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Abstract

Building on the successes of satisfiability modulo theories (SMT), Bjorner et al.
[2012] initiated a research programme advocating Horn constraints as a suitable basis for
automatic program verification. The notion of first-order constrained Horn clauses has
recently been extended to higher-order logic by Cathcart Burn et al. [2018]. To exploit
the remarkable efficiency of SMT solving, a natural approach to solve systems of higher-
order Horn constraints is to reduce them to systems of first-order Horn constraints. This
report presents a defunctionalization algorithm to achieve the reduction.

Given a well-sorted higher-order constrained Horn clause (HoCHC) problem instance,
the defunctionalization algorithm constructs a first-order well-sorted constrained Horn
clause problem. In addition to well-sortedness of the algorithm’s output, we prove that
if an input HoCHC is solvable, then the result of its defunctionalization is solvable. The
converse also holds, which we prove using a recent result on the continuous semantics
of HoOCHC. To our knowledge, this defunctionalization algorithm is the first sound and
complete reduction from systems of higher-order Horn constraints to systems of first-
order Horn constraints.

We have constructed DefMono', a prototype implementation of the defunctional-
ization algorithm. It first defunctionalizes an input HoCHC problem and then feeds
the result into a backend SMT solver. We have evaluated the performance of DefMono
empirically by comparison with two other higher-order verification tools.

!The web interface is available at http://mjolnir.cs.ox.ac.uk/dfhochc/.
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Chapter 1

Introduction

1.1 Background

Notwithstanding the existence of undecidable problems, over the past decades, formal
verification has proved to be useful and even essential to a number of computing applica-
tions. Hardware industries, particularly the semiconductor industry, have long embraced
the verification technology because the cost of manufacturing faulty hardware products
is too costly. Hence, in such industries, formal verification has been used to detect bugs
in early development stages. By contrast, software formal verification had been less
widely used than hardware verification because more advanced verification technology
is required due to increased complexity in software. However, recent advances in the
theory and practice of formal verification have led to wider use of formal methods in
software as well. Recognising the value of formal verification, the 2007 Turing Awards
were given to Edmund Melson Clarke, E. Allen Emerson, and Joseph Sifakis for their
contributions to model checking.

Amongst the enabling technologies in the development of formal verification is sat-
isfiability modulo theories (SMT) solvers [Beckert and Hihnle, 2014]. Many approaches
in formal verification reduce input programs to first-order constraints such as loop in-
variants and dependent types [Bjorner et al., 2012]. These constraints are then fed into
SMT solvers to check their satisfiability with respect to certain background theories.
The standardisation of input formats for SMT solvers is instrumental in accelerating the
development of SMT solvers, allowing larger collections of benchmarks to be built. Also,
with respect to formal verification, the standardisation of SMT problem formats achieves
separation of concerns by dividing the verification process into constraint generation and
SMT solving.

Motivated by the standardisation of SMT problem formats, Bjorner et al. [2012]
propose standardization at a higher level: first-order verification problems. They sug-
gest the use of constrained Horn clauses to express first-order verification problems, and
their claim that Horn clauses serve as a suitable format of first-order verification prob-
lems is substantiated in [Bjorner et al., 2015]. First-order constrained Horn clauses are
subsequently extended to higher-order logic by Cathcart Burn et al. [2018].



Whilst numerous verification techniques and tools have been created to verify first-
order constrained Horn clauses, higher-order constrained Horn clause problems have
not seen as much progress as first-order ones. We can exploit the advances in first-
order Horn-clause solving by reducing higher-order constrained Horn clause problems
to semantically equivalent first-order ones. This approach is pursued by Cathcart Burn
et al. [2018] using refinement types. In this refinement type-based approach, each free
top-level relational variable is associated with a type. A valid type assignment can then
be thought of as a model of an input HoOCHC problem. One drawback of this method is
incompleteness. Cathcart Burn et al. [2018] reports an instance of solvable HoCHC for
which the refinement type-based approach produces an untypable logic program (that
is, no model is found by this approach).

In this work, I take a different approach and develop a defunctionalization algorithm
to reduce higher-order constrained Horn clauses to first order ones. This is inspired
by Reynolds’s defunctionalization, a well-established method of reducing higher-order
functional programs to first-order ones.

1.2 Related work

First-order constrained Horn clause problems Using first-order Horn clauses to express
first-order verification problems was originally proposed by Bjorner et al. [2012]. They
maintain that the Horn clause can serve as a suitable standard format of verification
problems, enabling the development of a larger collection of benchmarks in the same
format. In [Bjorner et al., 2015], they explain the relationship between Horn clauses
and existential fixed-point logic (E+LFP), which is equivalent to Hoare logic. They also
provide an overview of how to obtain first-order Horn clauses from first-order programs
and how to solve first-order Horn clauses. The paper also gives a number of pointers to
more detailed accounts of various Horn-clause verification methods.

Higher-order Horn clause problems and refinement types Cathcart Burn et al. [2018] have
extended the notion of constrained Horn clause problems to higher-order logic, and
introduced the monotone semantics. Unlike the standard semantics, Horn clause prob-
lems have canonical models in monotone semantics, which is a very useful property in
automated formal verification. As an alternative representation of the higher-order con-
strained Horn clause problem, the monotone safety problem is introduced. Unlike the
Horn clause problem, the monotone safety problem does not contain logical implication,
which is not monotone. Thus, the monotone safety problem is a more suitable rep-
resentation in the monotone semantics, although the difference between the monotone
safety problem and Horn clause problem is purely syntactic. The paper also explores
the connection between the standard and monotone semantics, proving that any higher-
order constrained Horn clause problem in the standard semantics can be converted into
a semantically equivalent monotone safety problem.

In the second half of the paper, a refinement type-based approach to verifying mono-
tone safety problems is presented.



Defunctionalization In the conclusion of [Cathcart Burn et al.; 2018], Burn et al. propose
the use of Reynolds’s defunctionalization to reduce higher-order Horn clause problems to
first-order ones as done by the refinement type-based approach. This is what motivates
the present work on defunctionalization of HoOCHC. The idea of representing higher-order
functions by closures to verify higher-order programs can also be found in [Bjorner et al.,
2013], although this only gives a brief overview of the approach.

Defunctionalization is explained in a detailed yet readable manner in its original
paper by Reynolds [Reynolds, 1972]. In this paper, typability of the apply function
created as a result of defunctionalization is not considered. A problem arises when
we deal with polymorphic languages. This issue is resolved using type specialization
in [Bell et al,; 1997]. Another work on defunctionalization of polymorphic languages
is [Pottier and Gauthier, 2004]. Although the present work on defunctionalization of
monotone safety problems does not involve polymorphic types, the idea of formulating
a defunctionalization algorithm using inference rules comes from [Pottier and Gauthier,
2004].

1.3 Contributions

The chief contribution of this work is the development of a defunctionalization algorithm
to reduce HoCHC to first-order constrained Horn clauses. With respect to the correctness
of the algorithm, I prove type preservation, completeness, and soundness. The output
of the defunctionalization algorithm is proved to be well-sorted, given that the input is
well-sorted. Using the idea of valuation extraction, I also prove that if an input higher-
order constrained Horn clause problem is solvable, then its defunctionalized problem is
also solvable. The proof for the converse is achieved by using a recent result on the
continuous semantics of HOCHC [Jochems, 2018]. As far as I am aware, this is the first
sound and complete reduction from HoCHC to first-order constrained Horn clauses.

1.4 Outline of this report

This document is structured as follows.

Chapter 2 introduces higher-order logic, logic program safety problems, and mono-
tone semantics.

Chapter 3 illustrates how defunctionalization works on a concrete example.

In the first half of Chapter 4, the defunctionalization algorithm is formulated using
inference rules. In the second half of this chapter, completeness and soundness of the
algorithm are established.

Chapter 5 presents a prototype tool based on the defunctionalization algorithm and
compares its performance with other higher-order verification tools.

Chapter 6 summarises the work and proposes a few directions for future work.

Appendix A presents details of the preprocessing in the defunctionalization algo-
rithm. Also, the rationale for the algorithm’s design is given.



Appendix B describes how to obtain monotone valuations for outputs of the defunc-
tionalization algorithm.

Appendix C provides detailed proofs for the lemmas and theorems presented in Chap-
ter 4.

Appendix D gives a formal proof of type preservation.

The word count of the body of this report is 9995.



Chapter 2

Preliminaries

This chapter introduces the basics of higher-order logic, logic program safety problems,
and monotone semantics. Higher-order constrained Horn clauses (HoCHC) are not for-
mally introduced, since the defunctionalization algorithm works on logic program safety
problems, which are alternative representations of HOCHC [Cathcart Burn et al., 2018].
It is therefore sufficient to understand that HoOCHC and logic program safety problems
are equivalent.

2.1 Higher-order logic

In this section I review the syntax and semantics of higher-order logic based on a simply
typed lambda calculus. The presentation style of this section follows the one in [Cathcart
Burn et al., 2018].

2.1.1 Syntax

In a simply typed lambda calculus, each value is associated with a sort that denotes the
category of elements to which the value belongs. Let (b €)B be a fixed set of user-defined
base sorts including a sort ¢ of individuals and a sort o of propositions. Using the base
sorts, simple sorts are inductively defined as follows:

ou=b|oy — o9,

where b € B. As standard, the sort constructor — associates to the right. The order of
a sort is defined by

ord(b) =1 ifbeB
ord(c; — 02) = max{ord(oi) + 1,ord(c2)} otherwise.
Let ¥ = (B,S) denote a first-order signature, where B is a set of base sorts that

includes the propositional sort o and at least one sort of individuals. S is a set of
constant symbols, each of which is associated with a first-order sort (i.e. a sort whose



order is at most 2). As S can be viewed as a mapping from constant symbols to simple
sorts, I write S(c) for the sort assigned to ¢ by S. Note that because a lambda calculus
does not distinguish between functions and values of base sorts, ‘constant symbols’ in
S include not only those symbols with base sorts but also symbols of arrows types;
i.e. function symbols.

Given ¥ = (B,S), terms are inductively defined by

M,N:=x|c|M N | Az:0.M,

where x is a variable and ¢ € S. Standardly, function application associates to the left.
Also, the scopes of lambda abstractions extend as far to the right as possible. If a term
M has sort o1 — - -+ — g, — b, where b € B, the arity of M is defined as

ar(M) =m.

The set of free variables occurring in term M is denoted by FV(M).

A sort environment A is a finite sequence of pairs x : o, where x is a variable and o
is a simple type. The sort environment is required to have no conflicts; that is, it must
not assign multiple sorts to the same variable. The sorts of terms are defined by the
following sorting rules:

(SCsT)

(SVAR)

AFc:S(c) Ay, x:0,MFx:0

AFs:op — o9 AFt:o;
AFst:og

(SAPP)

Axr:o1Fs:o0g

(SABs) A x ¢ dom(A)

F Ax:01.5: 01 — 09
Notice that the sorts of constant symbols are specified by a signature, whilst the
sorts of free variables are specified by a sort environment.
Next, to define formulas of higher-order logic, logical connectives are introduced
as constant symbols outside Y. Let LSym be the set of the following logical constant
symbols:

true,false: o —:0—0

ANV, = :0—>0—0 Vo,35 1 (0 — 0) — 0.

I adopt the convention that 3,(Az:0.M) is shortened to Jz:0.M or 3,x.M. Furthermore,
if the sort of x is clear from the context, dx.M can be written.

Formulas are defined as well-sorted terms that have the sort o and whose constant
symbols are from either S or LSym.

Lastly, relational sorts are formally defined by

pr=olb—olp— p,

where b € B.



2.1.2 Semantics

Given a first-order signature ¥ = (B,S), a structure A assigns a non-empty set of
elements A, to each + € B, where ¢ # 0. The sets A, are often called universes. To the
sort o is assigned the distinguished lattice 2 = {0 < 1}. The full sort frame over A is
defined inductively on a sort as follows:

S[¢] = A, teEB,LF#o
S[o] :=2
Slo1 — o2] := S[o1] = S[o2],
where X = Y is the full set-theoretic function space between sets X and Y. To each

constant symbol ¢ in S, A assigns an element from S[S(c)]. Let ¢ denote this element.
The lattice 2 supports the following functions:

or(by)(b2) = max{by, b2} not(b) =1—15
and(by)(b2) = min{by, ba} implies(by)(b2) = or(not(by))(b2)
exists,(f) = max{f(v) | v € S[o]} forall,(f) = not(exists,(not o f)).

For each logical constant symbol ¢ € LSym, I denote the corresponding Boolean function
given above by s,

The order on 2 can be extended to define an order C, on S[p], where p is a relational
sort:

e For all by,by € 8[[0]], if b1 < by, then by C, by;
o For all r1,ry € S[b— p, if ri(n) C, r2(n) for all n € S[b], then ry Cpyp 723
o For all 71,ry € S[p1 = p2], if r1(s) C, m2(s) for all s € S[p1], then 1 S, ), T2

The full sort frame can be defined on a sort environment A using an indexed Cartesian
product:

S[al= ] sSla@)].
zedom(A)

In other words, this is the set of all functions mapping each variable x in dom(A) to
an element in S[A(x)]. These functions are called valuations. The order on S[A] can
be defined in the same fashion as above: for all fi, fo € S[A], if fi(x) C, f2(2) for all
x:p€ A, then fj Ca fo.

The interpretation of a term A+ M : o is given by an inductively defined function
S[AF M : o] : S[A] = S[o]. When M consists only of one symbol, S[A + M : o] is
defined by

S[AF z:0](a) = a(x) if x is a variable
S[AF c:o](a) =t ifceS
S[AF c:o](a) = otherwise,

10



where « is a valuation from S[A]. If M has a compound structure, we have

S[AFM N :o3](a) =S[AFM : 01 — o2 (a)(S[AF N : 01](cv))
S[AF Az:o1.M : 01 — o2])(a) = M € S[o1].S[A,x : 01 F M : o3](afz — v]).

Notice that the interpretation of non-logical constant symbols is given by a structure,
whereas the interpretation of free variables is given by a valuation.

Assume we are given a Y-structure A, a formula A - M : o, and a valuation « €
S[A]. Then (A, «) satisfies M if and only if S[A + M : o](«) = 1. This satisfaction
relation is denoted by A,a F M.

2.2 Logic program safety problems

Each verification problem comprises two components: a definite formula component,
which describes an input program, and a goal formula component, which is the property
of the input program that we want to verify. This section introduces verification problems
whose definite formula components are expressed using logic programs. Again, the
presentation style of this section follows that in [Cathcart Burn et al., 2018].

2.2.1 Constraint languages

Given a first-order signature X, a constraint language is defined as (T'm, F'm, Th), where
Tm is a distinguished subset of first-order terms that can be built from ¥, Fm is a
distinguished subset of first-order formulas that can be built from X, and T'h is a theory
in which to interpret Fm. Any formula from F'm is called a constraint and Th is
called a background theory. We allow T'm and F'm to be strict subsets of all terms
and formulas built from Y as some background theories only consider strict subsets of
formulas; e.g. quantifier-free formulas.

In this document, formulas in a constraint language refer to terms of sort o. There-
fore, we have F'm C T'm, unlike in usual presentations of predicate logic, where T'm N
Fm =10.

2.2.2 Goal terms

Fix a first-order signature ¥ = (B,S) and a constraint language (T'm, F'm,Th) over X.
The class of well-sorted goal terms A F G : p, where p is a relational sort, is given by
these sorting rules:

(QOsT) Ferpe c €MV AU Ik (GVAR) e s
(GCONSTR) Ar oo AFp:0€ Fm
(GABs) P0G g gom(A)

AFXrioG:o0—p

11



AFG:b—p

(GAPPL) AFGN )

AFN:beTm

A}_Gipl—>p2 A}_H:pl
AFGH:py

(GAPPR)

Throughout the above six rules, b denotes a base sort from B, p (with or without sub-
scripts) denotes a relational sort, and o is either a base sort or a relational sort. Hence-
forth, I assume that goal terms are well-sorted.

2.2.3 Logic programs

Assume that a first-order signature and a constraint language are fixed. A higher-order
constrained logic program P over a sort environment A = z1 : p1,...,%m : Pm, Where
each p; is a relational sort, is a finite system of (mutual) recursive definitions of shape:

r1:p1 = G1,..., Tmipm = G,

where each G; is a goal term and each x; is distinct. I will call each x; a top-level
relational variable. P is said to be well-sorted whenever A F G; : p; (i.e. G; is well-
sorted and has relational sort p;) for each 1 <i < m. It follows that if P is well-sorted,

FV(Gi) CH{x1,...,zm}

foralll <i<m.

Since each z; is distinct, we can regard P as a finite map from variables to goal
terms. Thus, let P(z;) denote the goal term G; that is bound to z;. I write - P : A to
mean that P is a well-sorted program over A.

To interpret logic programs, I use the standard semantics. Let A be a ¥-structure and
P be a well-sorted logic program over a sort environment A. The one-step consequence
operator of P is the functional TS, : S[A] = S[A] defined by

TE.a(e)(z) = S[AF P(z) : A(x)]().

A valuation « is a prefixed point of Tg: A if and only if we have ng Ale) Ca o

2.2.4 Logic program safety problems

Suppose that ¥ is a first-order signature and L = (T'm, Fm,Th) is a constraint language
over Y. A logic program safety problem is defined as a triple (A, P,G), where A is a
sort environment of relational variables, P is a well-sorted logic program over A, and G
is a goal term that has sort o and is built from ¥ and L. The problem is solvable if and
only if for all models of Th, there exists a valuation a such that « is a prefixed point of
T$.A and S[AF G : o](a) = 0. G is usually the negation of a property that we want P
to satisfy.

12



2.3 Monotone semantics

The monotone semantics for logic programs is introduced by Cathcart Burn et al. [2018]
as an alternative to the standard semantics. The importance of the monotone semantics
in defunctionalization will be explained in Section 3.3.

