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There are two approaches to automatically deriving symbolic worst-case resource bounds for programs: static

analysis of the source code and data-driven analysis of cost measurements obtained by running the program.

Static resource analysis is usually sound but incomplete. Data-driven analysis can always return a result, but

its lack of robustness often leads to unsound results. This paper presents the design, implementation, and

empirical evaluation of hybrid resource bound analyses that tightly integrate static analysis and data-driven

analysis. The static analysis part builds on automatic amortized resource analysis (AARA), a state-of-the-art

type-based resource analysis method that performs cost bound inference using linear optimization. The

data-driven part is rooted in novel Bayesian modeling and inference techniques that improve upon previous

data-driven analysis methods by reporting an entire probability distribution over likely resource cost bounds.

A key innovation is a new type inference system called Hybrid AARA that coherently integrates Bayesian

inference into conventional AARA, combining the strengths of both approaches. Hybrid AARA is proven to

be statistically sound under standard assumptions on the runtime cost data. An experimental evaluation on a

challenging set of benchmarks shows that Hybrid AARA (i) effectively mitigates the incompleteness of purely

static resource analysis; and (ii) is more accurate and robust than purely data-driven resource analysis.
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1 INTRODUCTION

Static resource analysis. The prevailing goal of resource analysis—and the goal of this article—is to
derive a symbolic expression that bounds the worst-case execution cost of a program as a function
of the inputs. Building on pioneering resource analysis works such as Wegbreit’s metric system [88],
modern tools use various static analysis techniques: type systems [5, 21, 24, 26, 38, 40, 59, 86],
recurrence relations [2, 25, 35, 55, 56, 88], term rewriting [6, 7, 49, 72], ranking functions [12, 20, 31,
82], and abstract interpretation [3, 37, 91]. They can automatically and accurately analyze complex
functions such as operations on splay trees [61] and software product code [37]. Automatic resource
analysis is now used on a daily basis by developers in tools such as Meta’s static analyzer Infer [22].
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However, since static resource analysis is undecidable for Turing-complete languages, even the
most sophisticated tools fail to infer cost bounds for some programs. In such cases, users must
resort to rewriting their code or using manual techniques for resource analysis [19, 59, 70, 74, 75].
Both of these workarounds require expertise in programming languages and resource analysis,
which is a fundamental barrier to leveraging these methods in a wider spectrum of applications.

Data-driven resource analysis. An alternative approach to static resource analysis is data-driven
resource analysis, which infers resource bounds from a set of cost measurements obtained by running
the program [23, 30, 33, 50, 77, 80, 90]. Data-driven resource analysis is not as well established as
static resource analysis. A main advantage of data-driven approaches is that a program can be
treated as a black box, greatly expanding the scope of programs that can be analyzed.
Data-driven resource analysis comes with its own set of challenges, particularly for deriving

worst-case bounds. First, the analysis is sensitive to the given dataset and data collection can be
difficult. For example, inputs generated uniformly at random are unlikely to trigger worst-case
behaviors in many programs. Second, commonly used statistical techniques for inferring a bound
from the cost dataset lack accuracy (i.e., how close the inference result is to a sound worst-case
cost bound) and robustness (i.e., the inference result has a positive probability of being a sound
worst-case cost bound even if the dataset does not contain worst-case inputs). The aforementioned
works use optimization, and as we demonstrate with experiments (Section 7), bounds derived in
this way are prone to being unsound. Prior works also do not quantify any notion of uncertainty in
the inferred bounds.

Bayesian resource analysis. The first contribution of this work is the design and implementation of
Bayesian resource analysis for worst-case bounds. In general, Bayesian resource analyses are more
customizable than optimization-based ones, as users can express domain knowledge in the form of
probabilistic models. Additionally, Bayesian resource analyses return whole posterior distributions
of inferred cost bounds, providing richer information about the uncertainty in inference results.
This article presents two new Bayesian resource analyses: BayesWC and BayesPC. In BayesWC, for
each input size present in the runtime cost data, we conduct Bayesian inference to infer likely values
of worst-case costs that are no less than the observed costs. By treating these two costs separately,
we account for the possibility that worst-case costs have not been observed in the runtime data.
The inferred worst-case costs from BayesWC produce optimization problems that can be solved to
obtain cost bounds. In BayesPC, on the other hand, we conduct Bayesian inference to directly infer
cost bounds, bypassing optimization altogether. Compared to BayesWC, BayesPC allows users to
construct more holistic probabilistic models for specifying how observed cost measurements are
probabilistically generated. In our experiments, cost bounds inferred by BayesWC and BayesPC

are shown to be more sound and robust than those inferred by an optimization-based data-driven
baseline. However, because they ignore the source code and exclusively rely on data-driven analysis,
BayesWC and BayesPC can still fail to infer sound cost bounds in several important benchmarks.

Hybrid resource analysis. The main contribution of this work is the design, implementa-

tion, and evaluation of a new hybrid resource analysis method that combines static and

data-driven resource analyses. To the best of our knowledge, this article is the first to develop
such a hybrid analysis. Hybrid resource analysis aims to mitigate the incompleteness of static
resource analysis and improve the accuracy and robustness of data-driven resource analysis. A
main research challenge is designing a principled interface between static and data-driven resource
analyses that enables a tight integration to combine the respective strengths of both approaches.
For the static part of the hybrid resource analysis, we rely on automatic amortized resource

analysis (AARA) [45, 47], a type-based state-of-the-art technique that is implemented for OCaml
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programs in Resource-Aware ML (RaML) [41]. AARA supports advanced language features such as
recursive types [36], side effects [62], and higher-order functions [53]. Two distinguishing features
of AARA are the ability to handle non-monotone resources such as memory and the ability to
account for amortization effects. As a type-based technique, AARA is naturally compositional, and
cost bound inference can be reduced to off-the-shelf linear programming (LP) solving, even if the
derived bounds are nonlinear. We dub our hybrid resource analysis method Hybrid AARA.

