De

ηe

θe
Cw

ϕ

Nдeψд

Dдθд

Nle τl

Dl θl

ηbe

|U |

|E |

|G | |L |

Fig. 2. Graphical model for our Framework
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5.3 Conditional Distributions
We derive the complete conditional distribution for each latent variable, including both original
variables and auxiliary variables. First, we derive the conditional distribution for original latent
variables. For example, let us consider the location factor. The complete conditional distribution for
the k-th dimension of the factor θe,k , given the other latent variables is formulated as:

p(θe,k |Θ¬θe,k ,O)

∝ θλea−1e,k exp(−λebθe,k )
∏
u1,u2

(θe,kθ
a
u1,k
)
αau2e,k exp(−θe,kθau1,k )

∏
u1,u2

(θe,kθ
p
u2,k
)
αpu2e,k

∏
exp(−θe,kθ

p
u2,k
)

∝ θ
λea−1+

∑
u1

∑
u2 (α

a
ae,k+α

p
ue,k )

e,k exp(−(λeb +
∑
u1

∑
u2

(θau1,k
+ θ

p
u2,k
))θei )

= Gamma(λea +
∑
u1

∑
u2

(αaae,k + α
p
u2e,k

), λeb +
∑
u1

∑
u2

(θau1,k
+ θ

p
u2,k
))

(16)

It can be observed from Equation 16 that a sum of independent Poisson random variables is itself a
Poisson with the rate equal to the sum of the rates. Hence the new latent variables preserve the
marginal distribution of the observed data O .

Then we derive the conditional distribution for auxiliary variables. For example, the variables in-
volved in Equation 3 include topic factors {θau1,1:Z ,θ

p
u2,1:Z ,ηe } and in�uence factors {θau1,1:K ,θ

p
u2,1:K ,θe }.

Let
yeu1,u2 = (α

a
u1e,1:Z ,α

p
u2e,1:Z , ξ

a
u1e,1:K , ξ

p
u2e,1:K , χu1u2,1:Z+K ) (17)

where yeu1,u2 denotes a variable representing the concatenation of the auxiliary variables associated
with the variable PI eu1,u2 . The conditional distribution of yeu1,u2 can be formulated as in Equation 18.

p(y |O,Θ) =
p(y,Y = De

u1,u2 )

p(Y = De
u1,u2 )

=
p(y)p(De

u1,u2 |y)

p(De
u1,u2 )

(18)

Recall that the sum of Poisson distributions preserves the marginal distributions, from which we
can obtain p(De

u1,u2 |y) = 1 given that De
u1,u2 =

∑
i yi . Furthermore, p(y) and p(De

u1,u2 ) are computed
by Equations 19 and 20 respectively.

p(y) =p(αau1e,1:Z ,α
p
u2e,1:Z , ξ

a
u1e,1:K , ξ

p
u2e,1:K , χu1u2,1:Z+K )

= exp(−De
u1,u2 )

∏
z

(ηau1e,zθ
a
u1e,z )

ξ au1e,z (η
p
u2e,zθ

p
u2e,z )

ξ pu2e,z (θau1u2,z ,θ
p
u1u2,z )

χu1u2,z∏
k

(θe,kθ
a
u1e,k
)
αaue,k (θe,kθ

p
u2e,k
)
αpue,k (θau1u2,k ,θ

p
u1u2,k

)χu1u2,k

/
∏
z

(ξ au1e,z !)(ξ
p
u2e,z !)(χu1u2,z !)

∏
k

(αaue,k !)(α
p
ue,k !)(χu1u2,k !)

(19)

p(De
u1u2 ) =exp(−D

e
u1u2 )[

∑
z

(ηau1e,zθ
a
u1e,z + η

p
u2e,zθ

p
u2e,z + θ

a
u1u2,z ,θ

p
u1u2,z )

+
∑
k

(θe,kθ
a
u1e,k

+ θe,kθ
p
u2e,k

+ θau1u2,k ,θ
p
u1u2,k

)]
De
u1u2 /De

u1u2 !
(20)

With the above equations, we can easily observe that the conditional probability of the auxiliary
variables p(y |O,Θ) = p(y)/p(De

u1u2 ) is a Multinomial distribution. The parameter of the Multinomial
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distribution for each auxiliary variable is the product of two associated original variables. The
Multinomia probability can be interpreted as:

p(αau1e,1:K ,α
p
u2e,1:K , ξ

a
u1,1:Z , ξ

p
u2,1:Z , χu1u2,1:Z+K |O,Θ)

=Mult(αau1e,1:K ,α
p
u2e,1:K , ξ

a
u1,1:Z , ξ

p
u2,1:Z , χu1u2,1:Z+K ;θ

a
u1,1:Kθe ,θ

p
u2,1:Kθe ,θ

a
u1,1:Z ,θ

p
u2,1:Zηe ,θ

a
u1θ

p
u2 )

(21)

We show all the complete conditionals in Table 3. The parameters for the Multinomial distribution
are depicted as parameters in the variational family form.