2.3.1 Semantics

Given a first-order signature 3 = (B, S), structure A assigns a non-empty discrete poset
A, to each + € B, where ¢ # 0. As in the standard semantics, A assigns 2 to the sort o.
Discrete posets are defined as partially ordered sets in which no two distinct elements
are comparable. The monotone sort frame over A is then inductively defined as

M([.] = A, M|o] :=2 Mo1 = 03] := MJo1] =m M[o2],

where X =-,,, Y is the monotone function space between posets X and Y. The universe
A, is regarded as a discrete “poset” rather than simply a set because we want the
definition M[o; — o2] = M[o1] = MJoz2] to encompass the cases when o) € B.
Since any set can be considered as a discrete poset, when o1 € B\ {0}, =, is the same
as = in the definition of full sort frames.

A also maps each constant symbol ¢ : o € S to an element from M[o].

The order in 2 is extended to M[p], where p is a relational sort, in the same manner
as S[p]. Also, the set of valuations with respect to sort environment A is defined
analogously to the standard semantics:

Mlal = J] Mlaw@)].

zedom(A)

The monotone interpretation of goal terms is inductively defined in the same way as
the standard interpretation. As we consider only monotone functions, the definition of
exists becomes

exists,(f) = max{f(v) | v € M][o]}.

Fix a first-order signature, a constraint language, and a structure for interpretation
of a logic program. The one-step consequence operator Tlé\f‘A is defined as

Tp'a(@)(z) = MIA F P(z) : A@)](a).

A prefixed point of Tﬁf‘A is called a model of the logic program P. The term ‘model’
is overloaded because a model of a logic program is a valuation, whereas a model of a
theory is a structure.

2.3.2 Monotone logic program safety problems

Suppose that ¥ is a first-order signature and L = (T'm, F'm,Th) is a constraint language
over 3. A monotone logic program safety problem (oftentimes abbreviated as a monotone

13



problem) is defined as a triple (A, P,G), where A is a sort environment of relational
variables, P is a well-sorted logic program over A, and G is a goal formula. Both P
and G are built from ¥ and L. The monotone problem is solvable if and only if for all
models of Th, there exists a valuation « such that « is a prefixed point of Tlé\ftA and
M[AF G :o](a) = 0. G is usually the negation of a property that we want P to satisfy.

Theorem 2 in [Cathcart Burn et al., 2018] establishes a bridge between constrained
Horn clause problems and monotone logic program safety problems:

Theorem 2.3.1. A higher-order constrained Horn clause problem (A, D, G) is solvable if
and only if the associated monotone logic program safety problem (A, Pp, G) is solvable.

The transformation from the definite Horn formula D to the corresponding logic
program Pp is provided in Section 4.1 of [Cathcart Burn et al., 2018].

14



Chapter 3

Defunctionalization of monotone problems

This chapter illustrates how defunctionalization works on a concrete example of a logic
program safety problem, which is interpreted using the standard semantics. An issue
that arises from higher-order existential quantification is then explained. The monotone
semantics is instrumental in resolving this issue.

3.1 Overview

In this section, I will illustrate the workings of the defunctionalization algorithm for logic
program safety problems using a concrete example. Because the standard semantics is
more natural and intuitive than the monotone semantics, the standard semantics allows
us to use our own intuition to interpret safety problems. Consequently, we can follow how
defunctionalization proceeds without being concerned about semantics. Therefore, we
will use the standard semantics to interpret the example logic program safety problem.

Henceforth, for readability, I omit subscripts of 3 that denote the sorts of quantified
variables.

Consider the safety problem P = (A, P,G), where A is given by

A = {Main : nat — natlist — o,
TwiceMap : (nat — nat — o) — natlist — natlist — o,
Mayp : (nat — nat — o) — natlist — natlist — o,
Twice : (nat — nat — o) — nat — nat — o},

P is

Main = An,ns.TwiceMap (Aa,b.a+n =b) (cons 0 nil) ns
TwiceMap = \f.Map (Twice f)
Map = A\f,a,b.(a =nil Ab=nil)V
(In,ns,m,ms.a = cons n ns A f n mA Map f ns ms Ab= cons m ms)
Twice = Af,a,b.(3c.f acA fchb),

15



and G is
G =3dn,ns.Main n ns Ans =nil.

The signature for P is ¥ = (B,S), where B and S are

B = {nat, natlist, o}
S = {nil : natlist, cons : nat — natlist — natlist, + : nat — nat — nat
=natlist: natlist — natlist — 0, =pa¢: nat — nat — o} U {n : nat | n € N}.

To be precise, S must be finite. However, having all natural numbers included in S does
not affect the fundamental nature of this verification problem.

Observe that {n : nat | n € N} is a set of symbols rather than a set of mathematical
entities.

As =patiist and =pat have different types, they must be distinguished. However, 1
will denote both of them by = for simplicity. From the sorts of their arguments, we can
infer which equality is in use.

The background theory we use to interpret P is the one constructed by a structure
that maps each ¢ € S to the naturally corresponding element in the universe of natural
numbers and their lists.

Defunctionalization is the conversion of higher-order programs to a semantically
equivalent first-order programs. To achieve it, higher-order parameters appearing in
the programs need to be removed. Parameters are classified into formal parameters and
actual parameters. Higher-order formal parameters in logic programs are always found
in lambda abstractions. Higher-order actual parameters are generated by curried func-
tions, which can be (strictly) partially applied. Hence, the higher-order property of logic
programs is attributed to

e Higher-order formal parameters
e Curried functions.

Higher-order formal parameters can be identified by looking at type annotations.
However, formal parameters can be missing due to currying. For instance, in the logic
program P given above, the definition of TwiceMap is a lambda abstraction with only
one parameter f. However, since the sort of TwiceMap is (nat — nat — o) —
natlist — natlist — o, we have ar(TwiceMap) = 3. Therefore, TwiceMap has two
more formal parameters. The first preprocessing step is thus to uncover hidden for-
mal parameters. This is known as n-expansion in the literature on lambda calculi. We
only uncover the formal parameters of outermost lambda abstractions. In P, the only
place where formal parameters of top-level relational variables are hidden is Twice M ap.
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Applying n-expansion to it, we obtain

Main = An,ns.TwiceMap (Aa,b.a +n =b) (cons 0 nil) ns
TwiceMap = \f,zs,ys.Map (Twice f) xs ys
Map = A\f,a,b.(a =nil Ab=nil)
V (In,ns,m,ms.a = cons nns A f nmA Map f ns ms Ab= cons m ms)
Twice = Af,a,b.(Jc.f acA f cb).

Note that although Twice f inside the definition of Twice M ap has a functional sort and
hence its formal parameters are hidden, we do not apply n-expansion to it, because it is
not an outermost function. Now all formal parameters of outermost lambda abstractions
in P are visible.

Curried functions in logic programs appear either as the definitions of top-level re-
lational variables in the form x;:p; = G; or as anonymous lambda abstractions. The
constant symbols from S cannot be strictly partially applied in a logic program. Hence,
we do not need to defunctionalize the functions declared in the signature.

In the logic program above, Aa,b.a + n = b inside the definition of Main is an
example of anonymous functions. Later in the process of defunctionalization, higher-
order actual parameters are replaced with first-order data, each of which is labelled
with an associated curried function. Whilst top-level relational variables can be used as
labels for the functions that define them, anonymous functions do not have any unique
name or variable associated with it. Therefore, for convenience, I create fresh top-level
relational variables for anonymous functions so that they are not ‘anonymous’ anymore.
Consequently, P becomes

Main = An,ns.TwiceMap (Add n) (cons 0 nil) ns
TwiceMap = Af,ns,ms.Map (Twice f) ns ms
Map = \f,a,b.(a =nil Ab=nil)
V (3In,ns,m,ms.a = cons nns A\ f nmA Map f ns ms \b= cons m ms)
Twice = Af,a,b.(3e.f acA f cb)
Add = An,a,b.a+n="b.

Next, higher-order parameters are replaced with first-order data of a new base type.
Let us denote the new type closr, which is short for ‘closure’. Because I will defunc-
tionalize P step by step, the intermediate states may not be valid logic programs.

Partially applied curried functions are represented by algebraic data types. They
store all actual parameters that have been supplied so far. It is necessary to define
distinct data constructors according to the number of actual parameters. For instance,
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partially applied instances of function Add can take one of the following forms:

Add

Add x
Add x y
Add x y z,

where the last form is not strictly partially applied.

Let C% be a data constructor that, after i many arguments are supplied, represents
a partially applied instance of function F' with ¢ many actual parameters. To simulate
lambda/function application using these constructors, we need to define function Apply.
For the top-level relational variable M ain defined in P, the corresponding Apply is given
by

Apply = )\l’,y,Z.CL' = C]0\4ain Nz = Cfl\lain Y
Apply = Az, ns.(In.x = Clypim 1 A TwiceMap (Add n) (cons 0 nil) ns).

Notice that TwiceMap (Add n) (cons 0 nil) ns in the second line is derived from the
definition of Main in P. Apply on the first line has sort closr — nat — closr — o
and takes three arguments. The first argument represents a partially applied instance
of Main. The second argument is an input to the function represented by the first
argument. The third argument is the result of applying the second argument to the
function represented by the first argument.

By contrast, Apply on the second line has sort closr — natlist — o and has arity
2. The first argument represents a partially applied instance of Main in which only the
last parameter of Main is missing. The second argument corresponds to this missing
final parameter. In a logic program, if a top-level relational sort F' has arity n, the
first n — 1 parameters of F' can be interpreted as inputs (as in functional programming)
and the last parameter of F' can be interpreted as the corresponding output. Using this
interpretation, the second Apply is considered as linking the input and output of Main.

In this way, the first Apply function simulates function application, whereas the
second Apply works out whether the first argument evaluates to the second argument. As
these two Apply functions have different roles, I rename the second Apply to ‘IOMatch’.
This yields

Apply = Az, y,z.x = C]?/[ain Nz= 011\4(17271 Y
TOMatch = \x,ns.(In.x = Clrpin 1 A TwiceMap (Add n) (cons 0 nil) ns).
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Applying the same step to the remaining top-level relational variables in P gives

Apply = Ma,y, 2.0 = CSpin A 2 = Chyain ¥
IOMatch = Az, ns.(In.x = Clyuin 1 A TwiceMap (Add n) (cons 0 nil) ns)

Apply = )\x, Y, 2. X = C%wiceMap Nz= Cil"wiceMap Yy
Apply = )\1‘7 Y, Z(afx = Cil“wiceMap f Nz= C%wiceMap f y)
IOMatch = Az, ms.(3f, ns.x = C%wiceMap f ns A Map (Twice f) ns ms)

Apply = Az, y, 2.0 = C?Mp Nz = Czlwap Y
Apply = Az, y, 2.3 f.x = Chpap f N 2= Clrap [ ¥)
IOMatch = Az, b.(3f,a.x = C]2Wap fan((a=nil Ab=nil)

V (In,ns,m,ms.a =cons n ns A f n mA Map f ns ms \b= cons m ms)))

Apply = Az, Y, 2. = C%wice Nz = C%’w’ice Yy

Applil/ = Az, Y, Z(3f$ = C%“wice f Nz = C%wice f y)
TOMatch = \x,b.(3f,a.x = C3 e faA (Fe.fachfcb))

Apply = Aoy, 2.0 = Chgg Nz = Chgq ¥
Apply = Aa,y, 2.(Fn.oc = Chyyn Az = C%,ny)
IOMatch = \x,b.(3n,a.x = C%yyn aANa+n=>).

In the original P, f is used as a higher-order formal parameter, but here it has sort
closr. The new logic program has multiple equations for Apply and IO Match, which
violates the rule that every top-level relational variable must be distinct. Each of the
equations defines a conditional branch of a relational variable. Hence, we combine them
by taking their disjunction. Specifically, suppose we have

X =Xr1,...,2,.G1
X = /\yl, cee ,yn.Gg.

Then the disjunction of these two equations is given by

X =Azq,..., .Tn.(Gl vV GQ[ZL'l/yl] ce [xn/yn])v

where Ga[x;/y;] denotes the result of substituting xz; for every free occurrence of y; in
Go. I assume that z; does not occur bound in Gy (or at least the substitution [z;/y;]
does not cause variable capture) for all 1 < i < n. For readability, however, I will leave
the logic program unchanged.

At this point, Apply is not well-sorted, since the second arguments take various sorts;
e.g. nat, natlist, and closr. Therefore, we must create clones of Apply, each specializing
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in a particular sort of the second argument. Let Apply4 denote a clone of Apply whose
sort is closr — A — closr — o. Similarly for IOMatch, 1T write IOMatch 4 for a clone
of IOM atch whose sort is closr — A — o. Inserting these clones to appropriate places
of the program, we obtain

Applynat = Az, y, z.x = Cg/mm ANz = C']l\/[am Y

Applynas = Az, y, 2.(3f-2 = Ctuice f N 2= Chuice [ 9)
Applynat = Az, y, 2.3 = Chgq Az = Clgq y

Applynat = Az, y, 2.(3n.x = Clyy n Az = C%yyn y)

Applynatlist = Al’,y, Z(Elfw - C’%’wiceMap f Nz = C%wiceMap f y)
Applynatlist = )\xaya Z(Elf.I = le\lap f Nz = C]2Wap f y)

Applyclosr = AT, Yy, 2.0 = C%wiceMap Nz = Cil“wz'ceMap Y
Applyclosr = AT, Yy, 2.0 = Cgmzp Nz = Cll\Jap Yy
Applyclosr = AT, Yy, 2.0 = C%wice Nz = Cil“wice )

IOMatchpas = Az, b.(3f, 0.0 = C2 e faA(Be.fachfcb))
TOMatchpas = Az, b.(3n, 0.2 = C%yy n a Aa+n =D)

TOM atchyagiiss = Az, ns.(3n.x = Clypin, 1 A TwiceMap (Add n) (cons 0 nil) ns)
IOMatchpatlist = Ax,ms.(3f,ns.c = C%wiceMap f ns A Map (Twice f) ns ms)
IOMatchpatiist = Az, b.(3f,a.x = CJQWQP faAn((a=nil Ab=mnil)

V (In,ns,m,ms.a =cons n ns A f n mA Map f ns ms \b= cons m ms))).

On the right hand sides of equations defining IO Match 4, we have function appli-
cation that involves formal higher-order parameters such as f. However, because their
sorts are changed to closr by defunctionalization, the next step is to insert C% , Applya,
and IOMatchy to the right hand sides of the equations defining /OMatcha. For ex-
ample, the first equation of IOMatchyat has the function application f a ¢. This is
transformed into

dd. Applynat f a d N IOMatchpag d c.

Analogously, TwiceMap (Add n) (cons 0 nil) ns in the first equation of IOM atchpatiist
is transformed into

Ja. Applynat Chgq 1 @
A (3b, c. Applyclosr C%wiceMap a b A\ Applynatiist b (cons 0 nil) ¢ A IOMatchpatiist ¢ NS).
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Applying the same step to all the remaining equations that define IOMatchy in P gives

TOMatchpat = Az, b.(3f, 0.0 = CHyie f a A (3e.(3d. Applynat f a d AN TOMatchpat d c)
A (Fe.Applynat [ ¢ e NIOMatchnat € b)))
IOMatchyas = Az, b.(3n, 0.2 = C%yy n a Aa+n =1D)

TOMatchpagiist = Az, 1. (3.2 = Clygin 7 A (3a.Applynat Cgq 1 a
A (3b, c. Applyclosr C%wiceMap a b A Applynatiist b (cons 0 nil) ¢
AN TOM atchpatiist ¢ nS)))
IOMatchpatlist = Ax,ms.(3f,ns.x = C%wiceMap f ns A (a. Applyciosr Couice | @
A (3b, c. Applyclosr CZ?/Iap a b A Applynatiist b ns ¢ A IOM atchpatiist ¢ mS)))
IOMatchpatiist = Az, b.(3f,a.x = CJ%/Iap faAn((a=nil Ab=nil)
V (In,ns,m, ms.a = cons n ns
A (Fe. Applynat f n ¢ N IOMatchpat ¢ m)
A (3d, e. Applyciosr C](\)/Iap f d A Applynatiist d ns e A IOM atchpagiist € MS)

A'b = cons m ms))).

Here we use type annotations to determine appropriate clones of Apply and IOMatch
to be used. As every function application is now done through a clone of Apply and
10Match, Applya and I0OMatch g are self-contained. Hence, we can delete all equations
defining the top-level relational variables from the source program. This completes the
defunctionalization of P.

Since the top-level relational variables in the original P are removed, we need to
defunctionalize the goal formula component G as well. It produces

G’ = In, ns.((Fa. Applynat C'R/[am n a A IOMatchpatiist @ nS) Ans =nil).

To sum up, the defunctionalized logic program safety problem is P’ = (A’, P/, &)
with the new signature ¥’ = (B',S'), where B’ and S’ are given by

B’ = BU {closr}
and

S =SU{CY,in : closr, Ciypin : nat — closr,
C’%wiceMap : closr, C%wiceMap : closr — closr, C%wiceMap : closr — natlist — closr,
C]?/Iap : closr, CJIWap : closr — closr, CJQ\/[ap : closr — natlist — closr,
CRice : €lost, Ok .. : closr — closr, C%,,... : closr — nat — closr,

C%4q : closr, Cl ;- nat — closr, C4,, : nat — nat — closr}.
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The new sort environment is

A = {Applynat : closr — nat — closr — o, Applynatiist : closr — natlist — closr — o,
Applyclosr : closr — closr — closr — 0, IOMatchyg: : closr — nat — o,
IOMatchpqyist = closr — natlist — o}.