For the data-driven part of Hybrid AARA, we present a new type inference system that combines
the two data-driven Bayesian resource analysis methods (BayesPC and BayesWC) with conventional
AARA. To invoke Hybrid AARA, a user annotates part of the code for data-driven analysis using
a syntactic form that has no runtime effect. Our integration of Bayesian resource analysis and
AARA rests on two key technical innovations. For Hybrid AARA with BayesWC, we combine the
optimization problems produced by the data-driven Bayesian inference with the linear constraints
derived using conventional AARA type inference to obtain and solve a joint linear program.
For Hybrid AARA with BayesPC, we integrate constraints from conventional AARA into the
probabilistic cost bound models of BayesPC. Bayesian inference within this model leverages recent
innovations from the sampling algorithm literature that allow Hamiltonian Monte Carlo (HMC)
sampling to be restricted to a convex polytope defined by AARA’s linear constraints [18, 69]. To
establish the soundness of Hybrid AARA, we first prove that its inferred bounds are sound with
respect to runtime cost data. Additionally, we prove the statistical soundness that the inferred
bounds converge to a sound bound if the analysis is repeated with a successively growing set of
runtime cost data that contains worst-case inputs with nonzero probability.

Applications. Hybrid AARA (and its special case of purely data-driven analysis) using Bayesian
inference returns a collection of cost bounds that approximate the posterior distribution. Even if
the proportion of sound cost bounds in the posterior distribution is less than 100%, Hybrid AARA
using Bayesian inference is useful for applications that can tolerate occasional underestimates of
the worst-case cost. One such application is scheduling of jobs in cloud computing, where the
cloud-service provider would like to have a reasonably accurate (but not necessarily sound at
all times) estimate of the resources required to run the job. The job’s cost use may respect the
tighter bounds in the posterior sample, but if it happens to run out of computational resources, then
the cloud-service provider can rerun the job with more resources. Other applications of Hybrid
AARA with Bayesian inference include auto-grading of students’ programming assignments and
annotating software libraries to help users of the library understand its performance characteristics.

Evaluation. In an experimental evaluation with a prototype built on RaML [41], we compare fully
data-driven analyses and Hybrid AARA on a curated set of benchmarks that pose challenges to
static, data-driven, and hybrid analyses. We find that Hybrid AARA outperforms fully data-driven
analyses both when considering soundness and tightness of the bounds.

Contributions. In summary, this article makes the following contributions.

• We present novel Bayesian data-driven resource analyses (BayesWC in Section 5.2; BayesPC
in Section 5.3) to infer posterior probability distributions over program cost bounds.

• We present Hybrid AARA: a novel type inference system that combines BayesWC and
BayesPC with conventional AARA (Sections 6.1 and 6.2).

• We formulate and prove two notions of soundness for Hybrid AARA (Theorems 6.1 and 6.2)
• We implement a prototype of Hybrid AARA by extending Resource-Aware ML (RaML) [41].
• We evaluate Hybrid AARA and fully data-driven resource analyses on a challenging bench-
mark set, showing examples of improvements in accuracy and robustness (Section 7).
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let rec partition pivot xs =

match xs with

| [] → ([], [])

| hd :: tl →
let lower, upper = partition pivot tl in

if complex_compare hd pivot then

(hd :: lower, upper)

else (lower, hd :: upper)

let rec quicksort xs =

match xs with

| [] → []

| hd :: tl →
let lower, upper = Raml.stat (partition hd tl) in

let lower_sorted = quicksort lower in

let upper_sorted = quicksort upper in

append lower_sorted (hd :: upper_sorted)

Lst. 1. �icksort in OCaml. The function complex_compare in line 6 is intractable to static resource analysis.

The annotation Raml.stat in line 5 indicates data-driven resource analysis on partition.

2 OVERVIEW

In this section, we review static and data-driven resource analyses, identify their shortcomings,
and outline our main contribution of hybrid resource analysis. We use the implementation of
quicksort in OCaml given in Listing 1 as a running example. Our goal is to automatically derive a
symbolic worst-case cost bound for the function quicksort. For simplicity, we use the resource
metric that records the time cost of executing the comparisons complex_compare hd pivot in the
function partition. We consider different versions of complex_compare. For example, if the cost of
evaluating complex_compare hd pivot is bounded by 1, then the worst-case cost of quicksort
xs is =(= − 1)/2, where = is the length of the list xs.

Static resource analysis. The predominant method for automatically deriving symbolic worst-case
bounds is static resource analysis. This article builds on automatic amortized resource analysis
(AARA) [39–42] (Section 4), a compositional type-based static analysis technique.

Resource-Aware ML (RaML) is an implementation of AARA that derives polynomial bounds
for a subset of OCaml. The compositionality of AARA ensures that RaML can derive a bound
for quicksort if it can derive a bound for complex_compare. Assuming each comparison has
cost 1, RaML correctly infers the tight bound =(= − 1)/2 for quicksort in less than 0.1 seconds.
Similarly, assume that the argument of quicksort is a list of lists and that complex_compare is a
lexicographical comparison whose worst-case is : , where : is the length of the first argument list.
Then RaML infers the tight bound<=(= − 1)/2 for quicksort in less than 0.2 seconds, where<
is the maximum length of the inner lists. This analysis is nontrivial because of the nonstructural
recursion: to derive a cost bound, it is not enough to separately analyze the cost of the partition
function and the number of recursive steps. We must also analyze how the partition function
changes input sizes, relaying the size-change information to the next recursive call of quicksort.
Because resource analysis is undecidable, however, even the most sophisticated static resource

analyses are incomplete, and there remain programs that cannot be analyzed automatically. If the
comparison function complex_compare in partition is, for example, OCaml’s built-in polymor-
phic comparator, which examines the low-level memory representations of input values, RaML is
not able to derive a bound because the comparison code is not available to the analysis. Indeed, there
are many other comparison functions that RaML cannot analyze, even if the cost of the comparison
is bounded by a constant. AARA fails, for instance, if the control flow depends on mutable data or
complex loop conditions. A concrete example of a constant-time function that cannot be statically
analyzed is compare_dist, an implementation of complex_compare that compares two vectors by
computing their distance to a fixed vector that is stored in a reference cell. Such limitations are not
specific to RaML: every static resource analysis has unsupported language features or iteration
patterns that make the analysis feel brittle for non-experts users.
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(a) Data-Driven Resource Analysis
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Fig. 1. Hybrid resource analysis on quicksort infers more accurate bounds than purely data-driven analyses.