5.4 Coordinate Updates
We de�ne a mean-�eld variational family where all the variables, including auxiliary variables, are
independent variables with distributions shown in Table 3. Note that we optimize the variational
parameters. Each variational parameter is updated while the other variables are �xed. For example,
the update for the variational parameters for the event participant in�uence factor θe,k is formulated
as:

θ̂
shp
e,k = E(λea +

∑
u1

∑
u2

(αau1e,k + α
p
u2e,k
)) (22)

θ̂ r tee,k = E(λeb +
∑
u1

∑
u2

(θau1,k + θ
p
u2,k
)) (23)

where E(·) denotes the expectation. Recall that the value of variables αau1e,k and αpu2e,k are governed
by Multinomial distribution as denoted in Equation 21. Consequently, we derive E(αau1e,k ) =
De
u1,u2κ

De

u1e,k1
, where k1 is the index for the corresponding probability. Regarding the expectation of

θau1,k and θpu2,k , we employ the knowledge that the expectation of Gamma variable is the ratio of the

shape parameter and the rate parameter, e.g. E(θau1,k ) = θ
ashp
u1,k
/θar teu1,k

. By calculating the expectation
value for each element, we derive the update form as:

θ̂
shp
e,k = λea +

∑
u1

De
u1,u2κ

De

k1 +
∑
u2

De
u1,u2κ

De

k2 (24)

θ̂ r tee,k = λeb +
∑
u1

θ
ashp
u1,k

θar teu1,k
+
∑
u2

θ
pshp
u2,k

θ
pr te
u2,k

(25)

Another type of parameters that we need to update is the variational parameters of Multinomial
variables. Similarly, they are updated via the expectation values. Note that the variational parameters
of Multinomial variables are represented by Gamma variables. The expectation of the logarithm of
a Gamma variable is, for example, E(logθau,k ) = Ψ(θ

ashp
u,k ) − logθ

ar te
u,k , where Ψ(·) is the digamma

function. Hence we update one entry in κDe , one of the Multinomial parameters, as:

κD
e
(αau1e,k ) ∝ exp(Ψ(θashpu1,k

) + Ψ(θ
shp
e,k ) − logθ

ashp
u1,k

θ
shp
e,k ) (26)

The entry corresponds to the variable αau1e,k . The algorithm for the parameter inference is described
in Table 4.

6 RECOMMENDATION PROCEDURE
6.1 Participant Influence Calculation for Recommendation
Given a user u and a set of candidate events that are associated with some existing participants, we
intend to rank the candidate events and recommend some top events to the user. Using the inference
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Table 3. latent variables and complete conditionals

Variable Type Complete conditional Parameters (V)
θau,k Gamma λaua +

∑
u,v χ

2
uv,k +

∑
e α

a
ue,k +

∑
д β

a
uд,k +

∑
l γ

a
ul,k θ

ashp
u,k ,θ

ar te
u,k

λ
p
ub +

∑
u,v θ

p
v,k +

∑
e θe,k +

∑
д θд,k +

∑
l θl,k

θ
p
u,k Gamma λ

p
ua +

∑
u,v χ

2
uv,k +

∑
e α

p
ue,k +

∑
д β

p
uд,k +

∑
l γ

p
ul,k θ

pshp
u,k ,θ

pr te
u,k

λaub +
∑
u,v θ

a
v,k +

∑
e θe,k +

∑
д θд,k +

∑
l θl,k

θau,z Gamma λaua +
∑
u,v χ

1
uv,z +

∑
e ξ

a
ue,z +

∑
д σ

a
uд,z +

∑
l π

a
ul,z θ

ashp
u,z ,θ

ar te
u,z

λ
p
ub +

∑
u,v θ

p
v,z +

∑
e ηe,z +

∑
дψд,z +

∑
l τl,z

θ
p
u,z Gamma λ

p
ua +

∑
u,v χ

2
uv,z +

∑
e ξ

p
ue,z +

∑
д σ

p
uд,z +

∑
l π

p
ul,z θ

pshp
u,z ,θ

pr te
u,z

λaub +
∑
u,v θ

a
v,z +

∑
e ηe,z +

∑
дψд,z +

∑
l τl,z

θe,k Gamma λla +
∑
u1
∑
u2 (α

a
u1e,k

+ α
p
u2e,k
), θ

shp
e,k ,θ

r te
e,k

λeb +
∑
u1
∑
u2 (θ

a
u1,k
+ θ

p
u2,k
)

θд,k Gamma λдa +
∑
u1
∑
u2 (β

a
u1д,k

+ β
p
u2д,k
), θ

shp
д,k ,θ

r te
д,k

λдb +
∑
u1
∑
u2 (θ

a
u1,k
+ θ

p
u2,k
)

θl,k Gamma λla +
∑
u1
∑
u2 (γ

a
u1l,k
+ γ

p
u2l,k
), θ

shp
l,k ,θ

r te
l,k

λlb +
∑
u1
∑
u2 (θ

a
u1,k
+ θ

p
u2,k
)

ηe,z Gamma λtea +
∑
w ρwe,z +

∑
д ϵдe,z +

∑
l ζle,z +

∑
u1
∑
u2 (ξ

a
u1e,z + ξ

p
u2e,z ), η

shp
e,z ,η

r te
e,z

λteb +
∑
w ϕw,z +

∑
дψд,z +

∑
l τl,z +

∑
u1
∑
u2 (θ

a
u1,k
+ θ

p
u2,k
)

ψд,z Gamma λtдa +
∑

e ϵдe,z +
∑
u1
∑
u2 (ρ

a
u1e,z + ρ

p
u2e,z ), ψ

shp
д,z ,ψ

r te
д,z

λteb +
∑

e ηe,z +
∑
u1
∑
u2 (θ

a
u1,k
+ θ

p
u2,k
)

τl,z Gamma λtla +
∑

e ζle,z +
∑
u1
∑
u2 (π

a
u1e,z + π

p
u2e,z ), τ

shp
l,z ,τ

r te
l,z

λtlb +
∑

e ηe,z +
∑
u1
∑
u2 (θ

a
u1,k
+ θ

p
u2,k
)

αa

Mult

logθau,1:K + logθe

κDe

αp logθpu,1:K + logθe
χ 1 logθau,1:K + logθ

p
u,1:K

ξ a logθau1,1:Z + logηe
ξp logθpu + logηe
χ 2 logθau,1:Z + logθ

p
u,1:Z

βa

Mult

logθau,1:K + logθд

κDд
βp logθpu,1:K + logθд
σa logθau,1:Z + logψд
σp logθpu,1:Z + logψд
γ a

Mult

logθau,1:K + logθl

κDl
γ p logθpu,1:K + logθl
πa logθau,1:Z + logτl
πp logθpu,1:Z + logτl
ρ Mult logηe + logϕw κwϱ logηb + logϕw
ϵ Mult logηe + logψд κe
ς Mult logηe + logτl κl
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Table 4. Inference algorithm