P’ consists of

Applynas = Az, y, 2.8 = Cygin N 2 = Chyain Y

Applynat = Az, y, 2.3f.2 = Chyiee A2 = Chiyice [ Y)
Applynat = Az, y, z.x = Cﬁdd ANz = C}4dd Y

Applynat = Az, y, 2.(3n.x = Clyy n Az = C%y n y)

Applynatlist = )\$, Y, Z(Hf.l‘ = C%“wiceMap f Nz = C’Iz“wiceMap f y)
Applynatiist = AT, Y, Z(fo = Cll\/[ap fAz= 012\/10,]) / y)

Applyclosr = va Y, 2. x = C%wiceMap Nz = Cil"wiceMap Y
Applyclosr = A\, Y, 2.0 = Cgﬂzp Nz = lewap Yy
Applyclosr = A\, Yy, 2.0 = Cg"wice Nz = C’Zl“wice Y

TOMatchpat = Az, b.(3f, 0.0 = CHyie f a A (3e.(3d.Applynat f a d AN TIOMatchpat d c)
A (Fe.Applynat [ ¢ e NIOMatchpat € b)))
IOMatchpas = Az, b.(3n,a.x = C4yy naAa+n=>)

IOM atchpatiist = Az, ns.(In.x = Czlwam n A (Ja.Applynat C’gdd na
A (3b, c. Applyclosr C%wiceMap a b A Applynatiist b (cons 0 nil) ¢
AN TOM atchpatiist ¢ nS)))
IOMatchnagiisy = Az, ms.(3f,n5.20 = Cyicertap [ 18 A (30-Applyciose Cruice | @
A (3b, c. Applyclosr C](\)/[ap a b A Applynatiist b ns ¢ A IOM atchpatiist ¢ mS)))
IOMatchpatiist = Az, b.(3f,a.x = C'J%/Iap faAn((a=nil Ab=nil)
V (In,ns,m, ms.a = cons n ns
A (Fe. Applynat f n ¢ AN IOMatchpat ¢ m)
A (3d, e. Applyclosr C]?/[ap f d A Applynatiist d ns e A IOMatchpagiist € MS)

A'b = cons m ms))).
G'is
G' = In,ns.((Ja.Applynat C]?/[am n a A IOMatchyatiist @ nS) Ans =nil).

P’ and G’ are well-sorted and indeed first-order.
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Suppose that the model of the background theory for P is A, which interprets the
constant symbols from S in a standard way. A model A’ over ¥’ is then defined as
follows:

e For all constant symbols inherited from X, A’ has the same interpretation as A.
e To sort closr, A’ assigns a universe of objects created by data constructors Cfp.

e Functions C% are interpreted in a natural way as data constructors for the algebraic
data type closr.

The background theory for P’ is the background theory for P extended with additional
theorems for the closr universe. It is worth noting that not all functions have their
respective representatives in the universe of closr.

P and P’ have the same semantics in the sense that

P is solvable <= P’ is solvable.

This is because no relational variable is quantified in G. However, if G has quantified
relational variables, there is a problem as discussed in the next section.

3.2  Quantification of higher-order variables

In the example of Section 3.1, we do not have existential quantifiers over variables of
order more than 1. If we had higher-order existential quantifiers, we would have an issue
with preserving the semantics (i.e. solvability) of P.

By way of example, suppose G = Jf.Twice f 1 3 and that P only contains T'wice
defined as above. The resulting safety problem is not solvable, since for every prefixed
point of P,

f=Az,y.(z+1=y)

makes T'wice f 1 3 hold. However, one reasonable way to defunctionalize G gives
G’ = 3f.(3a,b. Applycrosr Crupice f @ A Applynat @ 1 b A IOMatchpas b 3),

where the sort of f is now closr. Then there exist valuations that are prefixed points
of P! but do not satisfy G’. The reason is because Applys and IOMatch 4 are defined
in such a way that only functions that can be created within P (i.e. partially applied
functions that are represented by C} t1 ---t;, where F is a top-level relational variable)
are considered by P’. As Add is not defined in P anymore, \z,y.(x + 1 = y) cannot
arise from P. Thus, there exists a prefixed point of P’ that does not satisfy G’.

Therefore, the semantics of the source safety problem are not preserved if relational
variables (except for variables of sort o) are quantified in G.

In essence, my defunctionalization fails due to the fact that P’ ignores any function
that cannot be built from the top-level relational variables defined in P.
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3.3 Elimination of higher-order quantifiers

The monotone semantics can resolve the issue with existential quantification over higher-
order variables.

Monotonicity lets us eliminate higher-order existential quantifiers from all goal terms
in a monotone problem. Consider 3, Az:p.F', where p is a higher-order relational sort.
Any function interpreted using the monotone semantics is monotone due to the use of =,
in the definition of monotone sort frames. Hence, M[Az:p.F](«), where FV(F') C dom(«),
is a monotone function of z. If there exists u € M[p] such that M[Az:p.F](a)(u) = 1 for
a fixed valuation «, any v € M[p] such that v C, v should satisfy M[Az:p.F](c)(v) =1
as well. The maximum element in M[p] is the relation that always returns 1. This is
called the universal relation of sort p. It follows that M3, \zx:p.F](o) = M[F[x —
Az1,. ..,z true]](«) for any « such that FV(F) C dom(«). Here, I assume that true
is declared in the signature and is included in the background theory. If this is not the
case, we can simply add true to the signature and the background theory. Henceforth, I
assume that a monotone problem does not have quantifiers over higher-order relational
variables.
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Chapter 4

Algorithm

This chapter first formally presents the defunctionalization algorithm. It then introduces
valuation extraction, which is a crucial idea in the proofs of the algorithm’s completeness
and soundness. The chapter concludes with proofs of completeness and soundness.

4.1 Preprocessing

Let the source monotone problem be P = (A, P,G). Prior to defunctionalization P, we
need to eliminate all anonymous functions in P and G and then perform 7-expansion to
fully expand the outermost lambda abstractions defining top-level relational variables.
For reasons of space, the details are not presented here. They can be found in Section A.1.

4.2 Defunctionalization algorithm

In this section, I formulate the defunctionalization algorithm via parametrised relations.
A goal term to be defunctionalized is called a “source goal term”, and a defunctionalized
goal term is called a “target goal term”. An input monotone safety problem is called a
“source monotone problem” and a defunctionalized monotone safety problem is called a
“target monotone problem”.

One approach to formulating a defunctionalization algorithm of a functional program-
ming language is to define a relation between source terms and target terms [Pottier and
Gauthier, 2004]. T will denote the relation by ~ and call it a transformation. s ~» ¢
means that s is defunctionalized into t. The word “transformation” might suggest that
~» is not only a relation but also a function. It is in fact possible to show that ~» returns
unique outputs and hence is a function. However, it suffices to regard ~» as a relation
in this document.

Prior to presenting the core of the defunctionalization algorithm, I explain why I
make use of parametrised transformations in the formulation of the algorithm.
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4.2.1 Parametrised transformation

The use of parametrised transformations gives us control over variable symbols in target
goal terms. To appreciate the importance of being able to specify variable symbols,
consider the goal term

fzy,

where the sort of each variable is

fint - int — o

z :int

y @ int.
Further, assume f ¢ dom(A). This goal term can be defunctionalized into

da. Applyint f x a AN TOMatching a vy, (4.1)

where the sort of each variable is now
: closr
s int

:int

QR 8

: closr.

Note that although (4.1) is not identical to the output of the defunctionalization algo-
rithm presented in Section 4.2.2, they are logically equivalent.

As the grammar of goal terms is defined inductively, it is natural to defunctionalize
goal terms inductively. (4.1) consists of two components:

Applying [ © a
IO0OMatchint a .

The former corresponds to the partial application of f to x and the latter corresponds
to the application of (f z) to y. Hence, the structure of (4.1) roughly reflects the
structure of f x y, where the curried function f is applied to = first and then to y.
However, the two components in (4.1) cannot be separated cleanly. The problem is
that both components refer to the same quantified variable a. Hence, it is necessary
to establish a “communication channel” between the defunctionalization of f x and the
defunctionalization of (f x) y. More specifically, we need to either specify what variable
should be used in the first component or inspect it and then copy the variable symbol
used in it to the second component.

As it is certainly not straightforward to define helper functions that extract variable
symbols from target goal terms, I opted to pass variable symbols to target goal terms.
One approach is to use contexts. For the above example, we can defunctionalize f x
into a context Applyint f ¢ X, where X is a hole. We can then substitute a concrete
variable symbol into X.
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Another approach to passing variable symbols is to use parametrised transforma-
tions. If a parametrised transformation ~»% is defined in such a way that (f z) ~%
(Applysns f = X) holds, we can invoke ~+X with a specific variable symbol substituted
into X.

The transformation in the context-based approach sometimes returns contexts and
other times returns goal terms with no holes. Since this can be confusing to readers, 1
adopted the approach based on parametrised transformations.

4.2.2 Defunctionalization

Formal presentation Let P = (A, P, G) be the source monotone problem that has already
been preprocessed by the procedure explained in Section 4.1. Due to the preprocess-
ing, the formal parameters of each outermost lambda abstraction defining a top-level
relational variable are visible. Also, P and G contain no anonymous functions. Given
P = Xx1,...,xm.F, where I' is not a lambda abstraction, let us call F' the body of P.
Because GG : o and hence is not a function, the body of G is G itself. Since lambda
abstractions only appear at the top level of syntax trees of P and G, the bodies of P
and G are free of lambda abstractions. The defunctionalization of the bodies is guided
by the following inference rules:

CE{/\,\/} E~ E' F~s F' F~ F'
(¢ EF)~ (c E'F) (LoaSy) . F ~ Fpx F (B
ea A : 0 ~h
head(E) ¢ {, v} iéEFjlﬁ A L
head(E) ¢ {A\,V} AF(EF):0o (EF)~uH (MaTcH)

(EF)~H

EMxEI Al_FO— g ~~>T7 O F/\,.)F/
(E F) Mil( Elclosrx'(E/ /\Applyg z F' X)

(AppP-BASE)*

E~* F AFF:o o ~»7 closr F~Y FY
(E F) '\’*i}( Elclosrx-(El A Elclosry'(F/ A Applyclosr zy X))

(ApP-ARROW)*

E~* B AFF:o O~ O F~ F'
(E F) ~M Elclosrw-(E//\IOMatChU X F/)

(MATCH-BASE)*

E~% B AFF:o o ~»7 closr F~Y |
(E F) ~ 1 Jetosr-(E' A Jelosry-(F' AN IO Matchelosy T )

(MATCH-ARROW)*

pe FmUTm

x is a variable T:0 (
Y~

T~ X

VAR-BASE)

(CoNSTRLAN)
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x is a variable T:p pFo r €A
VAR-ARROW ToprPVAR

r~X X =1 ( ) yjf\/)XX:Cg( )

order(b) =1 order(r) > 1
The function head is defined by
head(z) = x x is a variable
head(c) = ¢ ce{A,V}
head(¢) = ¢ o€ FmUTm
head(E) = FE E is in the form A\z.F or Jz.F
head(F F') = head(E).

This function returns the head symbols of goal terms.

In the conclusions of the rules whose names are marked with *, quantified variables
x and y are assumed to be different from any variable symbol occurring in £’ and F’
before substitutions [X +— z] and [X — y] are applied.

Transformation types The abbreviations of the rules’ names and what they stand for
are summarised below:

Abbreviation Full form
LocSym Logical constant symbols
Ex1 Existential quantifier
App Apply
MATCH IOMatch
APP-BASE Apply for a base sort
APP-ARROW Apply for an arrow sort
MATCH-BASE IOMatch for a base sort
MATCH-ARROW  IOMatch for an arrow sort
CONSTRLAN Constraint language
VAR-BASE Variable of base sort
VAR-ARROW Variable of an arrow sort
ToPVAR Top-level relational variable
BASE Base sort
ARROW Arrow sort

In the above inference rules, we have five types of transformations: ~», ~»X Mf ,
~ 1, and ~»p. Superscripts of ~» store parameters, and subscripts denote the classes of
the transformations. ‘A’ in Mf is short for Apply, ‘M’ in ~+j; is short for Match, and
‘T’ in ~» is short for Types (i.e. sorts).

The transformations ~» and ~»¥ are applied to goal terms that contain no lambda
abstractions. They are used to transform the bodies of lambda abstractions defining
top-level relational variables. In ~»X, X is a parameter into which a variable symbol
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is substituted. Hence, ~»X is a parametrised relation that returns an appropriate goal

term according to the parameter X passed to the relation.

The transformation «»1)4( is for function application that produces goal terms with
arrow sorts. Because the result of the function application is not of base sort, the
argument of the function application cannot be the last parameter of any relational
variable (otherwise, the result of the function application would have the sort o). Hence,
«»1)4( replaces such function application with an instance of Apply. Like ~»%, '\»1)4( has a
parameter for variable symbols. Notice that X in the inference rules defining ~»* and
«»1)4( acts as a “metavariable” and hence is used as a “pattern” in pattern matching.

In contrast to Mf , ~ s is for function application that produces goal terms of base
sort. Such function application is replaced with an instance of IOM atch.

Lastly, ~»7 transforms sorts.

4.2.3 Bindings of variables and quantifiers

In the four inference rules marked with *, new quantified variables are introduced in
the result of transformation. To avoid variable capture and disambiguate bindings of
quantifiers and quantified variables, the newly introduced quantified variables must be
distinct from all variable symbols occurring in E' and F’ before we apply substitutions
[X — z] and [X — y]. Hence, it is necessary to calculate E’ and F’ before we can select
suitable symbols for the quantified variables in the four rules’ conclusions.

To illustrate the need for using fresh variables, consider the partially applied goal
term

Add x, (4.2)
where the sort of each variable is
Add : int — int — int — o
x :int.
Further, assume Add € A. By (TOPVAR), we have
Add ~* X = CY 4, (4.3)

where X is to be specified when the enclosing goal term is defunctionalized. We also
have
T~ X
by (VAR-BASE).
To produce a target term of Add x, we apply (APP) and (ApPP-BASE). If x is used
for a new quantified variable, we obtain

Add x ~X Jgosr . = C’%dd A Applying ¢ = X. (4.4)

Variable capture happens in (4.4) since the second argument of Applying, which ought
to be a free variable, is now bound by J¢ose. To disambiguate this expression, a fresh
variable symbol y is used for the quantified variable:

Add z ~% Jgosry.y = COa N Applying v © X. (4.5)
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X in the parametrised transformations specifies what variable symbol is used to
denote the entity of sort closr that represents the source goal term.

For example, consider Add x in (4.2). In the target term of Add in (4.3), X denotes
the entity of sort closr that represents Add, i.e. C% 44+ because X and 021 4q are connected
by equality.

Also, in the target term of Add z in (4.5), we have Applyint y © X, where y = CY ;.
The third parameter of Apply, which always has the sort closr, represents the result of
applying the function represented by the first parameter to the entity represented by the
second parameter. Hence, X denotes a closure that represents Add x.

4.2.4 Target monotone problems

The defunctionalized monotone problem is given by P’ = (A’, P/, G') with a new signa-
ture ' = (B',S'), where B’ and S’ are given by

B’ = B U {closr}
S = SU {(=¢losr) : closr — closr — o}
U{C%:0y—= - =0, —closr|X:01 == 0n—>0EA,
0§i<m,0j~>TU§-foralllgjgz‘},

Here, closr, (=closr), and Cg( are assumed to be fresh. The new sort environment A’ is

A" = {Applya : closr -+ A — closr — o | A € B'}

, (4.6)
U{IOMatchy : closr - A —o| AcB'}.
Some of Applys and IOMatch 4 may be redundant. P’ is defined as
P = PApply U PfOMatch? (47)

/ /
where PApply and Pjoyiatcn are

Phoply = {ApplyU;H_1 =\z,y,2.3a1,...,ap2=C% a1 -+ ap Az=C%"1a; - a, y)

| (X = Azq:0v, ..., Tmiom.F) € Par(X) =m,0 <n <m—2,0,41 ~7 0p i}
(4.8)
Plomaten = {IOMatchy = Ao, 2. (321, .., 2m1.2 =C 2y o+ Ty AF)
| (X = A\x1:01, .., Tmiom . F) € Par(X) = m, 0~ 0y, F~s F'}
(4.9)

Note that F in (4.9) must have the sort 0. This indeed holds and follows from Lemma D.3.1).
In the definition of Pjyyiain» €Very occurrence of 1, ..., &y, in F’ is bound by the out-
ermost 3 in the body of IOMatchy .
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The defunctionalized goal formula G’ is given by
G~ G

Lastly, the constraint language, particularly the background theory, for P’ need to be
defined. Let the constraint language for P be (T'm, F'm,Th) and the constraint language
for P’ be (T'm/, Fm/,Th'). Tm’ and Fm' are informally defined as extensions of T'm and
Fm with terms and formulas containing (=¢josr) and C& for some relational variable
X € A. Because formal definitions of T'm’ and F'm’ are not critical to the proofs of the
defunctionalization algorithm’s correctness, I will not formally define them.

The background theory T'h can always be characterized by a set of structures S such
that F € Th if and only A |= F for all A € S. For each A € S, a structure A’ for P’ is
defined as follows:

e To all sorts inherited from B, A’ assigns the same universe as A.

e To the sort closr, A’ assigns the universe of objects that can be constructed by
the data constructors C% € S\ S. Informally, the universe assigned to closr is

élosr:{(Xatlw-wtk)|X:UI_>“'_>O'm—>0€A,OSk<m,
o; ~p o for each 1 <i <k, t; € A, for each 1 <i < k}.

In other words, the universe is the set of tuples in which the first component denotes
a top-level relational variable and the remaining components represent the actual
parameters that have been supplied to the relational variable. This definition is
informal because we may have A/, = Ay, i.e. the definition may be circular. In
that case, the definition does not unalify as a formal definition. Another problem
we have with this informal definition is that infinitely nested tuples are admitted.
To get around this issue, I provide an inference rule to construct elements in A, _ :

X:iog = =0, —=0€EA 0<k<m tieAgiforeaChlgiSm
(X, t1,...,t,) € Al

closr

where o; ~»1 b; for each 1 <1 < k.

e For all constant symbols inherited from S, A’ interprets them in the same way as

A.