Data-driven resource analysis. One way to overcome the incompleteness of static analysis is
data-driven analysis. Existing data-driven techniques first collect execution costs for different inputs
and then solve an optimization problem to fit a cost function on the data [23, 30, 33, 50, 77, 80, 90].
Although these optimization-based approaches are fast, they can infer unsound cost bounds and do
not quantify the uncertainty over the unknown cost bounds.
To showcase such an approach, suppose that quicksort uses the aforementioned comparator

compare_dist and that the cost varies between 0.5 and 1.0 for different inputs. Figure 1a shows
the inferred quadratic cost bound (blue line) of data-driven optimization-based resource analysis
adapted from [23, 33, 90], given a randomly generated dataset of measured costs of quicksort
(black dots). Any worst-case cost bound must lie above all the measured costs and minimize the
total !1 distance between the curve and runtime data. This optimization problem can be framed as
a linear program (Opt; Section 5.1). Optimization fails to infer the correct worst-case cost bound
(red line), because randomly generated data sets rarely contain worst-case inputs.

To mitigate the shortcomings of such greedy optimizations, this paper introduces data-driven
Bayesian resource analyses (BayesWC and BayesPC; Sections 5.2 and 5.3). Bayesian resource
analysis enables users to express their domain knowledge in the form of models that specify
how observed runtime samples are probabilistically generated. It returns an entire probability
distribution over the corresponding cost bounds given observed samples. In particular, we condition
the probabilistic model on observed cost data and compute the posterior distribution of cost bounds
by running sampling-based probabilistic inference algorithms. For quicksort, Fig. 1b shows the
posterior distribution over cost bounds from Bayesian resource analysis. The blue line indicates
the median cost bound and the light-blue shade is the 10–90th percentile range. Most of the cost
bounds in the posterior distribution are closer to the true worst-case bound (red line) as compared to
optimization-based approach in Fig. 1a. In fact, 28/1000 bounds drawn from the posterior distribution
are sound. Although this fraction is small, it is already a substantial improvement over optimization.

Hybrid resource analysis. A central contribution of this work is the design, implementation, and
evaluation of Hybrid AARA (Section 6), which integrates our two novel data-driven methods for
Bayesian resource analysis (BayesWC and BayesPC) and a simple optimization-based data-driven
baseline (Opt) into conventional AARA. Hybrid AARA is modular and lets users combine data-
driven and static analyses in different parts of a program. Therefore, it covers a spectrum ranging
from fully data-driven to fully static analyses.
Consider again the example of quicksort where the comparator is compare_dist, which in-

tractable for static analysis and has a cost varying between 0.5 and 1.0. If we perform data-driven
analysis on the comparator and static analysis on the rest of the code, Hybrid BayesWC amounts
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to (i) inferring the worst-case constant cost of the comparator by data-driven analysis; and (ii) in-
corporating the inferred cost into conventional AARA. All 1000/1000 cost bounds drawn from the
posterior distribution are sound (the analysis time in our Hybrid AARA prototype is 66.2 seconds).
In the previous example, the interface between the statistical analysis and the static analysis is

particularly simple since the cost of evaluating quicksort does not depend on the result of the
comparison function. Many examples fall into this category, for which Hybrid AARA enables the
analysis of code that is intractable for purely static methods while clearly outperforming purely
data-driven methods. However, our experiment focuses on a different category of benchmarks for
which the integration of data-driven methods is technically challenging and the benefits of a hybrid
analysis are less clear.

Challenges for hybrid resource analysis. Revisit the quicksort example, using the compare_dist
comparator. But this time let us assume that the user marks the call to partition for data-driven
analysis instead of the call to complex_compare. A data-driven analysis could be able to derive a
linear cost bound for partition, but how can use this information to derive a bound for quicksort
using AARA?Wewould need additional information on the size of the result of partition. However, it
is not clear what exact information we need. For example, it is insufficient for analyzing quicksort
to statistically bound the size of each component in the result of partition.
A main technical innovation of our work is the design of a principled interface between data-

driven and static analyses that can handle such challenging cases. BayesWC and Opt are integrated
into AARA by developing a type inference system that combines the underlying LP problems.
Integrating BayesPC into AARA poses a significant challenge because the former relies on sampling
algorithms to approximate posterior distributions of resource coefficients instead of LP problems
as in AARA. To overcome this challenge, we leverage an innovative sampling algorithm that allow
Hamiltonian Monte Carlo (HMC) sampling to be restricted to a convex polytope [18, 69].
Figure 1c shows the posterior distribution over bounds from Hybrid BayesWC on quicksort

with the data-driven analysis of partition. The 10–90th percentile range (blue shade) is situated
above the true worst-case bound (red line) for all input sizes between 0 and 200. In fact, 471/1000
samples drawn from the posterior distribution in Hybrid BayesWC are theoretically sound bounds
for all input sizes, in contrast to the 28/1000 bounds for purely data-driven analysis with BayesWC

(Fig. 1b) and 0/1000 bounds for data-driven resource analysis with Opt (Fig. 1a).
We have empirically evaluated hybrid resource analysis on challenging and realistic micro

benchmarks where data-driven analysis is applied to non-trivial code that stresses the interface
between data-driven and static analysis (Section 7). The benchmarks demonstrate that (i) Bayesian
resource analysis returns more accurate cost bounds than optimization-based analysis and (ii) hybrid
resource analysis returns more accurate cost bounds than fully data-driven analysis. Notable among
our benchmarks is the median-of-medians-based linear-time selection algorithm [11]. Conventional
AARA cannot statically analyze this program, as it is challenging to reason about how the median
of medians influences the partition function. Fully data-driven analysis does not infer a sound
cost bound, either, as the worst-case behavior of partition rarely occurs in all recursive calls. By
exploiting hybrid resource analysis, we successfully infer a sound worst-case cost bound that
neither fully data-driven nor fully static analyses can.