Initialization:
1: Build user-event matrix, where the entries denote the occurrences that

a user participate in the event. Employ Matrix Factorization (MF) method to
obtain factors θe and user factors θa |pu .
2.Set group factors θд and location factor θl as the average of factors of all

the related events.
3: Employ LDA to obtain the initial settings of latent event topics, obtaining

the factors ηe and ϕ.
4: Set the auxiliary variables as using the expectation of the corresponding

Multinomial Distribution. For example, αau1e,k = θ
a
u1,k

θe/a, where a is the normal-
ization value for the distribution.
Repeat:
5: For k = {1,2,...,K}
a. Update the variational parameters for the original variables related to

in�uence factors following Equations 24 and 25
6: For z = {1,2,...,Z}
a. Update the variational parameters for the original variables related to

latent topics following Equation 24 and 25
7: For k = {1,2,...,K}
a. Update the variational parameters for the auxiliary variables related to

in�uence factors following Equations 26
5: For z = {1,2,...,Z}
a. Update the variational parameters for the auxiliary variables related to

latent topics following Equation 26
Until convergence

algorithm in Section 5, we are able to learn from the observed historical data the latent factors for
users, events, groups, and locations, as well as the latent topics of events, groups and locations.
Let e denote one of the candidate events, which is associated with the group дe and the location l .
For each existing participant v in the event e , we compute the strength of participant in�uence to
the user u. Speci�cally, we �rst compute PI ev,u , PIдev,u , and PI levu using Equation 3. Then an overall
participant in�uence PIu,v,e is calculated by summing up the above three types of participant
in�uence as depicted in Equation 27.

PIu1u2,e = λ1PI
e
u1,u2 + λ2PI

дe
u1,u2 + λ3PI

le
u1,u2 (27)

where λ1, λ2 and λ3 are the weights that need to be learned. With the calculated participant in�uence
strength, we compute the preference score S(u, e) by taking the average of the participant in�uence
for all the existing participants as shown in Equation 28.

S(u, e) =
1
|Ve |

Ve∑
v

PIv,u,e (28)

where Ve is the set of existing participants in the event e .
We rank all the candidate events by the preference score S(u, e), and top-k events are selected as

recommendations to the user u.
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6.2 Weight Learning
We design a method analogously to the BPR optimization criterion [32] for learning the weights
λs, which correspond to the participant in�uence regarding di�erent aspects. To achieve this, we
employ a regression model. Given a useru, we compute the preference for all events by Equation 28.
Then we select the preference for any event pair, one of which is participated by the user, denoted
as eu,y and the other is not, denoted as eu,n . We design the regression ranking model as:

R(u, eu,y , eu,n) =
1

1 + exp(−(S(u, eu,y ) − S(u, eu,n)))
(29)

Then we �nd the optimal weights λ by maximizing the following log likelihood function:

L = log
∏
u ∈U

∏
eu,y

∏
eu,n

R(u, eu,y , eu,n) (30)

The optimization for Equation 30 can be achieved by the standard gradient-based method. For event
recommendation given a user, we compute the score for all the candidate events with Equation 28,
incorporating the learned weights. Then the candidate events are ranked by the computed scores.
Events with higher scores are recommended to the user.

6.3 Handling Cold-start Situations
Event recommendation becomes a cold-start problem when the candidate event is a newly created
event that is not observed in the historical data. Indeed this case is common in EBSN sites since most
events are newly created events. Our proposed framework is able to handle this kind of cold-start
situations since it considers not only the topics of the event, but also the group and location of
the event. Precisely, our proposed model is able to infer the latent topics from the collection of
text descriptions of the new events. For modeling new events in the candidate events, we estimate
the in�uence factor by averaging all the in�uence factors of all the events in the same group.
To obtain the latent topics of this new event, we apply a topic modeling method.Furthermore,
groups and locations are not new in most newly created events, which can be represented by
the parameters learned by our model. Consequently, our proposed model is able to compute the
participant in�uence given a new event.

7 EXPERIMENTS
7.1 Datasets and Evaluation Metrics

7.1.1 Data Collection. We prepare our raw data from Meetup.com, a popular EBSN website.
Besides Meetup, there are several EBSN websites such as DoubanEvent and FacebookEvent. Our
problem settings apply to most EBSN websites. For example, in DoubanEvent and FacebookEvent
websites, each event is associated with a location and users are able to know who has decided to
participate in an event. Regarding the group settings, the hosts of events on DoubanEvent and
FacebookEvent are certain hub pages that have plenty of followers, which we can treat as a group.
However, among these common EBSNs, only Meetup.com provides the Application Programming
Interface (API) to access the exact time that a user participated in an event. Since the exact time
data is an essential information, we select Meetup.com as a representative of various EBSN websites
to conduct our experiments. All the data are acquired via the o�cial API of Meetup.com. We have
collected the data for four cities, namely, Los Angeles (LA), London (LD), Singapore (SG), and Hong
Kong (HK), ranked by the volume of data. People in these four cities also have di�erent lifestyles.
Speci�cally, for each city, we have obtained the events that have been created between 1st, August
2013 and 1st, August 2015, as well as the location and time that each event was held at. A piece
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Table 5. Statistics of raw data

City LA LD SG HK
Number of Event 228942 109383 26539 18593
Number of User 476782 554044 118875 66136
Number of RSVP 1358494 1066670 253126 143344