— A — 2 is determined by this inference

e The interpretation of (=¢josr) : A *losr

rule

!
closr

X:iog—--—o0,—>0€A 0<k<m t; =p, si foreach 1 <i <k
(X7t17"' 7tk) —closr (X7817"' 7Sk)

where o; ~»p b; for each 1 < i < k. The interpretation of (=¢josr) is well-defined
since the equality (=) for each b € B exists.
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° C}} is interpreted as a function that takes in ¢ many arguments and returns an
appropriate object from A’ Formally, it is defined by

closr*

Clelty, .. ) = (X, t1,...,t;).

The new background theory for the target monotone problem is obtained by extending

each model in S:
S’:{A’|AES},

where S’ is a set of models characterizing Th'.

4.3 Valuation extraction

Given a monotone problem P = (A, P,G), a model of P is an element of M[A] such
that it is a prefixed point of the one-step consequence operator Tlé‘ftA. If o is a model of
P and X € dom(A), I will call a(X) a model of X. P is said to be solvable if for every
model of the background theory, there exists a model « of P such that M[G](a) = 0. I
will call such a model of P a solution to P.

To prove completeness of the algorithm, my approach is to extract a solution to the
target monotone problem from a solution to the source monotone problem. Hence, I will
start with explaining how valuations can be extracted.

In this section, a source monotone problem is assumed to have been preprocessed.
As it is relatively easy to see that the preprocessing step preserves semantics, a formal
proof for that will not be provided.

4.3.1 Demonstration

To illustrate how extraction works, consider a source monotone problem P = (A, P, G)
with the first-order signature being ¥ = (B, S), where

B = {nat, o}
S = {+ : nat — nat — nat, (=) : nat — nat — o} U {n : nat | n € N}.

P contains

Add = da,b,c.a+b=c
Twice = Af,a,b.(3e.f acA feb).

The sort environment for these two top-level relational variables is
A = {Add : nat — nat — nat — o, Twice : (nat — nat — o) — nat — nat — o}.

Since G is irrelevant to the discussion of how to extract solutions, it is unnecessary to
specify G. Let A be the structure that assigns the universe of natural numbers, denoted
by N, to the sort nat. A interprets the symbols in S as they are.
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I will consider a specific model o of P that is defined by
«a: Add — add a : Twice — twice.
The model of Add is add : N — N — N — 2 defined as

1 ifat+b=c

add a b c=
0 otherwise.

The model of Twice is twice : (N -+ N — 2) - N — N — 2 is defined as

1 ifdefac=1ANfcb=1

0 otherwise.

twicefab:{

In fact, regardless of valuation «, add coincides with M[A F (Aa,b,c.a +b = ¢) : o] (),

and similarly twice coincides with M[A F (Af,a,b.(3c.f a ¢ A f ¢ D)) : o](«). In other

words, any model of P is larger than or equal to «; hence, « is the least model of P.
P’ is defunctionalized into P’ = (A’, P, G’), where P’ contains

Applynat = Az, y, 2.2 = Chgg Az = Claq y
Applynat = Az, y, z.(In.x = C}ldd nAz= Cidd ny)
TOMatchnas = Az, c.(3n,a.x = C%yy a bAa+b=c)

Applyeciose = A2, Y, 2.2 = Chuyice N 2 = Clujce Y
Applynas = Az, y, 2.(3f-& = Cruice [N 2= Chuice [ )
TOMatchpas = Az, b.(3f, 0.0 = CHyice f a A (3e.(3d.Applynat f a d A IOMatchypat d c)
A (Fe. Applynat [ ¢ e N IOMatchpat € b))).

I will now work out a model of P’ induced by a. The universe of nat in P’ remains

N. The universe of closr in P’, denoted by A/, .., is constructed by

X:io1 =+ =0, —0€EA 0<k<m tieAgiforeachlgigm
(X,tl,...,tk)GA/

closr

where o; ~7 b; for each 1 < i < k. A model for Applynat is the function applynat :
A N A — 2 defined as

closr closr
1 ifmlzC%/\mng)l(n
applynat M1 N Mo = or Any.(my = C')l( ny A mg = C’gf ny n)
0 otherwise,
where X € {Add, Twice}.
! — Ay — Al

More generally, the model for Applyp is a function applyp : A, ., closr
2 that takes three inputs: mj,n,my. Here, the universes A}, where b € B U {closr},
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are defined in Section 4.2.4. The parameter m; is a closure that represents a partially
applied function, and n is an input to be augmented to mi. Thus, applyp is defined as

1 if ma =closr append(mla TL)
applys m1 n mg = :
0 otherwise,

/
closr

append((X, tl, e 7tk)atk+1> = (X,tl, . ,tk,tk+1).

/

where append : A — Ay = Al 18

A model for Applyciosr in P’ is therefore given by applyciosr-

Next, I consider IOM atchyat. Because it has two branches corresponding to different
top-level relational variables from the source problem, I will derive a model for each
branch separately. These two models will be merged later to form a single model for
IOMatchnat.-

The first branch of IOMatchyat is obtained by defunctionalizing Add. This branch
has the role of determining whether the first input, which should be a closure of Add,
can be evaluated to the second input. The first input is expected to have the form
(Add,ny1,nz2). Hence, the model for the first branch of TOMatchpat is the function
add : A’ — N — 2 defined as

closr

1 if m = (Add,ny,n2),n =ny + neo

add m n =
0 otherwise.

Notice that this function is similar to add in that both of them perform addition and
return 1 whenever the last input matches the result of addition. They only differ in the
representation of the inputs: in add, two numbers to be summed are stored in the first
two parameters, whereas in add’, they are stored inside the closure in the first parameter.
Capturing the similarity between add and add’, we can easily formalize how to convert
a model for a top-level relational variable to a model for the corresponding 1O Match
branch when closr is not involved.

Next, I work out how to interpret the second branch of IOMatchyat, which is ob-
tained by defunctionalizing Twice. Elements of base sort in P’ can be converted to
corresponding elements in P as follows:

expand,, (t) if ¢ is not of sort closr

=t
expand, (X, t1,...,tx)) = a(X) expand(t1) --- expand(ty) otherwise.

Using the expand,, function, I define twice’ : A’ —+N— 2 as

closr

1 if m = (Twice, f,n1) A twice expand,(f) n1 n =1

twice’ m n = .
0 otherwise.

Alternatively, twice expand,(f) n1 n can be written as expand(m) expand(n). The
interpretation of the second branch of TOM atchpnag is twice’.
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By construction, twice’ (Twice, f,n1) ny = 1 implies twice expand(f) ny ny = 1.
However, the converse does not hold. For example, twice’ (Twice, (Add,1),0) 2 holds, as
does twice (add 1) 0 2. By contrast, twice (Aa,b.a —1 = b) 2 0 holds, whilst twice’ t 2 0
does not hold for any t of sort closr. This is owing to the fact that A, __. only contains
closures representing partially applied functions that are expressible using the top-level
relational variables in P.

As the two branches of TOMatchnat are (syntactically) combined by taking their
disjunction, the interpretation of IO M atchyat is obtained by taking the disjunction of its
constituent interpretations. Hence, the resulting model for IO M atchpat is iomatchnat :

! — N — 2 defined as

closr

iomatchpat m n = add m n V twice’ m n.
This can be made more general:

iomatchpat m n = expand, (m) expand, (n).

4.3.2 Formalization of valuation extraction

Given a first-order signature 3 = (B, S), suppose that a source problem is P = (A, P, G).
Assume that the target problem of P is P’ = (A’, P’,G’) and that the new signature is
Y = (B',S), where B’ = BU {closr}. The derivation of S’ is presented in Section 4.2.4.
Let A be a Y-structure used to interpret P and A’ be the structure for P’ obtained
from A as explained in Section 4.2.4. T write A’; for the universe assigned to B € B’ by
A’. Also, assume that « is a valuation drawn from M[A]. I will now explain how to
derive a valuation o/ € M[A’] from a.
Each top-level relational variable in A’ is either Applyg or IOMatchpg, where B € B'.
As for Applyg, o/ maps it to applyp : AL o = A = ALjoer — 2 defined as
1 if m2 =closr append(m1,n)

applyg m1 n mo =
pPiy {O otherwise,

!
closr

a’ppend((X7 t1y. .. 7tk)atk+1> = (X7t17 s 7tk7tk+1)'

!/

where append : A — Ay = Al 18

With respect to IOMatchpg, its interpretation is given by iomatchp : A’ —

Ay — 2 defined as el
iomatchp m n = expand, (m) expand,(n)
The function expand,, is defined as
expand, (s) = s ifs:b,beB

expand,, (Y, s1,...,5)) = a(Y) expand,(s1) --- expand,(s;) otherwise.
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If iomatchp m n = expand,(m) expand,(n) is not well-defined due to type mismatch,
then it is set to 0.
The valuation ' is therefore

o/ = {(Applyg, applys) | B € B'}}
U{(IOMatchp,iomatchg) | B € B'}}.

Henceforth, I will write o/ = T¢(«) to mean that o’ is derived from a by the above
procedure, where « is a valuation for P.

4.3.3 Monotonicity of o

We need to check whether the model of each X € dom(A’) assigned by o’ is monotone.
In fact, o is “nearly” monotone but is not truly monotone, since o'(Apply,) is not
monotone. Appendix B describes how to get around this issue.

4.4 Meaning preservation

Meaning preservation means the preservation of source problems’ semantics. Hence,
meaning preservation is achieved when target monotone problems are solvable if and
only if source monotone problems are solvable.

4.4.1 First direction

In this section, I prove that it is possible to produce a solution to the target monotone
problem from a solution to the source monotone problem.

As usual, given a first-order signature ¥ = (B,S), suppose that a source problem is
P = (A, P,G). Assume that P is defunctionalized into P’ = (A’, P’,G’) and that its
new signature is ¥’ = (B’,S').

Let Th be a background theory for P and Th' be the background theory for P’
derived from Th. Assume A € Th and A’ € Th', where A’ is built from A as presented
in Section 4.2.4.

First, I establish the relationship between the semantics of source goal terms and
semantics of target goal terms. A source goal term has either an arrow sort or a base
sort. I will first illustrate the connection between the semantics of source and target
goal terms in the case when the source goal terms are of arrow sorts.

If s ~»%X ¢ and s has a relational arrow sort, X can be thought of as a variable (more
precisely, a placeholder/hole for a variable) of sort closr that represents s. For instance,
the partially applied function Add 1 is defunctionalized into

Jetosr - (2 = CYyg A Applynas = 1 X), (4.10)
where X is to be specified by a defunctionalization step at a higher level. In (4.10), X

appears in the last parameter of Applynat. Hence, X can be considered as a variable
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that represents the result of applying Add, which is represented by x = ngd, to 1. To
put it differently,

M[Jarosrz.(x = ngd A Applynat = 1 X)|([X — (Add,1)]) = 1;

that is, (4.10) holds when we substitute X = C;; 1. Moreover, it is worth observing
that
expand, ((Add, 1)) = M[Add 1](«),

where « is a valuation of the source goal term Add 1.

On the other hand, if I' - s : b, where b € B, and s ~ t, then s and ¢ have the
same semantics. For example, consider s = Add 1 1 2 that is to be interpreted using the
valuation oo = [Add — add]. s is defunctionalized into

Jelosr T Y, 2- ((L‘ - C,DAdd N Applynat © 1 y A Applynat y 1 2 A IOMatchpat 2 2) .

Let this target goal term be denoted by t. t is interpreted using o/, which is ob-
tained by applying the procedure presented in Section 4.3.2. It gives o = [Applynat —
applynat, [OM atchpat — add'].

Now we have

M(s](a) = M[t](a)

since both sides of the equation evaluate to 1.
To express this formally, consider a well-sorted source goal term s over X that contains
no lambda abstractions. Suppose the following;:

e s is a goal term (or a subgoal term) from P. The structure A is used to interpret
s.

e I' - s : o, where o is either a relational arrow sort or a base sort. Because s is
well-sorted, FV(s) C dom(T").

e s ~X t. The structure A’ is used to interpret ¢. In s, both ordinary variables
and top-level relational variables are treated as variables. However, in ¢, ordinary
variables from s have the same status, whilst top-level relational variables from s
become constant symbols in t.

o I'Ft:0', where o ~»p o’ and FV(t) C TV. TV can be equal to
{u:0"|ueFv(s)\dom(A),u:0el}

U {Applyp : closr — B — closr — o | B € B’}
U{IOMatchg : closr -+ B — o | B € B'},

although this contains top-level relational variables from A, which never appear in
t.

e « is a valuation of s such that if v € FV(s) : p, where p is a relational arrow sort,

there exists ¢ € A, such that expand,(c) = a(v).
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e o/ is a valuation of ¢ satisfying

— o/(v) = ¢ for v € FV(s) \ dom(A) such that expand,(c) = a(v).
— o/ (Applyp) = applyp for B € B'.
— o/(IOMatchp) = iomatchp for B € B'.

Note that X ¢ dom(a/). Here, applyp and iomatchp are defined in Section 4.3.2.

Notice that applyg in o is not monotone if B = o as explained in Appendix B.
This will not be problematic, since I do not rely on monotonicity of o’ to prove the first
direction of meaning preservation.

Moreover, given a term u, if no existential quantifiers in u bind higher-order variables
and all symbols in u have order at most 2, M[u](o/) = S[u](’). The monotone and
standard semantics differ when we have existential quantifiers over higher-order variables.
Hence, if we use o/ to interpret first-order goal terms, the monotone and standard
semantics give the same interpretation. This can be formally proved by induction on
the grammar of goal terms. Thus, within this section, I write M[u](a’) even though o/
is not truly monotone.

In addition, Tf},’f A/ is equivalent to TS,: As» although T/\//f A/ is not guaranteed to be
monotone if an input is not drawn from M[A']. The monotonicity of T4 ,, is not used
in this section.

The next lemma establishes a semantic relationship between a source goal term and
a target goal term.

Lemma 4.4.1. If 0 ¢ B, we have a unique ¢ € A, . such that M[I" -t : closr](a/ U

[X — ¢]) = 1. In addition, this c satisfies expand,(c) = M[I' t s : o](«). Otherwise, if
o is a base sort, we have M|t s: b](a) = M ¢t : b]().

The uniqueness of ¢ € A, in the above lemma is important for the inductive proof

to work. It is worth noting that this c is a closure object that represents the partially
applied function s.
This lemma allows us to establish the first direction of meaning preservation.

Theorem 4.4.1. If P is solvable, so is P’.

4.4.2 Continuity of one-step consequence operators

There are difficulties with applying the idea of valuation extracting to prove the second
direction of meaning preservation (see Appendix C.2). Hence, for the second direction,
I adopt a different approach that does not involve valuation extraction. My approach
was originally inspired by the work on Communicating Sequential Processes by Roscoe
[1997], though it later turned out that in the literature on logic programming, the same
approach has been used for a long time [Lloyd, 1987; Hogger, 1990].

In this section, I introduce the notion of “continuity”, also known as Scott continuity.

Given a partially ordered set (poset) P and a subset X C P, the greatest lower
bound of X is denoted by [ ] X and the least upper bound of X is denoted by | | X.
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It is explained in [Cathcart Burn et al., 2018] that M[A] is a complete lattice.
I will first introduce several key definitions taken from [Roscoe, 1997].

Definition 4.4.1. Given a poset P, a subset D C P is said to be directed if each finite
subset F' of D has an upper bound in D; in other words, there is y € D such that x <y
forallx € F.

Definition 4.4.2. A complete partial order (often abbreviated cpo) is a partial order in
which every directed set has a least upper bound, and which has a least element (denoted
by L).

A complete lattice is also a complete partial order.

Definition 4.4.3. If P and Q) are two complete partial orders and f : P — @, then f is
said to be continuous if, whenever R C P is directed, | [{f(z) | z € R} exists and equals

FUR).

A continuous function can be shown to be monotone, although I will not do it here.
The next proposition establishes that TI/D\:AA is continuous when the underlying complete
lattice is finite.

Proposition 4.4.1. If M[A] is finite, then T\ : M[A] — M[A] is continuous.

Continuity of T4 is a strictly weaker condition than the finiteness of M[A]. For
instance, even when some universes A, are infinite, if T/D\:/IA is an identity function, it is
continuous.

The next theorem shows that if TIJD‘:AA is continuous, then there exists a constructive
way to obtain a fixed point.

Theorem 4.4.2. If f is continuous, then | [{f™(L) | n € N} is the least fixed point of
!

4.4.3 Second direction

The next lemma shows that this diagram commutes:

Lemma 4.4.2. Given a valuation v of P and a valuation v of P', suppose v = Tg(7)
holds. If ¢ = TN (v) and ¢' = TH (7)), then ¢ = Ty(C).

The next lemma states that T’y holds between the lowest upper bounds of two in-
creasing sequences whose valuations are related by T'.

39



Lemma 4.4.3. Assume 3 = | |J{f1(a) | n € N}, where f1 = TL, and ' = | J{f3() |
n € N}, where fo = Tt . If o = Ty(a), then B = Ty(B).

The next theorem establishes soundness of the defunctionalization algorithm, albeit
under the extra assumption that one-step consequence operators for the source and
target problems are continuous.

Theorem 4.4.3. Given that T}é\f‘A and TI/D\,/EA, are continuous, if P’ is solvable, then so
s P.

4.4.4 Continuous semantics

Recent work by Jochems [2018] studies the continuous semantics, which uses continuous
function spaces to interpret goal terms. In his working paper, it is shown that one-step
consequence operators in the continuous semantics are continuous:

Theorem 4.4.4. ng;A s continuous for all programs P in the continuous semantics.

Further, Jochems [2018] proves the equivalence between the monotone and continuous
semantics:

Theorem 4.4.5. The HoCHC safety problem (A, P,G) is solvable under the monotone
interpretation, if and only if it is solvable under the continuous interpretation.