3 SYNTAX AND COST SEMANTICS

We set the stage for Hybrid AARA by introducing a functional programming language. While AARA
can handle higher-order functions, we focus on the first-order setting to simplify the presentation.
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g F unit | int | g1 + g2 | g1 × g2 | ! (g ) polynomial and list types

4 F ⟨ ⟩ | = | G unit, integer, and variable;G ∈ X, = ∈ Z

| le� · G | right · G | case G {le� · G1 ↩→ 41 | right · G2 ↩→ 42} sum constructor and destructor

| ⟨G1, G2 ⟩ | case G {⟨G1, G2 ⟩ ↩→ 4 } product constructor and destructor

| [ ] | G1 :: G2 | case G { [ ] ↩→ 41 | (G1 :: G2 ) ↩→ 42} list constructor and destructor

| 5 G function application; 5 ∈ F

| let G = 41 in 42 | share G as G1, G2 in 4 let-binding and variable sharing

| tick @ resource consumption;@ ∈ Q

| statℓ 4 statistical analysis; ℓ ∈ L

Lst. 2. Datatypes g and expressions 4 in a first-order AARA functional programming language.

3.1 Syntax

Datatypes g and expressions 4 are formed by the grammar shown in Listing 2, where X, F , and L
are countable sets of identifiers for variable names, function names, and label names, respectively.
A program P contains a finite set � ⊂ F of function identifiers and mutually-recursive definitions

5 (G) = 4 for every 5 ∈ � . (3.1)

Function types have the form g1 → g2. The function body 4 can reference all functions 6 ∈ � .
As in AARA [39, 40, 42], we adopt the share-let normal1 form where (i) variables are affine (i.e.,

they are used at most once) and (ii) constructors and destructors are applied to variables, but not
general expressions. The first restriction ensures that the potential stored in variables is consumed
at most once. To use variable G twice, we write share G as G1, G2 in 4 , where fresh variables G1 and G2
have the same value as G . The second restriction simplifies proofs of AARA. To apply constructors
and destructors to non-variable expressions, we first bind variables to them by let-bindings.

The construct tick @ increments a cost counter by @ ∈ Q, which is possibly negative, and returns
the unit element ⟨ ⟩. To specify a particular resource metric, users (manually or automatically)
insert tick @ throughout their code. As the tick metric lets us consider arbitrary resource metrics, it
is a standard practice in the literature of static resource analysis [25, 42, 67, 75, 86].
If all @’s in tick @ are non-negative, such resource metrics (e.g., running time) are said to be

monotone. Conversely, if we have @ < 0, it means resources can be freed up, and such resource
metrics (e.g., memory) are non-monotone. This article focuses on monotone resource metrics.

The construct statℓ 4 does not have a runtime effect, but is used in the hybrid resource analysis. It
indicates that expression 4 should be analyzed using data-driven analysis instead of static analysis.
The label ℓ ∈ L is used to uniquely identify sites of data-driven analysis in source code.

Our prototype implementation is based on Resource-Aware ML (RaML) [41], which uses OCaml
extended with annotations Raml.tick and Raml.stat as the input language. By way of example,
Listing 1 displays an implementation of quicksort.
The annotation stat can be either manually inserted by the user or automatically inserted by

walking over the program’s source code bottom-up to identify functions (or more fine-grained code
fragments) that cannot be analyzed statically by conventional AARA. Concretely, we first look at
the leaves of the program call graph (i.e., functions which do not call other functions), check if we
can analyze them using conventional AARA, and then recurse up the call graph to identify other
problematic functions. We then insert the annotations at all the required points.

1The share-let normal form does not affect the expressive power of the language. The implementation of AARA for

OCaml [41, 42] only uses the share-let normal form internally—users are allowed to write any OCaml programs.
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3.2 Cost Semantics

Given a program P, the cost semantics of expression 4 is given by the judgment

+ ⊢P 4 ⇓2 E, (3.2)

where + is an environment (i.e., a mapping from variables to values), E is the value that 4 evaluates
to, and 2 ∈ Q≥0 denotes the cost of evaluating 4 . Values E are defined by the following grammar:

E F ⟨ ⟩ | = | le� · E | right · E | ⟨E1, E2⟩ | [ ] | E1 :: E2 .

A well-formed value can be assigned a type g and we write E : g .
Under non-monotone resource metrics, we would have two notions of costs: peak costs and

net costs [39, 40, 42]. However, as this article focuses on monotone resource metrics, (3.2) only
contains a single cost 2 ∈ Q≥0. Additionally, for simplicity, this article assumes that (i) @ in tick @ is
known with absolute certainty and (ii) costs are measured perfectly without measurement errors.
Measurement errors can be factored into probabilistic models of Bayesian resource analysis by
encoding them in the input program.

3.3 Data Collection

In fully data-driven analysis (Section 5), we collect a dataset of runtime cost measurements for
a program P = {5 (G) = 4} with a single function 5 . Sweeping through a list of environments
+8 = {G : E8 } (8 = 1, . . . , # ) that each includes bindings for argument G , we evaluate the cost

semantics +8 ⊢P 4 ⇓28 Ẽ8 . We then define the dataset as D = {(+8 , Ẽ8 , 28 )}
#
8=1.