Number of Location 26613 19207 5007 3587
Number of Group 7138 7510 2006 1353

Avg. #participant per event 5.93 9.75 9.53 7.71
Avg. #event per location 8.60 5.69 5.30 5.18
Avg. #event per group 32.07 14.56 13.23 13.74

of “yes" RSVP data represents that a user registers, or participates in an event. Three elements
can be extracted from each RSVP, namely, the user ID, the event ID, and the timestamp the user
registered the event, from which we can identify the order the users registered the event. The
API of Meetup.com provides the “create time" and “last modi�ed time" for each RSVP. We choose
“last modi�ed time" as the timestamp of the RSVP since a user may cancel or change his RSVP.
Note that the organizer of an event is regarded as the �rst participant of the event. We collected
all the “yes" RSVPs associated with each event. Some identical events were held several times,
each time with di�erent event ids. We aggregate such events and treat them as a single event. For
example, events held by the same group at the same location with the same title and descriptions
are treated as one event. We remove stopwords and stem the words in the event text descriptions.
We remove events that have more than �fteen participants. The reason is that for events with too
many participants, the possibility of interactions between two users during the events will become
relatively smaller. We notice that more than 90% of the events have less than 15 participants in our
dataset. The statistics of the raw data is depicted in Table 5. The volume of the dataset for each
city shows that Meetup.com is far more popular in LA and LD than in SG and HK. Moreover, the
average number of events held in each group and at each location are twice larger in LA than in
other cities, indicating that events are denser in LA. There are also relatively fewer participants,
which may also be attributed to its denser events. To obtain some insights about user preference on
event locations, we apply K-means clustering on event location to detect regions. Then we observe
that most users are likely to participate in events held in certain one or two regions.

7.1.2 Data Preprocessing. We follow the method in [26] for deriving several datasets for our
experiments from the above raw data. Since each event has its lifetime, i.e. creation time and activity
time, the candidate events to be recommended should only include those which have already been
created, but not yet occurred. Such setup can facilitate a more realistic simulation of the practical
situation. For each city, we derive four datasets named as Part I , I I , I I I , IV . The datasets are created
as follows: We de�ne four time points, simulating the situation that the recommender system is
trying to recommend events at this time point. We generate a dataset for each time point. The events
that are created within 6 months before the time point, as well as the corresponding RSVPs with
timestamps before this particular time point, are treated as the training data of the corresponding
dataset. We further select events which have been created but not yet occurred at this particular
time point, and select the corresponding RSVPs of the events after the time point, to form the data
for testing. Note that the candidate events in our experiments are naturally a mixture of existing
events and new events, which allows our experiments to include the cold-start situations. We
present the statistics of one preprocessed datasets for each city in Table 6. For each city, all the four
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Table 6. Statistics of a particular dataset for each city a�er preprocessing

Dataset LA LD SG HK
Number of Event 35236 17822 5478 4050
Number of User 36615 27571 7140 5104
Number of RSVP 121917 73312 22277 15696

Number of Location 7623 5692 1499 1130
Number of Tuple < ua ,up , e > 329875 235354 88763 61738

Number of Group 4878 3160 852 627
IP>0.44 26.6% 25.2% 25.4% 20.5%

datasets share similar statistical characteristics. We also conduct initial investigation on participant
in�uence using the method described in Section 3 . It shows that all the in�uence probability are
larger than 30% for all the datasets, which implies the existence of participant in�uence.

To evaluate the performance of event recommendation, we employ three evaluation metrics.
The �rst metric is normalized discounted cumulative gain (NDCG) evaluation metric truncated
to the top 10 recommendations, namely, NDCG@10. NDCG is a measure of ranking quality in
information retrieval tasks, which is often used to measure e�ectiveness of web search engine
algorithms. In event recommendation task, it can measure the recommendation quality of an event
for a given user based on its position in the recommendation list. The formulae of NDCG@10 is
described in Equation 31.

NDCG@10 =
DCG@10
IDCG@10

(31)

DCG@10 =
10∑
i=1

2r eli − 1
log2(i + 1)

(32)

where reli ∈ {0, 1} and IDCG@10 is the DCG@10 value of an ideal ranking.
The other evaluation metrics are Precision and Recall, which are not related to the rankings of

recommended events in contrast with the NDCG metric. Pre@N and Rec@N measures the ability
of the recommendation system to recommend events that are �nally selected by the users, where N
is the number of recommended events. G is the number of selected events. SN is the set of overlap
between recommended events and selected events by the user. The formula of Pre@N and Rec@N
are described in Equations 33 and 34 respectively.

Pre@N =
|SN |

N
(33)

Rec@N =
|SN |

G
(34)

7.2 �antitative Evaluation
7.2.1 Experimental Setup. We �x each Gamma shape and rate hyper-parameter to 0.3 except the

shape hyper-parameter for the background topic ηb . We set the shape hyper-parameter of ηb to
0.2. The topic factors of events, η and β , are initialized with LDA [2] on the event descriptions for
each dataset separately. Note that LDA generates distributions over words for the topics, whereas
β , the distribution of words over topics, is computed as the normalized counterpart of the results
generated from LDA. The topics of locations and groups are initialized by minimizing the squared
errors between the observed values and the cosine similarity of topics. We split the dataset into
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60%, 20%, 20% as training, validating, and testing set respectively. The training, validating and
testing dataset are the same for our model and all the comparative methods. We conduct grid search
method on the validation set within the range [10,30,50,70,90] to determine a suitable dimension.

7.2.2 Comparative Methods. We compare the e�ectiveness of our proposed event recommenda-
tion model (PIERT) with three state-of-the-art models as well as our previous model PIER. All the
four models have been reported to achieve better performance than lots of baselines in the event
recommendation task. These comparative models are described below.

Participant In�uence for Event Recommendation (PIER) [20] This is our previous model considering
participant in�uence for event recommendation. The method models the participant in�uence
regarding group, location, time, and words. In contrast with our proposed model, the PIER model is
a simpler model that does not consider latent topics. For PIER model, we use the same parameter
settings and the same validating process as the PIERT model.