In Section 4.4.3, the key result is Lemma 4.4.2, which in turn hinges on Lemma 4.4.1.
Valuation extraction works correctly even if we start with a source “continuous” problem
(as opposed to a source monotone problem). Because the defunctionalized target prob-
lem is first order, it has the same meaning regardless of which of the standard, monotone,
and continuous semantics we use to interpret the problem. Therefore, Lemma 4.4.1 can
be adapted to the continuous semantics. Also, Lemma 4.4.2 can be adapted to the
continuous semantics. As a consequence, adapting Theorem 4.4.3 to the continuous
semantics yields

Theorem 4.4.6. If P’ is solvable under the continuous semantics, then P is also solvable
under the continuous semantics.

This is because one-step consequence operators in the continuous semantics are con-
tinuous by Theorem 4.4.4.
Finally, this gives

P’ is solvable under M = P’ is solvable under C by Theorem 4.4.5
= P is solvable under C by Theorem 4.4.6
—> P is solvable under M by Theorem 4.4.5,

where M and C denote the monotone and continuous semantics, respectively. Therefore,
the defunctionalization algorithm is sound.
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Chapter 5

Implementation and evaluation

This document describes how the defunctionalization algorithm for monotone prob-
lems is implemented. The source code, including a test suite, is available at https:
//github.com/LongPham7/Defunctionalization-of-monotone-problems. A web in-
terface is available at http://mjolnir.cs.ox.ac.uk/dfhochc/. This web interface
feeds the defunctionalization algorithm’s output into Z3, an SMT solver developed by
Microsoft Research, to verify the defunctionalized target problems.

5.1 Implementation

5.1.1 Input format

By way of example, consider a monotone safety problem P = (A, P, G), where

A = {add : int — int — int — bool,
twice : (int — int — bool) — int — int — bool}
P = {add = Az:int, y:int, z:int.x + y = 2,
twice = A\f:int — int — bool,x:int, y:int.(Jinez.f x 2 A f 2 y)}
G = Jipezr.add 1 2 .
For simplicity, DefMono only handles the background theory of linear integer arithmetic
(ZLA).

An input file corresponding to the monotone problem above is

# This is a sample comment.
environment
add: int -> int -> int -> bool

twice: (int -> int -> bool) -> int -> int -> bool

program
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11

12

add := \x: int. \y: int. \z:int. x + y = z;
twice := \f: int -> int -> bool. \x: int. \y:int. E z:int. f x z & f z y;

goal
E x: int. add 1 2 x

As can be seen in line 1, single-line comments start with #. Multiline comments are not
supported.

A sort environment is placed in the environment section. Fach statement in the
sort environment is allowed to span multiple lines, without endmarkers. By contrast,
under the program section, each equation defining a top-level relational variable must
end with a semicolon. This restriction is placed to make parsing easier.

The binding operator A in a lambda calculus is written as \, and 3 is written as E.
The sorts of variables bound by A and 3 must be specified.

Following the notation in Haskell, conjunction is written as &&, and disjunction is
written as | |.

For first-order formulas from ZLA, the following operators are included: <, <=, =, >,
and >=. Inequality such as a # b can be expressed by a < b || a > b.

5.1.2  Output format

DefMono supports two output formats. One is the same format as that of inputs, which
is preferable if a readable output is desired. The other format is the ‘pure’ SMT-LIB2
format, and it allows outputs to be readily fed into Z3.

Since target problems produced by the defunctionalization algorithm involve closures
(i.e. entities of the closr sort), it is necessary to encode them. This is achieved by using
a list-like algebraic data type with equality. The following example demonstrates how
to define closures in a suitable manner for Z3. Twice and Add are top-level relational
variables in this example.

(declare-datatypes () ((Closr
Twice
Add
(boolCons (boolHd Bool) (boolTl Closr))
(intCons (intHd Int) (intT1l Closr))
(closrCons (closrHd Closr) (closrTl Closr)) )))

The name of the algebraic data type, Closr, is stated in line 1. In lines 2 and 3,
Twice and Add represent (T'wice) € A, . and (Add) € A, ... In lines 4-6, boolCons,
intCons, and closrCons are data constructors that append Booleans, integers, and
closures, respectively, to input closures. Each of these constructors comes with selector
functions for heads and tails of lists. Note that in the encoding of (X, t1,...,t;), where

X is a top-level relational variable, the head is t,, rather than X.
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5.2 Evaluation

In this section, I evaluate the performance of DefMono in respect of its verification
capability and its running time. Additionally, its performance is compared with that of
two other higher-order verification tools:

e HORUS! by Cathcart Burn et al. [2018]: this runs a refinement type-based algo-
rithm on higher-order Horn clause problems.

e MoCHi? by Kobayashi et al. [2011]; Sato et al.: this runs a CEGAR-based model
checking algorithm on higher-order verification problems written in OCaml.

The test suite for DefMono is obtained from that for HORUS by adding one additional
test case: ‘hold’. ‘hold’ is originally presented in Section 5.3 of [Cathcart Burn et al.,
2018] as an example that is beyond HORUS’s verification capability. HORUS’s test
suite is obtained from MoCHi’s. As some of them use the list datatype, which is not
supported by HORUS and DefMono, such test cases are disregarded. The remaining test
cases were then translated from OCaml into Horn clause problems by Cathcart Burn
et al. [2018].

5.2.1 \Verification capability

The verification outcomes are summarised in Table 5.1. An input problem being solvable
is indicated by sat in DefMono and HORUS and by safe in MoCHi. In fact, the output
of HORUS is unsat when an input is solvable; however, for readability, it is reversed.

For HORUS and MoCHi, I used their web interfaces to collect the results. The Z3
used in a web server running HORUS’s web interface is version 4.4.1. As for DefMono,
I used Z3 version 4.6.0.

According to [Kobayashi et al.; 2011], MoCHi verifies all test cases in HORUS cor-
rectly. Furthermore, because ‘hold’ is solvable, MoCHi verifies it correctly as well [Cath-
cart Burn et al,, 2018]. In all test cases except ‘a-max’ and ‘a-max-e’, because the
outputs of DefMono coincide with those of MoCHi, DefMono verifies these test cases
correctly as well. Regarding ‘a-max’ and ‘a-max-e’, DefMono does not terminate within
two minutes. This shows that DefMono’s outputs may be out of Z3’s reach. In this
test suite, MoCHi returns unsafe if and only if DefMono terminates and returns unsat.
Hence, none of the test cases violates completeness or soundness of DefMono.

With respect to HORUS, ‘neg’ and ‘hold’ demonstrate incompleteness of HORUS
(i.e. they are solvable, but their respective transforms are not typable). Thus, DefMono
is more capable than HORUS with respect to ‘neg’ and ‘hold’. On the other hand,
HORUS correctly verifies ‘a-max’ and ‘a-max-e’, which cannot be handled by DefMono.

!The source code of HORUS can be found at https://github.com/penteract/
HigherOrderHornRefinement. The web interface is available at http://mjolnir.cs.ox.ac.uk/horus/.

2The web interface of MoCHi is available at http://www-kb.is.s.u-tokyo.ac.jp/~ryosuke/mochi/.
Since the original paper [Kobayashi et al., 2011] on MoCHi was published, this web interface has incor-
porated an extension described in [Unno et al., 2013].
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Test case | HORUS | MoCHi | DefMono
ack sat safe sat
a-max sat safe time out
a-max-e sat safe time out
herc sat safe sat
max sat safe sat
mc91 sat safe sat
mc91-e unsat unsafe unsat
mult sat safe sat
mult-e unsat unsafe unsat
neg unsat safe sat
repeat-e unsat unsafe unsat
sum sat safe sat
sum-e unsat unsafe unsat
hold unsat safe sat

Table 5.1: Verification outcomes of HORUS, MoCHi, and DefMono

5.2.2 Running time

The running time of DefMono and HORUS on the test suite is presented in Table 5.2
and Table 5.3. The column ‘Def’ shows the the running time of the defunctionalization
algorithm. The column ‘Solving’ shows the running time of Z3 v.4.6.0 to solve target
monotone problems generated by the defunctionalization algorithm. The column ‘Trans’
shows the execution time of transforming an input higher-order Horn clause problem into
a first-order one using refinement types. The experiment was conducted on Windows 10
using an Intel Core i7 CPU.

The running time of Z3 to solve target problems varies greatly from test case to test
case: the execution time ranges from 16.72 ms in ‘sum-e’ to 3.35 s in ‘max’. Moreover,
as explained before, Z3 does not terminate on ‘a-max’ and ‘a-max-e’ within two minutes.

As for HORUS, all in all, it takes less time for transformation than DefMono does
for defunctionalization. ‘repeat-e’ is the only test case where DefMono is faster than
HORUS. In ‘repeat-e’, the difference in their running time is 5.14 ms. In the remaining
test cases, the differences fall between 0.22 ms (in ‘sum’) and 25.15 ms (in ‘a-max’).

As for Z3’s execution time, HORUS is mostly faster than DefMono. The only ex-
ceptions are ‘mc91-¢’, ‘sum’, and ‘sum-e’, although the differences between HORUS and
HORUS in these test cases are insignificant. Moreover, the differences between HORUS
and DefMono in Z3’s execution time are considerable in some cases. For instance, in
‘max’, it takes 3.35 s for Z3 to solve the target monotone problem generated by DefMono,
whereas it only takes 20.80 ms in HORUS—several orders of magnitude smaller.
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Test case | Def (ms) | Solving (ms)
ack 25.15 34.48
a-max 41.51 time out
a-max-e 40.36 time out
hrec 26.58 76.05
max 37.92 3347.60
mc91 21.39 35.66
mc91-e 23.91 20.14
mult 22.06 58.19
mult-e 14.10 70.38
neg 16.76 367.21
repeat-e 16.32 361.41
sum 13.94 23.75
sum-e 14.05 16.72
hold 13.84 31.83

Table 5.2: Running time of DefMono

Test case | Trans (ms) | Solving (ms)
ack 14.37 24.03
a-max 16.36 36.60
a-max-e 16.54 38.33
hrec 15.77 34.04
max 15.27 20.80
mc91 13.45 27.15
mc9l-e 18.94 22.80
mult 13.41 30.41
mult-e 13.43 24.39
neg 15.91 24.47
repeat-e 21.46 22.63
sum 13.72 25.49
sum-e 13.81 20.71
hold 13.39 18.02

Table 5.3: Running time of HORUS
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Chapter 6

Conclusion

6.1 Conclusion

Reynolds’s defunctionalization is a viable approach to reducing HoCHC to first-order
constrained Horn clauses. In this paper, I have presented an algorithm to defunctionalize
HoCHC into first-order constrained Horn clause problems. Additionally, I have proved
the following:

1. Type preservation: outputs of the algorithm are well-sorted.

2. Completeness: if a source HoOCHC problem is solvable, the target first-order con-
strained Horn clause problem generated by the defunctionalization algorithm is
also solvable.

3. Soundness: if the target problem is solvable, the source problem is also solvable.

Therefore, type preservation and meaning preservation (i.e. completeness and soundness)
have been established in this work.

In addition to the theoretical work, I have implemented a system named DefMono
that uses the defunctionalization algorithm to verify programs. I have also compared
DefMono’s performance with that of other higher-order verification tools, HORUS and
MoCHi. In respect of verification capability, DefMono is less capable than MoCHi be-
cause Z3 cannot solve defunctionalized problems of some test cases within two minutes.
In comparison with HORUS, DefMono can correctly verify some test cases that HORUS
cannot handle. However, HORUS does not present any bottleneck in Z3’s processing of
HORUS'’s outputs, whilst DefMono can cause Z3 to time out. With respect to running
time, the defunctionalization-based approach is slower than HORUS. This is probably
because target problems produced by DefMono use a more complicated background
theory than the background theory of source problems.

6.2 Future work

I propose three continuations of the present work.
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Continuity of one-step consequence operators Whether one-step consequence operators
in the monotone semantics are continuous is an interesting question in its own right. I
attempted to prove continuity of one-step consequence operators by structural induction
on goal terms, as done in the proof of their monotonicity. However, I encountered a
difficulty in the inductive case of function applications: the least upper bound operator
| | is not guaranteed to distribute over function applications. Hence, I believe this is a
key to finding a counterexample. In fact, a counterexample to continuity of monotone
one-step consequence operators has been found and is presented in a working paper by
Jerome Jochems at the University of Oxford. This counterexample shows that the least
upper bound operator does not always distribute over function applications.

Theory of closures One weakness of the defunctionalization-based reduction of higher-
order Horn clause problems to first-order ones is that the background theories of target
problems involve closures. In DefMono, closures are implemented using an algebraic
data type. Fortunately, algebraic data types can be handled by Z3, thanks to recent
advances in Horn-clause solving technology. Without these advances, it would have
been impossible to verify target problems produced by the defunctionalization algorithm.
Hence, it is another avenue of future work to study, for instance, how ZLA coupled
closures can be more efficiently handled in Horn-clause solving.

Implementation One direction is to extend the test suite. As of now, all test cases have
order at most 2. Hence, it will be interesting to investigate how DefMono handles test
cases of higher order.

Another direction is to investigate why DefMono does not seem to terminate on ‘a-
max’ and ‘a-max-e’. The run time statistics of Z3 show that only one Boolean variable
is created when ‘a-max’ is tested. This is extremely odd because in other cases where
73 terminates, many Boolean variables are created. It is therefore likely that Z3 never
halts on ‘a-max’.
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Appendix A

Supplements for the defunctionalization
algorithm

A.1 Preprocessing

Let the source monotone problem be P = (A, P,G). Prior to defunctionalization P, we

need to eliminate all anonymous functions in P and G and then perform 7n-expansion to

fully expand the outermost lambda abstractions defining top-level relational variables.
Every equation in P can be expressed as

Xor— - = om—>0=Ar1,...,T,.F, (A1)

where m < n and F is not a lambda abstraction.
Anonymous functions refer to lambda abstractions occurring inside E in (A.1). Sup-
pose that E contains the anonymous function

AF Az:o.F:0—p.
Further, assume that the set of free variables occurring in Az.F is
FV(\z.F) ={n1,...,nk}

and that A F n; : 0; for all 1 < ¢ < k. The definition of a fresh top-level relational
variable X’ is then added to P:

X' = Mnq:oq,...,ng:0k, z:0.F. (A.2)

As the the actual parameters for the free variables {ni,...,n;} are specified outside
Ax.F', we need to use lambda abstraction to pass these parameters. The anonymous
function Az.F is then replaced with

X' ng - ng.
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This process of moving local functions (that is, anonymous functions) into a global scope
is called lambda lifting in the literature.

We repeat the same step for all the remaining anonymous functions in P and G.
Notice that some anonymous functions may be inside the definition of X’. In order
to use a fresh top-level relational variable for each step, the anonymous functions are
eliminated one by one sequentially rather than concurrently. This procedure terminates
because the number of anonymous functions is finite.

Once all anonymous functions are turned into equations, n-expansion is performed on
the right hand side of every equation from P. This is guided by the following inference
rules:

E~, F AFE:01— - —0m—o0 E # A\z.F for any F
Av. B~y Av F E -~ (Az1:01, ..o, Tmi0m B x1 -+ Ty)

The result of n-expansion on F'is obtained by applying ~», on F. The inference rule
on the right encompasses the case when m = 0. In that case, we have A\T.F ~, \T.F,
where E : 0. This transformation is applied to the right hand side of every equation in
P.

A.2 Rationale for the algorithm design

When a source term is of the form E F', either (APpP) or (MATCH) is applied, depending
on whether the function application returns a term of an arrow sort or of base sort. One
of its premises of (App) is (E F) ~4 H, where ~»% is defined by (APP-BASE) and
(ApP-ARROW). Which of these two rules is applied is determined by whether F' has a
base sort. In both (APP-BASE) and (APP-ARROW), neither premises nor conclusions
use Mf . Thus, we could remove Mf completely from the inference rules by merging
(AppP) with each of (ApP-BASE) and (APP-ARROW). The reason why I do not do this
is that the resulting inference rules would be too long to fit the width of a page. This is
why vif and ~»)s are necessary.

It is worth observing that ~+ is only applicable when the source term is of base sort
and ~% is only applicable when the source term has an arrow sort. This is a rule I
imposed on the inference rules to reduce their complexity.

To explain my reasoning, consider the target term of Add z in (4.5). Applying the
identity y = 091 4q» We can write the target term more succinctly as

Applying ngd z X.

In order to have the inference rules produce this succinct form, we need to split the rule
(APP-BASE) into two rules corresponding to two cases: the case when E’ is a logical
formula and the case when E’ is a single variable symbol. In the first case, we cannot
write Apply E' F' X, since E’ is a logical formula rather than a variable symbol. By
contrast, in the second case, Apply E' F' X is a valid target term.

If this idea were implemented, we would have Add ~» Cgldd instead of Add ~* X =
Cffl 4q- The former is more natural and less confusing than the latter. However, it does
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not seem elegant to split (APP-BASE), because we would need to work out whether
E’ consists only of a single symbol. Also, splitting (APP-BASE) will increase the total
number of inference rules. Therefore, I opted to enforce the rule that whenever the
source term has an arrow sort, the parameter X can be passed. Consequently, when a
source goal term is a top-level relational variable, the term has an arrow sort and hence
its target term must accept a parameter. This is the reason behind the bizarre looking
(TOPVAR).
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Appendix B

Monotonicity of extracted valuations

This chapter presents how to establish monotonicity of o/, which is formally defined in
Section 4.3.2.

B.1 Preliminaries

First, I prove a lemma that characterizes orders of higher-order elements.

Lemma B.1.1. Assume that fi and fo have sort o1 — --- — o — o, where k > 0 and
each o; is either a relational arrow sort or a base sort. Then fi C fo if and only if for
each t € M[o1] x - -+ x M[or], we have f1(t) C, fa(t).

Proof. For both directions, the claim is proved by induction on k. In this proof, I use
curried notation and non-curried notation interchangeably. Hence, if an n-tuple is input
to a function, the n components of the tuple are fed into the function separately.

First, I prove (=). For the base case, when k = 0, we have f1, f2 : 0. By assumption,
f1 G, fo and hence the claim holds.