The data collection for hybrid resource analysis (Section 6) is more involved. It is formalized with
a judgment that extends the cost semantics (3.2). Letting # > 0 be a positive integer, the expression

(+8 ⊢P 4 ⇓28 E8 )
#
8=1 | D (3.3)

is defined as follows. We again perform independent executions of the program sweeping through
environments (+1, . . . ,+# ). Let !

′ ⊂ L denote the labels of all statℓ subexpressions in program 4 .
We collect in Dℓ all measurements (+ , E, 2) associated with expression statℓ 4ℓ , for each ℓ ∈ !′. The
overall dataset is D = {(ℓ,+ , E, 2) | ℓ ∈ !′, (+ , E, 2) ∈ Dℓ }.

4 BACKGROUND ON STATIC RESOURCE ANALYSIS

This work builds on automatic amortized resource analysis (AARA) [21, 39, 40, 42, 47, 48, 60], a
type-based resource analysis technique for functional programs. It aims to automatically infer
polynomial cost bounds. It adopts the potential method of amortized analysis [85], where data
structures are equipped with potential functions mapping concrete values to non-negative numbers.

4.1 Linear AARA

To illustrate how AARA works, consider the function partition in Listing 1. Our goal is to derive
a worst-case bound on the number of comparisons during an evaluation of partition, namely
=, where = is the input list length. In AARA, we type expression partition (p,x), where p is a
pivot and x is an input list, as follows:

{p : int, x : !1 (int)}; 0 ⊢ partition (p,x) : ⟨!0 (int) × !0 (int), 0⟩.

The type !1 (int) assigns the potential functionΦ(E : !1 (int)) = 1· |E | to an input list E , representing
the tight worst-case bound. The annotation 0 in the typing context indicates that 0 additional
constant potential is stored in the context.
AARA is naturally compositional because potential functions explicitly track size changes of

data structures. Assume we have two nested calls to partition as in the following function f.
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f(x) = let (x1,x2) = partition (8128,x) in partition (1,x1)

In the call partition (1,x1), we can use the previous type for partition. However, for the call
partition (8128,x), we use the typing judgment

{p : int, x : !2 (int)}; 0 ⊢ partition (p,x) : ⟨!1 (int) × !1 (int), 0⟩.

It assigns type !1 (int) to the output lists. Let E , E1, E2 be values of variables G , G1, G2, respectively.
The intuition is that the input potential Φ(E : !2 (int)) = 2 · |E | is used to cover both the cost (1 · |E |)
and the potential of the result (1 · |E1 | + 1 · |E2 |). It relies on the fact |E1 | + |E2 | = |E |. The remaining
potential Φ(E1 : !

1 (int)) = 1 · |E1 | covers the cost of the second function call partition (1,x1).
In general, the type of partition (p,x) can be expressed with linear constraints:

{p : int, x : !?1 (int)};?0 ⊢ partition (p,x) : ⟨!@1 (int) × !@2 (int), @0⟩

subject to ?1 ≥ 1 + @′, @′ ≥ @1, @
′ ≥ @2, ?0 ≥ @0.

Similar constraints are emitted by the local type rules during the type inference. The constraints
are then solved with an off-the-shelf linear programming solver to derive a bound for the program.

4.2 Polynomial AARA

AARA can be extended to polynomial potential functions and therefore polynomial cost bounds
while retaining compositionality and type inference with linear constraint solving [39, 43]. Consider
quicksort from Listing 1. In terms of the number of comparisons, the worst-case cost of quicksort
is =(= − 1)/2, where = is the input list length. This cost bound is expressed by the following typing
judgment in univariate polynomial AARA:

{x : ! (0,1) (int)}; 0 ⊢ quicksort x : ⟨! (0,0) (int), 0⟩. (4.1)

Here, the input type ! (0,1) (int) assigns the potential function Φ(E : ! (0,1) (int)) = 0 ·
( |E |
1

)
+ 1 ·

( |E |
2

)
,

and the constant 0 after ! (0,1) (int) indicates the constant zero potential stored in the input.
Univariate polynomial AARA extends linear AARA with univariate polynomial potential func-

tions. For instance, given two values E1 and E2, univariate AARA can express a potential function
|E1 |

2 + |E2 |
2. Resource-annotated datatypes in univariate AARA are formed by the grammar

0 F unit | int | ⟨01, @1⟩ + ⟨02, @2⟩ | 01 × 02 | !
®@ (0).

Here, @1, @2 ∈ Q≥0 denote constant potential, and a tuple ®@ over Q≥0 records coefficients of
polynomial potential functions, except their constant (i.e., degree-zero) potential. To indicate
constant potential @ ∈ Q≥0 in addition to higher-degree coefficients, we write ⟨0, @⟩.

The amount Φ of potential stored in value E according to a resource-annotated datatype 0 is

Φ(E : unit) = Φ(E : int) := 0 Φ(⟨E1, E2⟩ : 01 × 02) := Φ(E1 : 01) + Φ(E2 : 02)

Φ(le� · E : ⟨01, @1⟩ + ⟨02, @2⟩) := @1 + Φ(E : 01) Φ( [ ] : ! ®@ (0)) := 0

Φ(right · E : ⟨01, @1⟩ + ⟨02, @2⟩) := @2 + Φ(E : 02) Φ(E1 :: E2 : !
®@ (0)) := @1 + Φ(E1 : 0)

+ Φ(E2 : !
⊳( ®@) (0)),

where ®@ = (@1, . . . , @3 ) and the shift operator ⊳ on tuples is ⊳(@1, . . . , @3 ) := (@1+@2, . . . , @3−1+@3 , @3 ).

