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Outline

» Training & Inference
» Gradient Descent
> Regularization

> Example for Forward & Backward propagation



Classification Task

> E.qg., hand-written digit classification il
g i igi ificatio ol /23]

> Training 5|€)7]7)4

> Cross-entropy
> Model output: y = Softmax(Wh+b)
> Loss:il=-ylogy

> Inference

> i = argmaxy;
i€{1,2,..k}



Regression Task

> E.g., predict stock price
> Training
» MSE-loss
> Model output: y = f(Wh+b)
> Lossil=3(y-y)"2

> Inference

> ¥y = f(Wh+b)



Gradient Descent

> Considering the optimization objective
mein F(x,0)

» Suppose we have N samples, at time step t

> Full gradient descent

_ 1 _
Ht — Ht 1 _ lT't N §V21VF(Xi,0t 1)

> Highly Efficient

> but can not fully utilize the data



Gradient Descent

» Suppose we have N samples, at time step t

» Stochastic gradient descent
0t =071 —In,VF(x,, 01, kin{l, 2, .., N}

» Computation is slow

> Can fully utilize the training data

> Mini-batch with batch size s
0 = 051 — Iy < Yker, VF (50, 0571), £ £{1,2, ..., N}

> Trade-off between the computation speed and data use



Regularization

> Prevent overfitting
> L1 reqularizer (Lasso regularizer)

Loss = Error(y,§) + A Z |w;]
i=1

» E.g., Alignment in machine translation, graph for social network

> L2 regularizer (Ridge regularizer)
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»  E.g. deep neural network training

> Dropout
> 01~05
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Why calculating gradient is necessary?

> Sometimes we can't directly compute the gradient

»  Incorporating a latent variable into the MLE objective

log P(x;0) = logf P(x,z;0)dz



Any Question?