For the inductive case, suppose that fi C fo. By the definition of C, for all ¢; €
M{o1], we have fi ¢1 C fo ¢1. This is true regardless of whether oy is a relational sort
or a non-propositional base sort. Now by the inductive hypothesis, as f1 ¢1 C fo ¢1, for
all (ca,...,ck) € Mfos] x -+ x M[ox], we obtain

(f1c1)ca, ... k) So (f2 c1)(ca, ... ck).

Thus, for all ¢1,...,c; of appropriate sorts,

fl(clv' : -ack) Co f2(cla--->ck)7

as required.
Now I turn to (<=). For the base case, when k = 0, if fi C, fa, the claim immediately
follows.
For the inductive case, suppose that for all for all (¢q,...,cx) € M[o1] x - x M[ok],
we have
f1<61, ey Ck) go fg(cl, S ,Ck).
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Fix arbitrary ¢; € M[o1]. Then for all (¢, ...,cx) € M[oa] x -+ x M[ox], we have

(fl 01)<CQ,. . .,Ck) go (fQ Cl)(CQ, e ,Ck).

Hence, by the inductive hypothesis, fi ¢1 C fo c¢1. Because c; is arbitrary, by the
definition of C, f; C fo. This concludes the proof. O

The next lemma characterizes monotone functions.

Lemma B.1.2. Assume f € M[oi] = -+ = M[o] = 2, where k > 0 and each o;
1s either a relational arrow sort or a base sort. f is monotone if and only if for each
t1,t2 € Mfo1] x -+ x M[og] and t1 C ta, we have f(t1) C, f(t2). Here, t1 C to holds
if and only if the order holds in each component.

Proof. For both directions, the claim is proved by induction on k. In this proof, I use
curried notation and non-curried notation interchangeably. Hence, if an n-tuple is input
to a function, the n components of the tuple are fed into the function separately.

I first start with (=). For the base case, when k = 0, the claim is clearly true.

For the inductive case, suppose that f is monotone. By definition, we have

Moy — -+ = o — o] = M[o1] =m Moz — -+ — o — 0].

It follows from the definition of =, that for any ¢1,dy € M[o1], if ¢ C di, then
X ¢1 € X dy. Thus, it follows from Lemma B.1.1 that

(f c1)(eay-vyek) So (f di)(cay ...y ck). (B.1)

Furthermore, because f d; is monotone, by the inductive hypothesis, for any (co, ..., ck)
and (dg, . ..,dy) from M[os] x - - x M[o] such that (ca,...,cx) C (da,...,dy), we have

(f di)(cas-- . cx) So (f di)(da, ..., dy). (B.2)
Combining (B.1) and (B.2) gives

(f c1)(eay.vyex) So (f di)(da, ..., dy).
Therefore, for any t1,ts € M[o1] x -+ x M[og] such that t; C to, we have

f(t1) So f(t2),

as required.

Now I turn to (<). For the base case, when k = 0, the claim is vacuously true.

For the inductive case, by assumption, for any t1,ts € M[o1] x -+ x M[oy] such
that ¢; C ta, we have f(t1) C, f(t2). Now fix ¢;,d; € M[o1] such that ¢; C dy. Then
by the assumption, for any (ca,...,ck), (d2,...,di) € Mfoz] x -+ x M[oy] such that
(c2y...,ck) C (do,...,dx), we have

(f 01)(62, .. .,Ck) <, (f Cl)(dg, - ,dk) (BS)
(f d1)(62, .. .,Ck) gO (f dl)(dg, e ,dk) (B4)
(f Cl)(CQ, .. .,Ck) go (f dl)(CQ, e ,Ck). (B5
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Applying the inductive hypothesis to (B.3) yields that f ¢; is monotone. Likewise, by
the application of the inductive hypothesis to (B.4), X d; is also monotone. Further,
from Lemma B.1.1 and (B.5), we obtain

fe Cfd.

To summarise, f ¢; and f di are both monotone, and f ¢; C f di whenever ¢; C dj.
Therefore, f is monotone by definition. This concludes the proof. O

B.2 Monotonicity of

Thus, in order for /(X) to be monotone, where A’ + X : 09 — -+- — o0, — o, for any
ti,ta € M[o1] x -+ x M[o,,] such that ¢; C to, we should have

o (X)(t1) So ' (X)(t2)-

This holds for X = IOMatchp, where B € B'. If B # o and t1,t3 € M|[closr — B],
then t1 C t9 implies t1 = to. Otherwise, if B = o, by the monotonicity of «, iomatchp
is monotone as well.

However, this does not hold for X = Apply,. For instance, suppose that Y € dom(A)
and that AF Y : nat — 0 — nat — 0. Then,

((¥:2),0,(Y,2,0)) € ((v,2),1,(Y;2,0))

and yet
apply, (Y,2) 0 (Y,2,0) €, apply, (Y,2) 1 (Y,2,0)

as the left hand side evaluates to 1, whereas the right hand side evaluates to 0. Therefore,
o’ is not monotone.

In this way, o/ is “nearly” monotone, apart from apply,. applyp augments an input
to an input closure, thereby simulating function application that still yields a strictly
partially applied function. P’s rough equivalent of applyp is function application. How-
ever, monotonicity of function application in P does not carry over to P’, for the way
applyp simulates function application is different from genuine function application in
P.

By contrast, there is a nice correspondence between branches of IOMatchp and
top-level relational variables from A. The monotonicity of a(X), where X € dom(A),
carries over to tomatchp that corresponds to X, although this is true only when B = o;
if B # o, iomatchp is monotone regardless of monotonicity of a(X).

To fix the issue of monotonicity of apply,, observe that o/ can be interpreted as a
standard valuation. This can be established by the next proposition.

Proposition B.2.1. Assume f : by — -+ — by, where each b; is a base sort. If
f e Mbi] = --- = MJbn], where f is not necessarily monotone, then f € S[by —
<= by ]
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Proof. Immediately follows from the fact that M[b] = S[b] if b is a base sort. O

Despite its triviality, this proposition is important. For example, consider X : (o —
0) — o, which has order 3. Also, let 5 a “nearly” monotone valuation for X in the sense
that

B(X) € M[o — o] = M][0]
=2=,2)=2,

where the second = on the second line is not =,,,. When we want to extend the monotone
interpretation of X to the standard semantics, there is no straightforward way to do so,
since  does not define the result of a(X) applied to f when f € (2 = 2)\ (2 =, 2).

In contrast, if the sort of X has order 2, we can extend the monotone interpretation
of X to the standard semantics in a straightforward fashion.

Proposition B.2.1 can be applied to any function occurring in P’ because any f €
dom(A’) has order 2 (by convention, it is assumed that all top-level relational variables
have arrow sorts) and any f € dom(S) has order at most 2. Furthermore, we do not
have existential quantifiers over higher-order variables in P’. For these two reasons,
the standard semantics of P’ coincides with the monotone semantics of P’. That is,
M[s](e/) = S[s](e/) holds, given that s contains no existential quantifiers over higher-
order variables and all symbols occurring in s have order at most 2. Therefore, o/ can
be viewed as a standard valuation of P’.

In addition, T/\,/f A/ is equivalent to TS,: As» although T/\,/f A/ is not guaranteed to be
monotone if an input is not drawn from M[A’]. Hence, Lemma 2 in [Cathcart Burn
et al., 2018] does not apply if a valuation is nearly but not monotone:

Lemma B.2.1. M[A F G : p] € M[A] =, M[p], where G is any goal term. Also,
A € M[A] =, M[A].

Proof. “Immediately follows from the fact that mexists, and and or are monotone
and all the construction [in the inductive definition of M[A + G : p]] are monotone
combinations”. [Cathcart Burn et al.,; 2018] Note that the interpretations of constant
symbols from S are required to be monotone as well. O

Now suppose that o' is a prefix of Th!,, = TS, . and satisfies M[G'](¢/) =
S[G'](a/) = 0, where G’ is the goal formula component of P’. In other words, sup-
pose that o is a solution to P’ under the standard semantics. I restate Theorem 2.3.1
with a slightly different notation (this is originally Theorem 2 in [Cathcart Burn et al.,
2018]):

Theorem B.2.1. The higher-order constrained Horn clause problem (A', D', G") is solv-
able if and only if the monotone problem (A, Pp/, G') is solvable.

For each monotone problem (A’, P', G'), there exists a higher-order constrained Horn
clause problem (A, D', G’) such that P’ = Pp. Further, Horn clause problems are inter-
preted using the standard semantics. Consequently, we obtain Lemma 1 from [Cathcart
Burn et al., 2018]:
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Theorem B.2.2. For definite formula D', the prefized points of TgD, are exactly the
models of D’.

Finally, the next theorem ensures the existence of a monotone solution to P’, provided
that o/ is a solution to P’ under the standard semantics.

Theorem B.2.3. If o/ is a solution to P’ under the standard semantics, then P’ is
solvable under the monotone semantics.

Proof. Let o be a standard solution to P’. Suppose (A’, D', G’) is the higher-order
constrained Horn clause problem that is equivalent to P’; i.e. P’ = Pp,. Such a Horn
clause problem is well-defined as there is one-one correspondence between higher-order
constrained Horn clause problems and monotone problems.

Since it is given that o’ is a solution to P’ and hence is a prefixed point of TS,: Ass DY
Theorem B.2.2, o/ is also a model of D’. Further, S[G'](¢/) = 0. Hence, o is a solution
to (A", D', G").

Lastly, it follows from Theorem B.2.1 that P’ = (A’, P, G’) is solvable under the
monotone semantics because P’ = Pp/ by assumption. O
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Appendix C

Supplements for meaning preservation

This chapter presents the proofs for the results introduced in Section 4.4 and explains
difficulties with applying valuation extraction to the proof of soundness.

C.1 First direction

Lemma 4.4.1. If 0 ¢ B, we have a unique ¢ € A, . such that M[I" -t : closr](a/ U

[X — ¢]) = 1. In addition, this c satisfies expand,(c) = M[I' t s : o](«). Otherwise, if
o is a base sort, we have M[I' s : b](a) = M F ¢ : b](e/).

Proof. The proof proceeds by structural induction on s. First, I consider the case when
o is an arrow sort.

For the base case, if s = x, where x is an ordinary variable of an arrow sort, t is
equal to X = z due to (VAR-ARROW). Because z is a free variable, it must be included
in dom(c). Therefore, ¢ = o/(x) € AL, ., works. This ¢ is unique because if ¢; Fclosr €,
then ¢ = a(z) and ¢; = a(z) cannot hold simultaneously (this is due to the fact that
(=) is the same as (=¢josr) in this setting).

By the definition of o/, we have expand, (o/(z)) = a(z). It follows that

expand,,(c) = expand,, (o/(z))
= a(z)
=M[I'Fz:o](a)
=M[I'F s:o](a).

Therefore, expand,, (¢) = M[I'F s : o] («) holds.

Another base case is when s € A; i.e. s is a top-level relational variable. By (Top-
VAR), t is equal to X = C?. The only value of ¢ that satisfies M[X = C?](c/ U [X
c]) =1is (s) € AL, because C?, which is a constant symbol, is by default interpreted
as (s). Here, (s) € AL, ., is a 1-tuple containing s. Thus, such ¢ is unique. Further, we
have expand, (c¢) = a(s). Therefore, the claim holds.

For the inductive case, s is transformed into t by either (ApPP-BASE) or (ApPp-

ARROW).
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Assume s = E F', where F has an arrow sort and F' has a base sort. By (ApP-BASE),
t is equal to
Elclosrx‘(El A Applyclosr x F/ X))7

where F ~»% E' and F ~ F'. Applying the inductive hypothesis to F, we have a unique
cp € A such that

closr
M[I' = E': closr](a/ U [z — ¢1]) = 1.
Additionally, this ¢; satisfies
expand, (c1) = M[E](«a).

Further, applying the inductive hypothesis to F', we have M[F](a) = M[F']().

Consequently, we obtain

M[FBetosrz-(E' A Applycrosr © F/ X))](' U[X = ¢]) =1

= M[Applyciosr * F' X](d' Uz = 1, X —¢]) =1

< applyclosr c1 M[F'](c/) c=1

< (c == append(c1, M[F'](d))) =1

<= c= append(c1, M[F'](d))
Here, (==) is a comparator. The second line follows from the uniqueness of ¢;. The
third line follows from the fact that o' interprets Applyciosr as applyciosr- The fourth
line follows form the definition of applyciosr-

Thus, to satisfy M[Applyciosr © F' X](o/ U [z +— ¢1,X — ¢]) = 1, we should set
¢ to append(ci, M[F'](a’)). Hence, there is indeed a unique ¢ € Al . that satisfies
M[I" E t: closr](¢/ U[X — ¢]) = 1.

Furthermore, from ¢ = append(ci, M[F'](¢/)), we derive

expand,, (¢) = expand,, (append(ci, M[F'](a/)))
= expand,,(c1) expand,(M[F'](a))
= M[E[(a) M[F'[(c))
= M[E](a) M[F]())
= M[E F](«).

@)
a)

The second equality follows from the inductive definition of the expand, function.
Lastly, if (APP-ARROW) is used, we have s = E F, and t is equal to

Elclosrw'(E, A Elclosry~(F/ A Applyclosr zy X)):

where E ~* E' and F ~Y F’. By the inductive hypothesis, we have unique cy,cy €
Al such that

closr
M[I"F E : closr](d/ Uz c1]) =1
M| F F': closr] (o U [y — co]) = 1.
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Additionally, ¢; and ¢y satisfy

expand, (c¢1) = M[E](«)
expand,, (c2) = M[F](a).

As a consequence, we have

M[Betosr®-(E' A Jetosey-(F' A Applyciosr ©y X))J(@/ U[X = ¢]) =1
= M[Applyciosr © y X[([x = c1,y = c2, X = ]) =1
<= applyclosr €1 c2 ¢ =1
<= (¢ == append(ci,c2)) =1
<= c¢ = append(cy, ¢3).
The second line follows from the uniqueness of ¢; and c3. The third line follows from

the the interpretation of Applyciosr by o’. The fourth line follows from the definition of

applyclosr-

Therefore, the only value of ¢ that satisfies M[I" I ¢ : closr](¢/ U [X — ¢]) =1 is
append(cy, c2).

Moreover, ¢ = append(cy, ¢2) yields

expand,, (append(cy, c2)) = expand, (¢1) expand,,(c2)
= M[E](a) M[F]()
= M[E F](«).

The first equality follows from the inductive definition of the expand, function. There-
fore, the claim is true.

Next, consider the case when o is a base sort.

For the base case, if s € F'm U Tm, we have s ~ s by (CONSTRLAN). All free
variables occurring in first-order terms from a constraint language have base sorts (this
is proved in Theorem D.1.1). Further, since expand,(c) = ¢ when c is of base sort from
B, @ and o' have the same interpretation of all free variables in s. Also, A and A’ have
the same universes for each b € B and have the same interpretation of constant symbols
from S. Therefore, s has the same meaning in both (A, ) and (A, o’). Thus, the claim
is true.

The case when (VAR-BASE) is used can be proved straightforwardly.

For the inductive case, if s = F A F, by (LoagSyM), ¢ is equal to E' A F’, where
E ~» E' and F ~ F'. Tt follows from the inductive hypothesis that

M[E](e) = M[E'](a)
M[F](a) = M[F')(c).
Therefore, we obtain
MIE' A F](a') = MIE')(a') A MIF')(c)
= M[E](a) A M[F](a)
= M[E A F](«)
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as required. The case for s being F V F' can be proved in the same manner.
If s = Fpx.F, by (Ex1), we have t = Fz.F’, where F ~» F’. By the inductive
hypothesis,
M[F](aU [z — c]) = M[F'](d/ Uz ¢])

for any ¢ € A, = Aj}. Thus, we obtain

M[Fpz . F'] (') = Fe € Ay M[F'](e' U]z ¢])
=3Jce Ap M[F](aU [z — ])
= M[Fpz.F](c).

Therefore, the claim holds.

It is essential that the existential quantifier is bound to a variable of base sort as
opposed to an arrow sort. If ,2.F ~» Jgiosr®.F’, where o is an arrow sort, it is possible
that M[Jo2.F](a) = 1 and yet M[Telosrz.F'] (/) = 0. This is because M[o] contains

functions that cannot be represented by any element of A, _ . This is why we need to

eliminate existential quantifiers over higher-order variables.
Next, assume s = E F. If F is of base sort, (MATCH-BASE) is applied to defunc-
tionalize s into t, yielding

t = Jerose®-(E' A IOMatch, x F'),

where ¥ ~»% E" and F ~» F'. Applying the inductive hypothesis to E, we have a unique
ce A such that

closr

M|+ E' : closr](d/ U [z + ]) = 1.
).

/
Also, this ¢ satisfies expand, (c) = M[E](«). Additionally, applying the inductive hy-
pothesis to F', we have M[F](«) = M[F'](d/).
By the uniqueness of ¢,

M [Ferosrz-(E' N IOMatchy, x F')] () = M[IOMatch, z F')](a' U [x — c]).
Furthermore, we obtain

M[IOMatch, x F")](/ Uz — c]) = iomatch, ¢ M[F'](d)
= iomatch, ¢ M[F](«)
= expand,, (c) expand, (M[F](x))
= M[E](a) M[F]()
= M[E F](«).
The second equality follows from the identity M[F](a) = M[F'](¢). The third equality
follows from the definition of iomatch,. The fourth equality follows from the definition

of ¢ and the definition of expand, when the input has a base sort.
Therefore, M[I' s : b](ar) = M[I" F ¢ : b] () holds.
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Otherwise, if F' is of an arrow sort, (MATCH-ARROW) is applied to defunctionalize

s into t, where ¢ is
Eclosrx-(El A ElClOSI‘y'IOMatChCIOSI‘ x y)a

where F ~* E’ and F ~Y F’. By the inductive hypothesis, we have unique c1,cs €
A such that

/
closr

M[I"F E : clost](d/ Uz c1]) =1
M+ F': closr](/ Uy — ¢co]) =1

Further, ¢; and ¢y satisfy

expand, (¢1) = M[E](«)
expand, (c2) = M[F](«).