Equivalently, if ®@ = (@1, . . . , @3 ), then a size-= list [E1, . . . , E=] of type !
®@ (0) has potential

Φ( [E1, . . . , E=] : !
®@ (0)) =

∑3
8=1 @8

(=
8

)
+
∑=

8=1 Φ(E8 : 0). (4.2)

Given an evaluation context + = {G1 : E1, . . . , G= : E=}, its potential according to a resource-
annotated typing context Γ = {G1 : 01, . . . , G= : 0=} is Φ(+ : Γ) :=

∑=
8=1 Φ(E8 : 08 ). The notation of

potential function Φ is used for both value E : 0 and evaluation context + : Γ.
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(b) BayesWC
input size

co
st
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Bayesian Polynomial
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Fig. 2. Three approaches to data-driven resource analysis. (a)Opt uses linear programming to fit a polynomial

curve that lies above the runtime data while minimizing the distance to the observed worst-case cost at each

input size. (b) BayesWC uses a two-step approach: first, Bayesian survival analysis is used to infer a posterior

distribution over the worst-case cost at each input size; second, linear programming is used to fit polynomial

curves with respect to samples from the inferred distribution of worst-case costs. (c) BayesPC uses Bayesian

polynomial regression to infer the coefficients of polynomial curves that lie above the observed runtime data.

A resource-annotated typing judgment of univariate AARA is

Γ; ? ⊢ 4 : ⟨0, @⟩, (4.3)

where Γ is a resource-annotated typing context (i.e., a mapping from variables to resource-annotated
types), ? ∈ Q≥0 is constant potential of the context, and 0 is a resource-annotated type of the
output with constant potential @ ∈ Q≥0. The judgment (4.3) means, given an environment + that
carries potential ? + Φ(+ : Γ), if 4 evaluates to value E , then E carries @ + Φ(E : 0) much potential.

The soundness of univariate AARA is formally stated in Theorem 4.1 [44].

Theorem 4.1 (Soundness of univariate AARA). Under a monotone resource metric, suppose

Γ;? ⊢ 4 : ⟨0, @⟩. If we have + ⊢P 4 ⇓2 E , then Φ(+ : Γ) + ? − Φ(E : 0) − @ ≥ 2 holds.

In our prototype of hybrid resource analysis, we use multivariate polynomial AARA [40, 42]
that can express multivariate polynomial potential functions and hence is strictly more expressive
than univariate polynomial AARA. Multivariate AARA preserves compositionality and linear-
programming-based type inference from univariate AARA. However, for the ease of presentation,
we use the notation of univariate AARA throughout this article.

5 DATA-DRIVEN BAYESIAN RESOURCE ANALYSIS

This section presents two novel data-driven resource analysis methods called BayesWC and
BayesPC that use Bayesian inference to learn probability distributions over cost bounds of programs.
Recall from Section 3.3 that fully data-driven resource analysis begins with a program P =

{5 (G) = 4} that contains a single function 5 and runtime dataset D = {(+8 , Ẽ8 , 28 )}
#
8=1. To simplify

the presentation, we assume in this section that 5 takes as input a length-= integer list, returns a
length b (=)-integer list, and contains no free variables. Since +8 ≡ {G : E8 } holds for each 8, . . . , # ,
we denote the measurements more concisely as (E8 , Ẽ8 , 28 ). Following Eq. (4.3), a cost bound of 5 is

{G : ! ®? (int)}, ?0 ⊢ 5 G : ⟨! ®@ (int), @0⟩. (5.1)

This typing judgment is sound if, for all lists E : !(int), the relation {G : E} ⊢P 5 G ⇓2 Ẽ holds, i.e.,

[Φ(E : ! ®? (int)) + ?0] − [Φ(Ẽ : ! ®@ (int)) + @0] ≡
[
Ψ( |E |;?0, ®?) − Ψ( |Ẽ |;@0, ®@)

]
≥ 2, (5.2)

where we have introduced the function Ψ(=;?0, ®?) :=
∑ | ®? |

8=1 ?8
(=
8

)
+ ?0 (= ∈ N). Unlike conventional

AARA, which derives (5.1) by static analysis of 4 and linear programming, in data-driven resource
analysis we will infer the parameters (?0, ®?) and (@0, ®@) using the dataset D.
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5.1 Optimization

Before presenting Bayesian inference, we consider a simple optimization-based baseline (adapted
from [23, 33, 90]) to ensure that (5.2) is satisfied with respect to the runtime data D, i.e.,

∀8 = 1, . . . , # .Ψ( |E8 |;?0, ®?) ≥ 28 + Ψ( |Ẽ8 |;@0, ®@). (5.3)

We seek the tightest bound among all ?0, ®?, @0, ®@ that minimizes the nonnegative cost gaps between
the predicted and observed costs in the dataset D. Letting

#D ≔ {|E8 |; 8 = 1, . . . , # } set of unique input sizes appearing in D (5.4)

2̂max
= ≔ max {28 | 8 = 1, . . . , # ; |E8 | = =} max. observed cost for input size = ∈ #D (5.5)

2max
= ≔ max {cost(5 E) | E : !(int), |E | = =} true worst-case cost for input size = ∈ #D, (5.6)

we define the following linear program:

minimize
∑#

8=1

[
Ψ( |E8 |;?0, ®?) − Ψ( |Ẽ8 |;@0, ®@)

]
− 2̂max

|E8 |
(Opt-LP)

subject to Ψ( |E8 |;?0, ®?) ≥ Ψ( |Ẽ8 |;@0, ®@) + 2̂
max
|E8 |

(8 = 1, . . . , # ); ?0, ?1, . . . , ? | ®? | , @0, @1, . . . , @ | ®@ | ≥ 0.