Multi-Contextual Learning to Rank (MCLRE) [26] The MCLRE method exploits some contextual
information of the users and events. Several features are distilled from the contextual information,
which are fed into a learning-to-rank algorithm. Speci�cally, four types of contextual information,
namely, the group information of users and events, the textual description of events, the location of
the events, and the time of the event, are utilized to derive the features. Let x denote the feature set
for a user-event pair and let y denote whether the user participates the event (1 for yes and 0 for
no). The goal is to learn the function h(x) such that the implication: h(xi ) > h(x j ) ⇔ yi > yj holds
for any user-event pairs. For MCLRE model, we follow the parameter settings as depicted in [26].
Collective Bayesian Poisson Factorization (CBPF) [43] The CBPF method is a collective matrix

factorization model which takes Bayesian Poisson factorization as its basic unit to model user
responses to events, social relation, and content text separately. An event is represented as a
weighted combination of the organizer, the location, and the textual information. Given a user
and an event, a rating is computed to evaluate the events, based on the multiple types of factors
during training. The factor representation of two users tends to become similar if they are friends.
Since our dataset does not provide the information of friendship, we alternatively treat two users as
friends if they belong to at least one common group. We follow the parameter settings described in
[43]. Besides, we tune the dimension of latent factors in the range [30,50,70,90,120] on the validation
set to determine a suitable dimension.

BMF combining social group in�uence and individual preference (SogBmf) [7] The SogBmf method
designs two types of social relations between two users. The �rst type of relation models the
online relation. Speci�cally, the Jaccard similarity regarding the group membership is computed to
represent the weight between two users. The second relation models the o�ine relation, i.e. a weight
capturing the o�ine event co-participation. Besides the social relations, mixture ratings indicating
individual preference are exploited. Gaussian regularization terms incorporating these relations are
added to the Bayesian Personalized Ranking (BPR) model [32]. We follow the parameter settings
described in [7]. The dimension of latent factors is tuned in the range [30, 50, 70, 90, 120] on the
validation set.

7.2.3 Recommendation Results. We evaluate the e�ectiveness of our model PIERT, PIER, MCLRE,
CBPF and SogBmf in event recommendation with NDCG@10, Pre@10, and Rec@10. The perfor-
mance of each dataset as well as the average of all datasets for each city are depicted in Tables 7,
8, 9 and 10. It can be observed that our proposed models PIERT and the simpli�ed variant PIER
generally outperform MCLRE, CBPF, and SogBmf in all the datasets under all the metrics. Both
PIERT and PIER considers participant in�uence. The results indicate that users are indeed a�ected
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Table 7. Recommendation performance in Los Angeles data. The symbol ∗ and † denotes that PIERT and PIER
is be�er respectively than the comparative models (i.e. SogBmf, CBPF, MCLRE) with statistical significance.
Note that the statistical significance tests are done on each dataset, but not for the “average".

Metrics Dataset Models
SogBmf CBPF MCLRE PIER PIERT

NDCG@10

I 0.2445 0.2430 0.2488 0.2706† 0.2923∗
II 0.2421 0.2427 0.2492 0.2691† 0.2858∗
III 0.2411 0.2413 0.2501 0.2713† 0.2823∗
IV 0.2393 0.2460 0.2525 0.2683† 0.2886∗

average 0.2418 0.2433 0.2494 0.2698 0.2873

Pre@10

I 0.0892 0.0834 0.1093 0.1133 0.1267∗
II 0.0773 0.0945 0.1025 0.1104† 0.1186∗
III 0.0858 0.0962 0.1045 0.1144† 0.1212∗
IV 0.0901 0.0992 0.1033 0.1143† 0.1162∗

average 0.0856 0.0933 0.1049 0.1131 0.1206

Rec@10

I 0.2633 0.2704 0.2805 0.2892† 0.3044∗
II 0.2807 0.2766 0.2797 0.2816 0.3036∗
III 0.2782 0.2715 0.2927 0.2901 0.2971
IV 0.2725 0.2758 0.2876 0.2912 0.2936∗

average 0.2737 0.2736 0.2856 0.2880 0.2996

Table 8. Recommendation performance in London data. The symbol ∗ and † denotes that PIERT and PIER is
be�er respectively than the comparative models (i.e. SogBmf, CBPF, MCLRE) with statistical significance.
Note that the statistical significance tests are done on each dataset, but not for the “average".

Metrics Dataset Models
SogBmf CBPF MCLRE PIER PIERT

NDCG@10

I 0.2021 0.2063 0.2276 0.2393† 0.2511∗
II 0.1982 0.2076 0.2267 0.2281 0.2428∗
III 0.2027 0.2092 0.2144 0.2275† 0.2432∗
IV 0.1956 0.2059 0.2138 0.2280† 0.2412∗

average 0.1997 0.2073 0.2206 0.2307 0.2446

Pre@10

I 0.0823 0.0767 0.0802 0.0796 0.0907∗
II 0.0743 0.0752 0.0768 0.0828† 0.0912∗
III 0.0835 0.0779 0.0735 0.0903† 0.0941∗
IV 0.0829 0.0784 0.0736 0.0835 0.0908∗

average 0.0807 0.0766 0.0760 0.0846 0.0917

Rec@10

I 0.2823 0.2834 0.2844 0.2933† 0.3030∗
II 0.2762 0.2788 0.2815 0.2901† 0.3024∗
III 0.2653 0.2813 0.2748 0.2845 0.2880∗
IV 0.2882 0.2794 0.2769 0.2808 0.2869

average 0.2780 0.2810 0.2794 0.2871 0.2950

by the existing participants occasionally when they decide whether to participate in an event. The
consideration of existing participants can improve the performance of event recommendation.
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Table 9. Recommendation performance in Singapore data. The symbol ∗ and † denotes that PIERT and PIER
is be�er respectively than the comparative models (i.e. SogBmf, CBPF, MCLRE) with statistical significance.
Note that the statistical significance tests are done on each dataset, but not for the “average".