By the uniqueness of ¢; and co,

M[FBetosrT-(E' A Jerosey- IOM atcheiosr * 4)] () = M[IOMatcheiosr = y)](e/ U [z = c1,y > ¢2])
= M[[IOMatChclosr € y)]]([l‘ = C1,Y — CQD'

The only free variables in IOMatcheiosr * y are x and y. Hence, o/ does not affect
its semantics; thus, the second equality follows. The above expression can be further
reduced to

M[IOMatcherosr * y)]([x = c1,y = c2]) = iomatchelosr €1 C2
= expand, (c1) expand, (c2)
— MIE](a) M[F](a)
= M[E F](«).

Therefore, the claim holds. This concludes the proof. O
Theorem C.1.1. If o is a model of P, then o/ =Ty(c) is a model for P'.

Proof. Assume that « is a model of P; that is, « is a prefixed point of TA"A. It is given
that
MIAF P(X) : A(X)](a) Cacx)y a(X) (C.1)

for each X € dom(A). In addition, since o € M[A], we have dom(cr) = dom(A). Suppose
P(X) is of the form
ALY, ..., Tm. F,

where AF X :01 — -+ — 0 — 0. X gives rise to
IOMatchy: = Ao, T (21, ..., Tpp1.0 = Cg(”_l x1 o Tyt AF),

where o, ~>7 07, and F ~ F'. The sort of IOMatch,: is closr — a;, — o.
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Now suppose that for some c € A ..

and ¢, € A, , we have
M3z, ..., pme1.x = C}?_l 21 o T AF (@ Uz = e, xm = ) = 1.

This means there exists ¢; € A; , for each 1 <4 < m such that

c=(X,c1,. 0 Cm-1) (C.2)
MIF (& U{[zi =] |1 <i<m})=1. (C.3)

Let 8’ be the valuation {(z;,¢;) | 1 < i < m}. For simplicity, I write {(x;,¢;) | 1 < i < m}
for {[z; — ¢] | 1 <i < m}. Also, let 8 be {(x;,expand,(¢;)) | 1 < i < m}. Because
FV(F) C dom() Udom(f3), aU S is a valid valuation for F. Similarly, o/ U’ is a valid
valuation of F”.

By Lemma 4.4.1 and (C.3),

M[F](aU ) = M[F'](a’ UB)
=1
Because M[F](aUB) =1 and P(X) = F, it follows from (C.1) that
M[X z1 - zp](@Up) =1
Therefore, we obtain

MIOMatchy x xm](a UB') = iomatchy ¢ cm
= expand,, (c) expand,,(cy,)
= expand,, ((X,¢1,...,¢m-1)) expand, (cy,)
= a(X) expand,(c1) --- expand,(¢p)
=M[X z1 -+ zp](aUp)
=1.

Thus, for all c € A’ and ¢, € A/, ,

closr

M[3Fz1, . a1 =CF oy o 2y AP U [ ¢, 2 > e

C4
Co M[IOMatchy, x xm](a’ Uz = ¢, &m — ). 4y

Hence, we obtain

MMz, 2 301, T2 = O 2y o ey A F](d)
gclosr—m;,L —o M [[IOMatChzﬂn]] (O/) :

Even if IOMatchp has multiple branches corresponding to different top-level relational
variables from A, the disjunction of the left hand side of (C.4) for each X contributing to
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IOMatchp is smaller than or equal to the right hand side of (C.4). It therefore follows
that
M[P (IOMatchp)](a') Celosr—B—s0 &' (IOMatchp).

If X = Applyp, by the definition of applyp,
M[P'(Applyp)] () = o' (Applys)
- M[P'(Applys)](@') Celosr—B-sclosr—o & (Applys).
Hence, for every X € dom(A’),
MIP(X)])(') Carx) o (X).

As o is a prefixed point of T#!,, (which is equivalent to T'5,. o), it is indeed a model of
P'. This concludes the proof. O

Theorem 4.4.1. If P is solvable, so is P'.

Proof. Let a be a solution to P and o/ be a valuation for P’ derived from a. By Theo-
rem C.1.1, o/ is a model of P’. Furthermore, since G ~ G, it follows from Lemma 4.4.1
that

M[G](a) = M[G] ().
Because « is a solution to P', M[G](«) = 0. Therefore, M[G'](a/) = 0 as well. Hence,
o/ is a solution to P’ under the monotone semantics. O

C.2 Difhiculties with valuation extraction in the second direction

For the second direction of meaning preservation, I explain some difficulties in extracting
solutions to P from solutions to P’ as we did for the first direction. Consider the example
introduced in Section 4.3.1. Suppose that a solution to P’ is

o = {IOMatChnat — tomatchnat, Applynat — applynata Applyclosr — applyclosr}a

where applynat and applyciosr are defined (independently of «) in Section 4.3.1. The
interpretation of IOM atchyat is

iomatchpat = add' U twice’,

— N — 2 and twice’ : A’ — N —= 2 are

where the functions add’ : A’ closr

closr
1 if m = (Add,n1,n2),n =ny1 + ng

add m n = )
0 otherwise

and
1 if m = (Twice, f,n1)
y A Ing.((Ins.applynat [ n1 n3 A iomatchpat 13 n2)
twice’ m n = .
A (Ing.applynat [ n2 ng A iomatchpat ng 1))
0 otherwise.

There are three issues with extracting a valuation for P from o’.
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1. Tt is not straightforward to define a valuation for P that has the same structure as
«. For instance, because the sort of Add in P’ has order 2 (i.e. not a higher-order
function), add’ can be straightforwardly transferred to the interpretation of Add,
yielding add : N - N — N — o given as

1 ifng=mn1+ne
add nq no n3 = )
0 otherwise.

On the other hand, it is not easy to extract an interpretation for Twice from twice’.
This is because twice’ is defined in terms of iomatchpat, which is in turn defined
in terms of twice’ (and add').

Due to this recursive nature of the definition of twice’, it is not clear how to
construct a valuation o for P that satisfies o/ = Ty(«). It is crucial for « to
have the same structure as o because it lets us apply Lemma 4.4.1 to prove

M[G](a) = 0.

2. Suppose that the first issue is overcome and that a that satisfies o/ = T¢(a) has
been obtained. With the same example as above, it is natural to have

a(Twice) fnyny=0

whenever f is not expressible in P; that is, whenever f cannot be expressed by
combination of Twice and Add. This creates an issue that « is not monotone. For

example,
(Aa,b.a+1=0)C,U,

but

a(Twice) (Aa,b.a+1=10b) 24 ¢, a(Twice) U, 2 4. (C.5)
As Aa,b.a+1 = b can be expressed by Add 1, the left hand side of (C.5) evaluates
to 1. However, since U, cannot be expressed by any element of A, _., the right
hand side of (C.5) evaluates to 0. Thus, a(T'wice) is not monotone; hence, neither
is a.

3. The third problem with « is that it is not necessarily a prefixed point of TI/;\:/‘A. In
the above example,

M[Af,a,0.3c.f acAfed)(a) Larwice) a(Twice)

holds since the left hand side can take f = U, and produces 1 for any a and b,
whilst the right hand side does not.

C.3 Continuity of one-step consequence operators

Proposition 4.4.1. If M[A] is finite, then T\ : M[A] — M[A] is continuous.

63



Proof. 1 will prove that for every directed subset R C M[A], | {T?% (2) | € R} exists
and equals T34 (LI R).
Fix R C M[A]. Because T/, is monotone, it is given

VeeRxC| |R
s Vx € RTp\(x) C TEL (|| R).
Note that the order of valuations is denoted by C rather than <. Thus,

| {72 () | € RY C TEA(] ), (C.6)

where the left hand side exists as M[A] is a complete lattice.

It remains to prove that both sides of the above inequality are in fact equal. If M[A]
is finite, then R must be finite as well. Since R is directed by assumption and is finite,
| | R € R. Hence,

T (LR € (T @) | = < BY. ©7)
Combining (C.6) and (C.7), we obtain

| {T#A(@) |2 € Ry = THEA(| B).
Therefore, T4 is indeed continuous if M[A] is finite. O

Theorem 4.4.2. If f is continuous, then | [{f™(L) | n € N} is the least fized point of
f.

Proof. Since f is continuous, it is monotone. Therefore, (f™(L) | n € N) is an increasing
sequence. As f is continuous,

S [ e N = [ J{rm1(L) [n e N}
Because L cannot be larger than any element from {f"*!(1) | n € N},
LI ) Ine Ny = [ J{r"(1) [ n € N}
Combining the above two equations gives
FUEm ) [ e N = [{/"(1) [ n e N}

Therefore, | |{f™(L) | n € N} is a fixed point of f.
If y is also a least fixed point of f, we have L < y. The monotonicity of f gives that

vn € N.f"(1) <y,

which means that y is also an upper bound of {f™(L) | n € N}. As | [{f"(L) | n € N} is
the least upper bound of {f"(L) | n € N} by definition, | {f"(L) | » € N} <y. Thus,
LI{f™(L) | n € N} is the least fixed point of f. O
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C.4 Second direction

Lemma 4.4.2. Given a valuation v of P and a valuation v of P', suppose v = T¢(7)
holds. If ¢ = TAL (v) and ¢ = TH (7)), then ¢ = T§(C).

Proof. The claim can be depicted by the following commutative diagram:

Fix X € dom(A) and assume A+ X : 07 — .-+ — o, — o. Also, suppose that P
contains X = A\x1,..., 2. F. In addition, for each 1 < i < m, consider ¢; € M[o;] such
that there exists ¢ € A, that satisfies expand, (c;) = ¢;. Here, o; ~»7 o} for each i.

Now let 1 be the valuation {(zi,ci) |1 < i <m} and 1 be {(z;,¢}) | 1 <i < m}.
Because all free variables, including top-level relational variables, in F' are in the domains
of v and 7, yUn is a valid valuation of F'. Similarly, v'Ur’ is a valid valuation of F”, where
F ~ F’. Since F does not contain lambda abstractions, we can apply Lemma 4.4.1 to
obtain

MIF](yun) = MIFTH Un). (C.8)
The left hand side of (C.8) is equal to
M[F](yUn) = M x1,...,2mn.F](y) c1 -+ cm
=M[PX)](7) e1 -+ cm
= THA(M(X) e1 -+ em
:C(X) c1 - Cm,

(C.9)

where the third equality follows from the definition of T ﬁf‘A and the last equality follows
from the definition of ¢. The right hand side of (C.8) can be transformed into

MIF')( un)
= Mz, 2301, 2.2 = O ay  mp g AF](Y) (X, ) A
= M[P'(IOMatchy )](V') (X, €155 Cny) Chy
= T]é\ffA/(fy')(IOMatchogn) (X,c),...,ch 1)
/

— m

= ('(IOMatchy: ) (X,¢l,. .. ¢ ) €

m—1
(C.10)

Combining (C.8), (C.9), and (C.10), we obtain
((X)er -+ em=((IOMatchy ) (X, ¢}, .. ¢ 1) €

m—1 m:*

Therefore, it follows from the definition of Ty that ¢’ = Tf(¢). This concludes the
proof. O
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Lemma 4.4.3. Assume 3 = | |J{f1(a) | n € N}, where f1 = TL, and ' = | J{f3() |
n € N}, where fo = Tt . If o = Ty(a), then B = Ty(B).

Proof. As usual, fix X € dom(A) and assume A - X : 0y — .-+ = 0, — 0. Also,
suppose that P contains X = Ax1,...,x,.F. In addition, for each 1 < ¢ < m, consider
c; € M[o;] such that there exists ¢; € A/, that satisfies expand,(cj) = ¢;. Here,
oi ~1 o, for each 1. '

Since 8 and [’ are the least upper bounds of {f}'(«) | n € N} and {f5 (/) | n € N},
respectively, it is given that

B(X)er -+ e =max{f'(a)(X) c1 -+ cm|neN} (C.11)
and
B'(IOMatchy ) (X, ¢}, ..., 1) O (C.12)
= max{f3 (a')(IOMatch, ) (X,c},..., ¢ 1) ¢y | n € N} '

As o/ =T¢(a), by Lemma 4.4.2, fi(a’) = Ty(f"(c)) for every n € N. Hence,

fH)(X) er -+ em = f3 (o)) IOMatchg: ) (X, ¢, ... ¢ ) €

m—1 m
for each n. Consequently,

max{fi'(a)(X) c1 -+ cm} = max{fgl(o/)(IOMatchU;n) (X, c’l, e c;,kl) c }. (C.13)

m

Combining (C.11), (C.12), and (C.13) yields

B(X)er -+ e =B (I0OMatchy ) (X,¢1,. .. 1) Chp

m

Therefore, ' = T¢(f) indeed holds. O

Theorem 4.4.3. Given that Tlé\ftA and T}/;‘,’fA, are continuous, if P’ is solvable, then so
is P.

Proof. Let L be the least element from M[A] and L’ be the least element from M[A'].
It is clear that L' = T(L).

Suppose 8 = | |{f1*(L) | n € N}, where fi = TP\, and B = [ J{f*(L") | n € N},
where fo = TI/D\//E A+ Because it is given that T1/D\;AA and T]é\,/f As are continuous, 3 and 3’ are
fixed points of the respective one-step consequence operators. In other words, they are
models of P and P’, respectively.

Furthermore, because (8 is obtained by iteratively applying TM: A to L, which is the
least element of M[A'], 8 is the least fixed point of T”{f A by Theorem 4.4.2. Moreover,
it is the least prefixed point. This statement is not too difficult to prove, although I will
not provide its formal proof.

Assume that P’ is solvable and let its solution be o’. Then 8’ C o/ because 3 is the
least model of P. Moreover, by the monotonicity of M[G], we should have

MIGI(B') So MIG]().
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The right hand side of this equation is 0 since ' is a solution to P’. Thus, M[G](8") = 0.
It follows from Lemma 4.4.3 that 8’ = T¢(3). Hence, by Lemma 4.4.1, we have

MIG](B) = M[G](5)
= 0.

Therefore, 3 is a solution to P. This concludes the proof. O
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Appendix D

Type preservation

Before I prove type preservation, I revisit the basic concepts of first-order terms from
constraint languages and goal terms.

D.1 Defining terms and formulas

In this section, I formally define first-order terms and first-order formulas in constraint
languages. This is necessary because to prove type preservation, I need to use some
properties of terms.

D.1.1 Terms and formulas

Let 3 = (B,S) be a first-order signature. Since X is first-order, the sort of each symbol
in S has order at most 2. The class of well-sorted first-order terms over X is given by

(TOST) Ao s c€9om®  (TAND) R
(TNEG) AF—-:0—0 (TVAR) A, z:b,A0Fx:b
Az:bEt:o AFti:b—p Aty b
(TEXI) A Fxt:o (TApP) Aty ty:

Here, b is a base sort ¢ (with or without subscripts) is a first-order term, and £ is a sort
of order at most 2; i.e. sort of the form b; — --- — b, where b; € B for each 1 <7 < n.

It is important that A contains no conflicts; i.e. no variable is associated with multiple
types. Henceforth, it is implicitly assumed that sort environments for first-order terms
are free of conflicts.

Well-sorted first-order formulas are defined as well-sorted first-order terms of sort o.
Notice that unlike in usual presentation of first-order logic, where formulas and terms
are disjoint, according to the above definition, terms include formulas.

When a first-order term s is well-sorted under sort environment A and has sort 3, I
write A F s: 5. From now on, I assume that first-order terms are well-sorted.

68



When a typing judgement A s : 5 is created by (TCstT), (TAND), or (TNEG),
the sort of s is independent of A. In that case, to work out the sort of s, we need to
check S and LSym. When S is unclear, I write S, A - s : § to make S explicit. However,
whenever S is clear from the context, I will omit it from sort environments.

D.1.2 Properties of terms and formulas

Proposition D.1.1. Every free variable occurring in a first-order term has a base sort.

Proof. Variables can only be introduced into first-order terms by (TVAR). The rule
requires variables to be of base sort. Hence, the claim is true. O

Proposition D.1.2. Given A + s : 3, the sort of s under A is unique; that is, we
cannot have A+ s: 3, where B # 3.

Proof. The proof goes by structural induction on s.

For the base case, if A s: 3 is created by (TCsT), (TAND), or (TNEG), the sort
of s is unique (and is independent of A). If At s: /3 is created by (TVAR), the sort of
s is uniquely determined by A.

For the inductive case, if A F s: (3 is created by (TEX1), we have § = o. Thus, the
sort of s is uniquely determined.

Finally, if A F s : (8 is generated by (TApPpP), we know that s = ¢; to. By the
inductive hypothesis, the sorts of ¢; and to under A are uniquely determined. Therefore,
the sort of s under A is also uniquely determined. O

The following proposition states that each well-sorted first-order term has a unique
way to assign sorts to all symbols occurring in the term such that the term is well-sorted.

Theorem D.1.1. If A+ s : 8 holds, where s is a first-order term, then every symbol
occurring in s can be annotated with a unique sort.

Proof. The claim is proved by structural induction on s.

For the base case, if A - s : 3 is created by (TCsT), (TAND), or (TNEG), the sort of
s is given by S or LSym and is unique. If s is created by (T'VAR), the sort of s is given by
A(s) and is unique because A is assumed to contain no conflicts. Thus, in all base cases,
the sort of s can be uniquely identified. Alternatively, we can use Proposition D.1.2 to
prove the base case. As the only symbol appearing in s is itself, the claim reduces to
Proposition D.1.2.

For the inductive case, if s is created by (TEXI), s is in the form of Jpx.t, where
A,z : bkt : o The sort of x is stored in the subscript of J, in s. Hence, from
A F Jpx.t: o, we can uniquely derive A,z : b+ ¢t : 0. In other words, from a conclusion of
(TEX1), we can uniquely deduce the corresponding premise of (TEX1). By the inductive
hypothesis, every symbol in A,z : b+ ¢ : 0 can be annotated with a unique sort. If there
exist two distinct ways to assign sorts to the symbols occurring in A F Jpx.t : o, there
should be two distinct ways to assign sorts to A,z : b F t: o as well, which contradicts
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the inductive hypothesis. Hence, all symbols in J,z.t can be annotated with a unique
sort.