An example of this approach, which we call Opt, is shown in Fig. 2a. While any solution ?̂0, ®̂?, Â0, ®̂@

to (Opt-LP) is guaranteed to satisfy (5.3), even a conservative estimate Ψ(=; ?̂0, ®̂?) of the worst-case
cost may lie below the true value 2max

= in Eq. (5.6) (which we assume is finite), as shown in Fig. 1a.
This shortcoming occurs because Opt uses the point estimate 2̂max

= given in Eq. (5.5) as a proxy for
2max
= , which is not robust in cases where the data D is such that 2̂max

= < 2max
= for some = ∈ #D .

5.2 Bayesian Inference on Worst-Case Costs

Overview. Our first approach to addressing the aforementioned limitation of Opt is Bayesian
inference on worst-case costs (BayesWC). Whereas Opt uses the data D to form a point estimate
2̂max
= of the worst-case cost 2max

= for each input size = ∈ #D in the linear program, BayesWC instead
leverages D to learn an entire probability distribution `= that characterizes our uncertainty about
2max
= . We identify two requirements that the inferred worst-case cost distributions `= must satisfy:

`= ( [2̂
max
= ,∞)) = 1, ∀n > 0,F > 2̂max

= . `= ( [F − n,F + n]) > 0. (5.7)

The left expression guarantees soundness (5.3) with respect to D and the right expression ensures
robustness with respect to the true worst-case cost 2max

= . The latter property is not satisfied by Opt.
If we have access to probability distributions `= (= ∈ #D) over worst-case costs, we can use

them to robustly estimate bounds by generating |#D | batches of" > 0 i.i.d. samples

(2′=,1, . . . 2
′
=," ) ∼ `= (= ∈ #D). (5.8)

Reorganizing these |#D | × " samples into " lists c′9 ≔ (2′=,9 ;= ∈ #D) ( 9 = 1, . . . , ") each of

length #D , we obtain posterior samples of coefficients ?0, ®?, @0, ®@ by solving " linear programs
parametrized the random samples c′9 :

minimize
∑#

8=1

[
Ψ( |E8 |;?0, ®?) − Ψ( |Ẽ8 |;@0, ®@)

]
− 2′

|E8 |, 9
(BayesWC-LP)

subject to Ψ( |E8 |;?0, ®?) ≥ Ψ( |Ẽ8 |;@0, ®@) + 2
′
|E8 |, 9

(8 = 1, . . . , # ); ?0, ?1, . . . , ? | ®? | , @0, @1, . . . , @ | ®@ | ≥ 0.

Figure 2b shows an example of BayesWC, where the blue dots above a given input size = represents
the samples 2′=,9 from the worst-case cost distribution `= . The solutions of the corresponding linear

programs (BayesWC-LP) are shown in red. Whereas Opt delivers a single bound using from one
LP, BayesWC delivers a posterior samples of bounds using multiple randomly generated LPs.
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Sampling worst-case costs via Bayesian inference. A central design challenge in BayesWC is
obtaining the distributions `= over worst-case costs that satisfy Eq. (5.7). Our approach uses
Bayesian inference in a probabilistic generative model over observed costs of the target function 5 .
In particular, let �= be a random variable representing the cost of 5 applied to a size-= input E

(the randomness is taken over the (unknown) distribution of E). Letting v ≔ (E1, . . . , E# ) denote
the observed inputs in D and c ≔ (21, . . . , 2# ) the corresponding costs, we infer the distribution of
�= (= ∈ #D ) by designing a (yet-to-be-specified) Bayesian model that is indexed by v and defines a
probability distribution cv (\, c) over latent parameters \ and observable costs c. Conditioned on
the realization of c in the dataset D, the posterior distribution of \ is given by the Bayes rule as

cv (\ |c) ≔
cv (\, c)∫

\ ′ cv (\ ′, c)d\ ′
∝ ℎ(\ )

#∏

8=1

6(28 ;\, |E8 |) (5.9)

where the joint probability factorizes into prior distribution ℎ(\ ) over parameters \ and a product
of likelihood terms 6(28 ;\, |E8 |) for the conditionally independent observed costs 28 . Here, 6 denotes
a distribution over costs R>0 parameterized by an input size = and latent parameter \ .
Suppose that, given D, we are able to infer the posterior cv (\ |c) as defined in Eq. (5.9). We

generate samples (2′=,1, . . . , 2
′
=," ) in Eq. (5.8) from the worst-case cost distribution `= by sampling:

\ 9 ∼ cv (\ |c), 2′=,9 ∼ 6̃(·;=, \ 9 , [2̂
max
= ,∞)) ( 9 = 1, . . . , " ;= ∈ #D), (5.10)

where the distribution 6̃ is defined as the restriction of 6 to an interval* ⊂ R, that is,

6̃(G ;=, \,* ) ≔
6(G ;=, \ )I[G ∈ * ]∫
G ′∈*

6(G ′;=, \ )dG ′
(G ∈ R). (5.11)

Proposition 5.1. If the likelihood6(2 ;\, =) has full support over [0,∞), then the inferred worst-case
distribution `= defined by Eqs. (5.10) and (5.11) satisfies the soundness and robustness properties (5.7).

Remark 5.2. The reader may be concerned that the distributions of the" simulated worst-cost
bounds c′ ≔ (2′=, = ∈ #D) in Eq. (5.10) are defined in terms of 2̂max

= , which are observation-specific
quantities. However, because the prior cv is a probability distribution indexed by a fixed vector
of input instances v that uniquely define the sizes #D , the random variable 2′= has a well-defined
prior distribution, as demonstrated by the factorization and graphical representation:

\ c c
′ cv (\, c, c

′) = ℎ(\ )
∏#

8=1 6(28 ;\, |E8 |)
∏

=∈#D
6̃(2′= ;=, \, [ max

8∈[# ]; |E8 |==
28 ,∞)) .