Metrics Dataset Models
SogBmf CBPF MCLRE PIER PIERT

NDCG@10

I 0.2036 0.2172 0.2215 0.2426† 0.2619∗
II 0.2289 0.2158 0.2212 0.2421† 0.2582∗
III 0.2196 0.2381 0.2485 0.2530 0.2550∗
IV 0.2297 0.2385 0.2402 0.2556† 0.2601∗

average 0.2204 0.2274 0.2329 0.2483 0.2588

Pre@10

I 0.0740 0.0801 0.0847 0.0944† 0.1012∗
II 0.0829 0.0831 0.0851 0.0958† 0.0994∗
III 0.0816 0.0847 0.0912 0.1001† 0.1028∗
IV 0.0851 0.0868 0.0907 0.1017† 0.1031∗

average 0.0809 0.0837 0.0879 0.0980 0.1016

Rec@10

I 0.2581 0.2732 0.2789 0.2827 0.2922∗
II 0.2747 0.2725 0.2764 0.2835† 0.2946∗
III 0.2842 0.2838 0.3004 0.3010 0.3002
IV 0.2775 0.2921 0.2993 0.3023 0.3089∗

average 0.2736 0.2804 0.2888 0.2948 0.2990

Table 10. Recommendation performance in Hong Kong data. The symbol ∗ and † denotes that PIERT and PIER
is be�er respectively than the comparative models (i.e. SogBmf, CBPF, MCLRE) with statistical significance.
Note that the statistical significance test are done on each dataset, but not for the “average".

Metrics Dataset Models
SogBmf CBPF MCLRE PIER PIERT

NDCG@10

I 0.2477 0.2448 0.2528 0.2618† 0.2707∗
II 0.2334 0.2441 0.2563 0.2624 0.2751∗
III 0.2329 0.2335 0.2422 0.2547† 0.2775∗
IV 0.2343 0.2352 0.2415 0.2516† 0.2603∗

average 0.2371 0.2394 0.2482 0.2576 0.2709

Pre@10

I 0.0855 0.0893 0.0839 0.0925 0.1010∗
II 0.0754 0.0833 0.0850 0.0889 0.0926
III 0.0733 0.0860 0.0811 0.0893 0.0927∗
IV 0.0831 0.0833 0.0818 0.0847 0.0914∗

average 0.0793 0.0855 0.0830 0.0889 0.0944

Rec@10

I 0.2803 0.3049 0.3255 0.3243 0.3379∗
II 0.2822 0.3157 0.3269 0.3340† 0.3450∗
III 0.3138 0.3052 0.3006 0.3171 0.3247∗
IV 0.3110 0.3088 0.3070 0.3175 0.3272∗

average 0.2968 0.3087 0.3150 0.3232 0.3337

We have also conducted statistical signi�cance test to compare our models (i.e. PIERT and PIER)
with the comparative models (i.e. SogBmf, CBPF, MCLRE) based on the paired t-test with p < 0.05.
Each user in the test set has recommendation performance measured by our metrics. The statistical
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Fig. 3. E�ect of varying the dimension of participant influence factors in our model.

signi�cance test is conducted treating each user as a data point. Note that statistical signi�cance
tests are done on each dataset, but not for the “average". The “average" is calculated by averaging
the results in four datasets for each city. The results show that our proposed generally outperforms
all the comparative methods. In particular, the di�erences between our model (PIERT) and the
comparative models under the evaluation metric NDCG@10 are statistically signi�cant for almost
all datasets. Under the metrics Pre@10 and Rec@10, our model also achieves superior performance
than the comparative models, although the di�erences are not as signi�cant as under NDCG@10.
The MCLRE model generally performs better than CBPF and SogBmf. The reason is that the MCLRE
model considers the most types of context information in an EBSN. CBPF is slightly better than
SogBmf regarding the recommendation accuracy.

PIERT outperforms our previous simpli�ed variant PIER. The reason is that PIERT considers
the latent topics of events, and characterize groups and locations with the latent event topics.
Furthermore, associations between topics and participant in�uence are considered. The results
imply that users are attracted by the topics of the event when participating in the event.

7.2.4 Using Gaussian Instead of Poisson. In our proposed model, we employ Poisson distribution
to generate the observed records. We investigate the e�ectiveness of Poisson distribution by
replacing Poisson distribution with Gaussian distribution, leading to a Gaussian variant. Except the
employed distribution, the framework of the Gaussian variant is the same with our proposed model
such as the modeling of participant in�uence. To infer the parameters of the Gaussian variant,
we follow the method introduced by a prototype of Gaussian factorization model [34] where a
point estimate is found by maximizing the log-posterior. The dimensions of the latent in�uence
facets and the topics factors are determined by grid-based search on the validation process. The
performance of the Gaussian variant (G) as well as our proposed model (P) is presented in Table
11. We observe that our proposed model achieves better performance than the Gaussian on all the
datasets. The empirical results demonstrate that Poisson distribution is superior than Gaussian
distribution in capturing the characteristics of user behaviors in participating various events. The
advantage of Poisson distribution can be partially attributed to its ability to model the budget of
users. In our problem settings, the budget refers to the fact that a user has limited spare time to
participate in events.
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Fig. 4. E�ect of varying the number of latent event topics in our model.
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Fig. 5. E�ect of varying the number of iterations

7.2.5 More �antitative Analysis. We study the e�ect of the factor dimension on recommenda-
tion performance. The experiment is conducted on Hong Kong dataset. In our proposed model,
there are two types of multi-dimensional vectors. The �rst type of vectors are participant in-
�uence vectors, including {θau,1:K ,θ

p
u,1:K ,θe ,θд ,θl }. The dimensions of these vectors capture the

number of participant in�uence facets. The second type of vectors are topic vectors, including
{θau,1:Z ,θ

p
u,1:Z ,ηe ,ψд ,τl }. The dimensions of these vectors capture the number of event latent topics.