Finally, if s is created by (TAPP), we have s = t; to, where A F¢; : b — (3 and
A+ ty : b. We cannot determine the typing judgements A F ¢ :b— Sand AFty: b
uniquely by the mere appearance of A - ¢1 t5 : 8, without any calculation. However, we
can evaluate the sorts of ¢; and ¢y under the sort environment A by repeatedly applying
the six typing rules listed above. Furthermore, by Proposition D.1.2, the sorts of ¢; and
to under A are unique. By the inductive hypothesis, every symbol in ¢; and ts can be
annotated with a unique symbol. For the sake of contradiction, assume that there are
two distinct ways to assign sorts to t1 to. Then at least one of A - ¢; and A F ¢, has
two distinct sort assignments. This contradicts the inductive hypothesis. Therefore, the
claim holds for t; to as well. This concludes the proof. O

In effect, Theorem D.1.1 proves uniqueness of typing derivation trees of first-order
terms by showing that given the root of a derivation tree, the root’s successor(s) can be
uniquely determined. Because all constants and variables appear at the leaves of a tree,
their sort assignment is uniquely determined. As for logical constants, their sorts are
given by LSym and hence are unique.

The syntax and typing rules of first-order terms allow us to determine the sort of
each symbol in a term by simply consulting S, LSym, and A. This nice property does not
hold any longer if we omit subscripts from 3. For instance, consider - (Jz.z = 2) : o.
It is still possible to uniquely determine the sort of each symbol. However, we cannot
apply the same proof as the one for Theorem D.1.1, since it is not straightforward to
deduce the typing judgement z : int F (z = 2) : o (especially the left hand side of the
judgement; i.e. x : int) from F (Jz.z = 2) : 0. To determine the sort of x, we need to
carry out type inference using - (=) : int — int — o.

D.2 Redefining goal terms

In this section, I redefine goal terms in order to fix my imprecise use of terminology.
In my explanation of the defunctionalization algorithm (Section 4.2), I call an input of
transformation a ‘source goal term’ and an output a ‘target goal term’. A problem lies
in the use of the word ‘goal term’. According to [Cathcart Burn et al.; 2018], elements
of T'm, where T'm is a set of first-order terms in a constraint language, do not qualify as
goal terms. However, in my presentation of the defunctionalization algorithm, a ‘source
goal term’ can be an element from T'm. This issue is caused by the fact that although
t € T'm can be a subexpression of a goal term, t itself is not a goal term. Hence, I need
to find a suitable word to refer to a collection of both goal terms and terms from T'm.
One solution I would suggest is to redefine goal terms to mean first-order terms from
T'm as well as goal terms (in the original definition).

The next subsection is a revised version of Section 2.2.2. T will also introduce some
useful theorems about goal terms.
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D.2.1 Goal terms

Fix a first-order signature ¥ = (B,S) and a constraint language (T'm, F'm,Th) over X.
In the original paper [Cathcart Burn et al., 2018], the class of well-sorted goal terms
A F G : p, where p is a relational sort, is given by these sorting rules:

A, x:p, Aol ax:p

(GCONSTR) — Ak gp:0oeFm

AFgp:o

Ax:obFG:p

(GABs) AFAdxio.G:0—p

x ¢ dom(A)

AFG:b—p

AFGN:p AFN:beTm

(GAPPL)

AFG:p1—>p2 A"H:pl
AFGH:IOQ

(GAPPR)

Throughout the above six rules, b denotes a base sort from B, p (with or without sub-
scripts) denotes a relational sort, and o is either a base sort or a relational sort.

Despite being a subexpression of a goal term, a first-order term ¢t € T'm is not a
goal term according to the definition above. As the defunctionalization algorithm I
developed works compositionally, I need a word to refer to not only goal terms but also
their subexpressions (excluding subexpressions of elements from T'm U F'm). Therefore,
I will redefine goal terms to encompass first-order terms from 7'm:

(GCST) mc € {/\,\/,Elb} U {Elp | p} (GVAR) AhJJ s AQ F - P)
(GABs) T 0G0 g aom(A)

AFXrioG:0—p

AFG:0—=0p AFH:o
AFGH:p

(GAPP)

As before, throughout the new six rules, b denotes a base sort from B, p denotes a
relational sort, and o is either a base sort or a relational sort.

As is true of first-order terms, it is important that A contains no conflicts; i.e. no
variable is associated with multiple types. Henceforth, it is implicitly assumed that sort
environments for goal terms are free of conflicts.

When a goal term ¢ is well-sorted under the sort environment A and has sort o, 1
write At :o.

The next three propositions establish the relationship between the original and mod-
ified definitions of goal terms.
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Proposition D.2.1. If s is a goal term in the original definition, s can be generated by
the new definition. Further, if A&+ s : p in the original definition, then A+ s : p holds
in the new definition as well.

Proof. The claim is proved by structural induction on s.

For the base case, if s is generated by (GCsT) or (GVAR), s can be generated by
the same rules in the new definition. If s is generated by (GCONSTR) in the original
definition, it can be generated by (GFML) in the new definition. In both cases, the sort
is preserved.

For the inductive case, suppose that s is generated by (GABS) in the original defi-
nition. Then it follows from (GAbs) that s is in the form

s = Ax.G,

where G is a goal term in the original definition. Also, if A,z : ¢ F G : p, then we
have A + Az.G : ¢ — p. By the inductive hypothesis, G can be generated by the
new definition, and A,z : 0 b G : p holds. Hence, by (GABS) in the new definition,
A F Ax.G : 0 — p can be established. Thus, the claim is true in this case.

Consider the case when s is generated by (GAPPL) in the original definition. From
(GAPPL), we know that s = G N, where G is a goal term and N € T'm. Furthermore,
if AFG:b— p, then AF G N : p holds. By the inductive hypothesis, AFG:b — p
can be established by the new definition. Also, A = N : b holds in the new definition.
Therefore, by (GAPP) in the new definition, we obtain

AFG:b—p AFN:b
AFGN:p

Thus, the claim is true when s is generated by (GAPPL).
The case when s is generated by (GAPPR) in the original definition can be proved
in the same manner as the case when s is created by (GABS). O

(GAPP)

Proposition D.2.2. If A+ s: p in the new definition, where p is a relational sort, the
typing judgement holds in the old definition as well.

Proof. By structural induction on s. O

Proposition D.2.3. If A is the set of goal terms in the original definition and B is the
set of goal terms in the new definition with relational sorts, then A = B holds.

Proof. By Proposition D.2.1 and the fact that goal terms in the original definition have
relational sorts, we have A C B. Additionally, from Proposition D.2.2, we know B C A.
Therefore, by double inclusion, A = B. O

Due to Proposition D.2.3, T use the word ‘relational goal terms’ to mean goal terms
in the original definition. Henceforth, I will use the new definition of goal terms.

72



D.2.2 Properties of goal terms

The first proposition is the goal terms’ counterpart of Proposition D.1.2.

Proposition D.2.4. Given A & s : o, the sort of s is unique; that is, we cannot have
At s:o', where o # o'.

Proof. The proof proceeds by structural induction on s.

For the base case, if (GCST) or (GVAR) is used, the sort of s is uniquely determined
by LSym or S. If A+ s: o is created by (GFML) or (GTERM), the sort of s is uniquely
determined due to Proposition D.1.2.

For the inductive case, suppose (GABS) is used. Hence, we have s = \z:0.G. Regard-
less of the sort of s, we can always uniquely determine the sort of  because it is recorded
in the lambda abstraction Ax:0.G. Therefore, the left hand side of A,x : 0 - G : p is
fixed. It follows from the inductive hypothesis that the sort of GG is uniquely determined.
Hence, the sort of Azx:0.G is unique as well.

Finally, if (GAPP) is used, we have s = G H. Since the sorts of G and H under A
are uniquely determined by the inductive hypothesis, the claim holds for G H. O

Similarly, the next theorem is the goal terms’ counterpart of Theorem D.1.1.

Theorem D.2.1. If A+ s : o holds, where s is a goal term, each symbol in s can be
annotated with a unique sort.

Proof. The proof goes by by structural induction on goal terms.

For the base case, when s is created by (GCsT) or (GVAR), we can simply apply
Proposition D.2.4 since s only contains one symbol. If (GFML) or (GTERM) is used,
the claim follows from Theorem D.1.1.

For the inductive case, if s is created by (GABS), we know s = Az:0.G. From
A F Ax:0.G : 0 — p, we can uniquely deduce A,z : ¢ F G : p. By the inductive
hypothesis, every symbol in G can be annotated with a unique symbol. Thus, the claim
holds in this case.

Finally, if (GAPP) is used, we know s = G H. By Proposition D.2.4, we can
uniquely determine the sorts of G and H under A; that is, we can uniquely deduce
typing judgements A - G : p; and A+ H : py. It follows from the inductive hypothesis
that every symbol in G and H can be annotated with a unique sort. Therefore, the
claim holds for every symbol in G H. O

The following proposition saves us the need to be concerned about defunctionalizing
partially applied instances of functions from S because they are never strictly partially
applied in goal terms.

Proposition D.2.5. Functions (i.e. constants of arrow sort) from S cannot be strictly
partially applied inside goal terms.
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Proof. Functions from S are introduced into goal terms by (GFML) and (GTERM). Let
s be a first-order term (or formula) introduced by these two rules. Also, let f € S be
a function and t be a first-order term f t; ---tg, where k < ar(f). Hence, ¢ is strictly
partially applied. In addition, assume that ¢ cannot be applied to another first-order
term. This means that ¢ is maximal with respect to function application. Since (GFML)
and (GTERM) require s to be of base sort, s itself cannot be strictly partially applied.
Thus, ¢ could only possibly appear (strictly) inside s.

Furthermore, because t is assumed to be maximal with respect to function applica-
tion, inside s, we cannot have t u for some first-order term w. Thus, the only possibility
for u being located inside s is that s contains u t for some u. However, as indicated by
the conclusions in the six typing rules, first-order terms have sorts of order at most 2.
Every subexpression of a first-order term is also a first-order term and hence has a sort
of order at most 2. Thus, the sort of w has order at most 2; that is, the sort of u looks
like by — -+ — by, where n > 1 and b; € B for each 1 < ¢ < n. Since u is applied to t,
the sort of ¢ must be by; that is, t cannot have an arrow sort. Therefore, ¢ cannot appear
inside s. This concludes the proof. ]

D.3 Type preservation proof

In this section, I prove that in an output of the defunctionalization algorithm, the logic
program and the goal formula are well-sorted. Let P = (A, P,G) be a source monotone
problem and ¥ = (B,S) be a first-order signature for P. P and G are assumed to
be well-sorted. Further, let P’ = (A’, P/, G’) be the result of defunctionalizing P and
¥ = (B',S) be a signature for P’.

The first theorem establishes well-sortedness of equations defining Apply 4.

Theorem D.3.1. Every equation in P;lpply is well-sorted.

Proof. By (4.8), every equation in ngply takes the form
Applygiwrl = Az,y,z.(Jay,...,anx=C% a; -+ ap Nz = C’;‘(H ap -+ apy), (D.1)

where X 107 =+ w0y 20€ A, 0<n<m—2,and g; ~p o, forall 1 <i<n+1.
In (D.1), the equality between objects of sort closr refers to (=cjosr) declared in §'. The
sort of (=closr) 18

F (=eclosr) : closr — closr — o.

Note that I omit S’ from typing judgements whenever its omission does not cause con-
fusion.
From (4.6), we know

AN'FC%:0y— - — o), — closr

AFCO¥ ol — - — 0l — closr.

Let us denote {a; : 0} | 1 <i <n} by {a; : 0} for brevity. Applying (GApp) repeatedly,
we can build the following typing derivations:
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A Ha;:ol} F{ai:o}} A Hdaj:0l} FCY 0] — -+ — 0], — closr

A Ha;:0l} FC% a1 -+ ay : closr
/ L . L Lo / L Lo n+1 . 1 /
A Ha; o}y oy Flaicoihy o A Ha;:oi}yio, FOY o) — - — 0, — closr
/ L . +1 .
A Hda; o}, y:o, FCY ar -+ an y:closr

Hence, for the two disjuncts in (D.1), we have

A Ha;:ol},x:closr:ol, - (z=C% a; -+ ay):o
A a0l y:ohq,z:clostrion b (z=C%1a; - a,y):o.

These two typing judgements yield

A’z :closr,y: o),z closr - (3ar,...,ap.2=Chay - aphz = C% 1 ay -+ any) :o.
Finally, by (GABS), we obtain

A Ar,y,2.(3a1,. . anx =C% ay - aphz =C% 1l ay -+ ayy): closr — o), 1 — closr — o.

Whether 0,41 € B or 0,1 = closr, 0, ; € B holds by the definition of B’. Thus, it is
given by (4.6) that

A F Apply,: ., : closr — oy,41 — closr — o.

Therefore, the left and right hand sides of (D.1) have the same sort as required. d

The next lemma plays a pivotal role in proving that all equations in P/, are
well-sorted.

Lemma D.3.1. Let s be a well-sorted source goal term over ¥ = (B,S) that contains
no lambda abstraction. Also, suppose App = {Applya : closr — A — closr — o | A €
B U {closr}} and IO = {IOMatcha : closr - A — o | A€ BU{closr}}.

IfT'F s: b, where b € B, then s ~ t holds for some goal term t. Furthermore, we
have T', App, IO bt : b, where TV ={v: 0" |v:0 € T',0 ~p o'}. Here, we use the fact
that ~> is a function.

Otherwise, if T' = s : p, where p ¢ B, then s ~~ t holds for some goal term t.
Furthermore, we have I, App, IO, X : closr -t : o, where I' ={v: 0’ |v:0o €T,0 ~p

o'}

Proof. The proof proceeds by structural induction on s.

For the base case, suppose s € Fm U Tm. Then the only inference rule that is
applicable is (CONSTRLAN), which gives s ~ s. Because s is well-sorted, all free variables
in s should be included in I'. This can be formally proved, but I will not do it here.
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Additionally, by Proposition D.1.1, every free variable occurring in first-order terms have
base sorts. As b~»r b for any b € B, we have

I'={v:d'|vicel o~}
={u:blu€eFV(s),u:beT}
Uf{v:o |vgFV(s),v:0e€l,0~r o'}

Hence, free variables in s have the same sorts in I” as in I'. As the sort of s depends
only on the sorts of free variables in s, we obtain

I's:b
ST App, IO F s b.

Thus, the claim holds in this case. The case for (VAR-BASE) can be proved analogously.

Next, consider the case of (VAR-ARROW). According to the rule, we have s = z,
where I' - 2 : p and p is a relational arrow sort. (VAR-ARROW) yields that z ~% X = .
As s is well-sorted under T', it is given by (GVAR) that = € dom(I"). Because p ~»1 closr
for any relational arrow sort p, we have (z : closr) € I". Tt is straightforward to see that
x : closr, X : closr - (X = z) : 0 holds. It thus follows that I, App, IO, X : closr +
(X = ) : 0 holds. Therefore, the claim is true in this case. The case for (TOPVAR) can
be proved in the same fashion.

For the inductive case, assume s = ¢ E F', where ¢ € {A, V}. s is thus defunctionalized
by (LoGSYM). Since s is well-sorted, by (GCST) and (GAPP), we have

I'Fcio—o0o—o0
I'FE:o
I'EF:o.

By the inductive hypothesis, IV, App, IO + E’ : 0 and TV, App, IO + F’ : 0 hold, where
E~ E" and F ~ F'. Tt follows that I, App, IO \- (¢ E' F') : o.

Next, suppose s = F F', where E F and F' have arrow sorts. This case of s is handled
by (ApP) and (ApPP-ARROW). Thus, we have

5~ t,

where t = Jelosr®-(E' A Jetosry-(F' A Applycrosr © y X)) and E ~* E' and F ~Y F'.
Because both F and F have arrow sorts, the inductive hypothesis gives

I, App, 10,z : closr - E' : o

I, App, 10,y : closr - F' : o.
It is therefore possible to construct a typing derivation tree for IV, App, IO, X : closr

t : o, although I omit it because it takes a lot of space.
The remaining three cases when s = E F' can be proved analogously. O
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Theorem D.3.2. Every equation from Pjyy 0. 15 well-sorted.

Proof. By (4.9), each rule in P{yy.., has the form
IOMatchy, = A&, T (321, ..., Tip—1.7 = Cﬁ_l 1 Tl AF),

where X = A\xj:01,..., 20, . F isin P. Here, ar(X) = m and F ~ F’. Asar(X) = m,
F' cannot be a lambda abstraction. Further, equations in P are assumed to be well-
sorted. Thus, we obtain

AF (Ary:01,...,epmion.F) oy = = oy — 0
DAz o | 1<i<m}EF:o.

Lemma D.3.1 yields that
T {r;:0.|1<i<m,o;~ro},AFF :o,

where ' = {X : ¢/ | X : 0 € A0 ~7 ¢’} and A’ is given by (4.6). It is relatively
straightforward to prove that F’ does not contain any top-level relational variable symbol
from A. Therefore, I' does not affect the sort of F’. Consequently, we obtain

{zi:o|1<i<m,o;~ro},A'FF :o.
It is possible to construct a valid typing derivation tree for
AN F A, 2. (321, o1 = C’}?_l Ty - Tmo1 AF'):closr — o, — o.

This is consistent with the sort of IOMatch,: given by (4.6). Therefore, each equation
in Pl raten 18 indeed well-sorted. O

Theorem D.3.3. Fach equation in P and G’ is well-sorted.

Proof. Well-sortedness of equations in P’ follows from Theorem D.3.1 and Theorem D.3.2.
As for G’, because each s € G is free of lambda abstractions, by Lemma D.3.1, we have
VA" t:o, where s~ tand I' = {X : ¢/ | X : 0 € A}. Since G’ does not contain
any top-level relational variable symbols from A, I' can be removed from the typing
judgement. This results in A’ = G’ : o. O
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