We vary the number of participant in�uence facets keeping the number of latent event topics as
30. The result is shown in Figure 3. It shows that the performance is relatively worse when the
dimension is smaller than 50 and becomes stable in the range between 50 and 90 . Similarly, we
vary the number of latent event topics keeping the number of participant in�uence facets as 30.
The result is shown in Figure 4. The result shows that the performance is relatively worse when
the dimension is smaller than 30 and becomes stable in the range between 50 and 90
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Table 11. Evaluation of our Participant Influence framework with Gaussian and Poisson distribution. G
denotes the variant with Gaussian distribution and P denotes our proposed model with Poisson distribution.

Metrics Dataset Los Angeles London Singapore Hong Kong
G P G P G P G P

NDCG@10

I 0.2577 0.2923 0.2323 0.2511 0.2385 0.2619 0.2624 0.2707
II 0.2593 0.2858 0.2215 0.2428 0.2390 0.2582 0.2619 0.2751
III 0.2613 0.2823 0.2185 0.2432 0.2511 0.2550 0.2658 0.2775
IV 0.2585 0.2886 0.2235 0.2412 0.2494 0.2601 0.2489 0.2603

average 0.2592 0.2873 0.2294 0.2446 0.2445 0.2588 0.2598 0.2724

Pre@10

I 0.1093 0.1267 0.0771 0.0907 0.0918 0.1012 0.0902 0.1010
II 0.0935 0.1186 0.0781 0.0912 0.0994 0.0994 0.0931 0.0926
III 0.1003 0.1212 0.0848 0.0941 0.0930 0.1028 0.0884 0.0927
IV 0.1014 0.1162 0.0857 0.0908 0.0981 0.1031 0.0928 0.0914

average 0.1011 0.1206 0.0814 0.0917 0.0956 0.1016 0.0911 0.0944

Rec@10

I 0.2824 0.3044 0.2801 0.3030 0.2878 0.2922 0.3262 0.3379
II 0.2876 0.3036 0.2870 0.3024 0.2854 0.2946 0.3313 0.3450
III 0.2854 0.2971 0.2819 0.2880 0.2819 0.3002 0.3192 0.3247
IV 0.2833 0.2936 0.2793 0.2869 0.2966 0.3089 0.3116 0.3272

average 0.2847 0.2996 0.2856 0.2950 0.2879 0.2990 0.3221 0.3337

We iteratively update the parameter in the inference procedure. The performance of our proposed
model varying the number of iterations is shown in Figure 5. It shows that the performance becomes
stable after 200 iterations.

7.2.6 Computation E�iciency. As mentioned previously, Poisson factorization only requires
iterating over non-zero observations. Hence the computation complexity mainly depends on the
size of observed records in the dataset. Speci�cally, the inference algorithm has a per-iteration
computational complexity of O(3(|D |e + |D |д + |D |l )(Z + K) + (|N |дe + |N |le + |C |we )Z ), where Z
is the size of latent topics and K is the size of latent in�uence facets. |D |e is the size of observed
records that a user participates in an event before another user, i.e. the size of identical tuples
< ua ,up , e >. Similarly, |D |д and |D |l corresponds to the particular group or location that is
associated with the event. |N |дe , |N |le , |C |we are the size of non-zero observations in the event-
group matrix, event-location matrix, and event-word matrix respectively. Clearly, the complexity
increases linearly according to the size of non-zero observations. Moreover, due to the data sparsity
nature of recommendation scenarios, the non-zero observations occupy a small fraction of the
matrices. For example, as shown in the LA dataset in Table 6, |D |e = 329875, |U | = 36615 and
|E | = 35236. |D |e is far smaller than size of the corresponding tensor, i.e. |U | ∗ |U | ∗ |E |, where |U |
and |E | are the number of users and events respectively. In this dataset, the learning time cost in
one iteration is roughly 113.7s.

7.3 Ablation Experiments
There are several components in our proposed model. To investigate the contribution of each com-
ponent, we derive three models where one component is removed from our full model respectively.
We compare the performance of our full model with these derived models using the LA datasets.

We derive the �rst model by removing participant in�uence modeling, which is a key component,
from our full model. We denote the �rst model without participant in�uence as PIERT-PI. In this
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Table 12. Ablation experiment using Los Angeles Data. The symbol ∗ denotes that PIERT is be�er than the
derived models with statistical significance.

Metrics Dataset Models
PIERT-PI PIERT-G PIERT-L PIERT

NDCG@10

I 0.2533 0.2420 0.2631 0.2923∗
II 0.2526 0.2417 0.2628 0.2858∗
III 0.2506 0.2405 0.2635 0.2823∗
IV 0.2492 0.2433 0.2617 0.2886∗

average 0.2514 0.2419 0.2628 0.2873

Pre@10

I 0.0901 0.0858 0.1106 0.1267∗
II 0.0923 0.0914 0.1073 0.1186∗
III 0.0915 0.0863 0.1075 0.1212∗
IV 0.0927 0.0918 0.1093 0.1162∗

average 0.0917 0.0888 0.1087 0.1206

Rec@10

I 0.2714 0.2644 0.2820 0.3044∗
II 0.2736 0.2681 0.2789 0.3036∗
III 0.2700 0.2672 0.2910 0.2971∗
IV 0.2688 0.2702 0.2857 0.2936∗

average 0.2709 0.2675 0.2844 0.2996

derived model, it is assumed that a user participates an event simply because the context of the
event appeals to him, without the consideration of the existing participants. Precisely, the frequency
that a user u participates an event e is generated from Poisson distribution with the preference
parameter Pre f rence(u, e) =

∑Z+K
d=1 (θ̃e,dθu,d ), where θ̃e and θu are the factor associated with the

event and the user respectively. The role of Pre f erence(u, e) replaces the participant in�uence
de�ned in Equation 3. The other two models are derived by removing groups and locations from
our full model. We denote these two models as PIERT-G and PIERT-L respectively. For example, we
do not model Dд and Nдe for the PIERT-G model.

The performance of these three models, as well as our full model, is shown in Table 12. Note
that the statistical signi�cance tests are done on each dataset, but not for the “average". The results
show that PIERT-PI performs worse than our full model. Hence it shows that participant in�uence
can improve event recommendation performance. It is worthwhile investigating the in�uence
of existing participants when designing an event recommendation system. Moreover, PIERT-G
and PIERT-L also perform worse than PIERT, implying that both components contribute to our
proposed full model. Speci�cally, PIERT-G performs worse than PIERT-L, indicating that the group
information is more important than the location information in making event recommendation.
The reason could be that users prefer to participate in events held by certain groups.

7.4 �alitative Case Study
Besides making event recommendation, our proposed model is able to extract latent event topics
from the event descriptions. The variable ηe captures the topics for the event z and each latent
event topic is represented by a distribution over words, captured by the variable ϕ. Table 13 shows
some examples of latent event topics and high-ranked words. Table 14 shows the titles of some
example events that belong to each topic.

Moreover, the proposed model can learn the relations between latent event topics and the
participant in�uence between users. As previously mentioned, each entry in the �rst Z dimensions
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Table 13. Event topics interpretation

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
art yoga real music hike spiritual food ride

artist class estate perform trail life wine bike
workshop practise investment band mile us taste group

draw bring investor song park meditation menu bring
model come money concert organ love restaurant pleasure
paint mate success sing road experience tea station
light body deal live event lives dish join

studio relax property play canyon share bring mile
shoot pleasure market jam group power vegan metro

creativity breath �nancial drum mountain world eat lunch
work water webinar jazz anise time cook meet

photograph donation make night take practice beer hour
image clothe year enjoy water inner serve bicycle
session �ow start rock trip god drink park

pose wear cash musician view circle potluck adventure

of the variables θau1 and θpu2 captures the degree that the corresponding topic will contribute to
the participant in�uence from the user u1 to the user u2. In other words, when the context of the
event, including the event descriptions, the group of the event, and the location of the event, is
about a particular topic corresponding to larger entries of θau1 and θpu2 , the user u2 is more likely to
participate in the event if he/she knows that the user u1 has indicate willingness for joining the
event. For each user pair < u1,u2 >, our model produces a list of topics, ranked by the degree that
the topic will contribute to the participant in�uence from u1 to u2. The contribution for the z-th
topic, is evaluated by the product of θau1,z and θpu2,z . As a consequence, we are able to semantically
explain what topics will increase the chance that the user u1 in�uences the user u2.

We present the participant in�uence between an example of the user pair, namely User 8837208
and User 104077492. In the dataset, we observe that User 8837208 in�uences User 104077492 in
participating the following events:

(1) Bike Ride from North Hollywood Metro Station to Chinatown and a Chinese Lunch.
(2) Dinner Show - "The Company Men" vocal group perform at Rockwell Table & Stage.
(3) The Rascals: Once Upon a Dream at the Greek Theatre.
(4) See the comedy HOLLYWOOD & BROADWAY Gloria & Tallulah Talk (1/2 Price) & Dinner.
(5) Join us for BOWLING + Dinner at a Thai Restaurant afterward.

By analyzing the e�ect of topics on the participant in�uence on these two users, it shows that Topic
4 and Topic 8 are among the top ranked topics. It shows that User 8837208 is likely to in�uence
User 104077492 when the event is about Topic 4 or Topic 8.

8 CONCLUSIONS
We have proposed a Poisson factorization model considering the participant in�uence for event rec-
ommendation. The proposed model also learns the latent event topics from event text descriptions
and characterizes events, groups, and locations via a distribution of event topics. The associations
between latent topics and participant in�uence are exploited to improve recommendation. Experi-
mental results have demonstrated that our proposed model achieves better event recommendation
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Table 14. Example events for topics

Topics Example Events

1
Photographing Jewelry and other shiny and small objects
Life Drawing Workshop - Model: Tracey
Saturday Figure Drawing and Painting at Kline Academy

2
say YEP! - Good Morning Sunday Stretch
Yogatation! (Yoga + Meditation) on the beach
Tuesday Night Weekly Yoga

3
2014 Real Estate Update - The Changes You Need To Know
Road to Financial Freedom Workshop
Property Management and Due Diligence

4
Cantor Yonah Kliger and Temple Emanuel’s live
Free JAZZPOP LA Concerts and Mixer
OC Singles for Christ Ministry

5
Forrestal Ecological Reserve
Forest Magyar Christmas Party
Gri�th Park Northside Loop - 7 miles - 3 peaks and MORE from Travel Town

6
Goddess Wisdom Circle
Sunday Morning Su� Teachings in the Valley
Community HU Chant - Let Go and Let God

7
Mix and Mingle at Ruth’s Chris Steakhouse
Chardonnay and Pinot Noir wine dinner
Zin and BBQ Party

8
CicLAvia∼ Heart of L.A. Bicycle Ride∼Mariachi Plaza Food/Music
Bike Ride from North Hollywood Metro Station to Little Tokyo and a Japanese Lunch
PV Ride - 50 miles with shorter route options!

performance than state-of-the-art models. As a result, event recommender systems can bene�t
from the consideration of participant in�uence.
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