The conditional independence structure in the model is now obvious, and the " replicates of c̃
drawn in Eq. (5.11) are valid posterior inferences conditioned on the observed costs c in D. «

Survival analysis for worst-case costs. To obtain the distribution cv (\, c) (5.9) we design a domain-
general probability model grounded in survival analysis [4] for predicting “time-to-occurrence”
data beyond an observed horizon. We have three parameters \ = {V0, V1, f} with i.i.d. normal
prior ℎ; a hyperparameter W0; a likelihood model 6 over observable costs 2 that is defined implicitly
through a variable transformation; and a noise distribution 6noise:

V0, V1, f
iid
∼ Normal(0, W0), n8 ∼ 6noise (0, 1), ~8 = V0 + V1 |E8 | + |f |n8 , 28 = exp(~8 ). (5.12)

for each 8 = 1, . . . , # (i.i.d.). Possible choices for the noise distribution 6noise include the standard
normal, logistic, or Gumbel distributions, which in turn imply that the likelihood model 6 is a
log-normal, log-logistic, or Weibull distribution each with scale parameter exp(V0 + V1 |E8 |) and
shape parameters |f |, |f |−1, and |f |−1, respectively. Our reference implementation sets 6noise to be
a Gumbel distribution, for its relatively heavier tails as compared to other choices.
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5.3 Bayesian Inference on Polynomial Coefficients

Overview. Whereas BayesWC performs Bayesian inference on worst-case costs and composes the
results with (BayesWC-LP) to deliver bounds, we develop another approach that bypasses LP solving
and directly performs inference over the unknown coefficients ?0, ®?, @0, ®@ in the judgment (5.1).
In this approach, which we call BayesPC, our Bayesian model is again indexed by the input

instances v and defines a probability distribution cv (\, ?0, ®?, @0, ®@, c) over a set of auxiliary latent
parameters \ , resource coefficients ?0, ®?, @0, ®@, and observable costs c. Conditioned on c, we sample

?′0, ®?
′, @′0, ®@

′ ∼ cv (?0, ®?, @0, ®@ |c), (5.13)

which define the posterior bound _=. Ψ(=;?′0, ®?
′) − Ψ(b (=);@′0, ®@

′). Figure 2c illustrates this idea:
the blue curves represent posterior samples of cost bounds and the blue dots show samples 2′=
of inferred worst-case costs that estimate the true value 2max

= at each input size = ∈ #D . As in
BayesWC, BayesPC delivers posterior samples of both worst-case costs and cost bounds, but it
rests on a different modeling and inference approach that bypasses linear programming entirely.

Bayesian polynomial regression for inferring coefficients. The generative model cv (\, ?0, ®?, @0, ®@, c)
in BayesPC must be carefully designed to ensure that the posterior distribution assigns probability
one to the set of coefficients (?0, ®?, @0, ®@) that satisfy Eq. (5.3), for any dataset D. As in Remark 5.2,
to obtain a valid Bayesian model, we must define a prior distribution independently of the observed
maximum costs 2̂max

= . We thus model the observable costs (21, . . . , 2# ) as random variables where
each 28 takes values in a bounded interval [0, 2′

|E8 |
], 8 = 1, . . . , # . For each = ∈ #D , the endpoints 2′=

of these intervals are themselves random variables defined as polynomial regression outputs that
capture uncertainty in the true worst-case cost 2max

= . The generative model in BayesPC is given by:

(? 9 )
| ®? |
9=0, (@ 9 )

| ®@ |
9=0

iid
∼ Normal≥0 (0, W0), \ ∼ ℎnoise (W1) (5.14)

2′= ≔ Ψ(=; ?0, ®?) − Ψ(b (=);@0, ®@) (= ∈ #D) (5.15)

n8 ∼ 6̃noise (·;\, [0, 2
′
|E8 |

]), 28 ≔ 2′|E8 | − n8 (8 = 1, . . . , # ; i.i.d.), (5.16)

where W0, W1 are hyperparameters. The term 6̃noise (·;\, [0, 2
′
=]) is the truncation of an underlying

noise distribution 6noise (·;\ ) that has full support over [0,∞) (c.f., Eq. (5.11)). Its parameter \ has
prior ℎnoise. We take 6noise to be a Weibull distribution with scale and shape parameters \ ≔ (\0, \1).

Remark 5.3. The main challenge to posterior inference in BayesPC is the fact that the poly-
nomial coefficients ?0, ®?, @0, ®@ are constrained by 6̃noise to the linear regions 28 ≤ Ψ( |E8 |;?0, ®?) −
Ψ(b ( |E8 |);@0, ®@) for 8 = 1, . . . , # (in addition to further constraints discussed in Section 6.2). Coeffi-
cients outside this region have zero posterior probability density because they require n8 < 0 for
some 8 , which has zero prior probability. Whereas traditional Markov chain Monte Carlo algorithms
struggle in this setting, we leverage “reflective” Hamiltonian Monte Carlo sampling [15, 18, 58, 69]
for posterior inference in BayesPC, where simulated trajectories reflect at the boundaries of the
convex polytopes. A high-quality implementation is available in the C++ library Volesti [17]. «

5.4 Generalizations

Webriefly describe generalizations of BayesWC and BayesPC that relax the simplifying assumptions
made at the beginning of this section and are needed to describe hybrid resource analysis in Section 6.

General variable environments. Suppose we perform data-driven analysis on a function 5 (G) = 4
where themeasurements (+8 , Ẽ8 , 28 ) inD have general variable environments+8 = {G1 : E1, G2 : E2, . . .}.
In this case, we define a projection function i (+ , E) that maps an environment and value to integer
tuples in the set ∪∞

3=0
N3 . For example, if E1 : !(int), E2 : !(int), Ẽ : !(int) are three integer lists

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 150. Publication date: June 2024.



150:14 Long Pham, Feras A. Saad, and Jan Hoffmann

5 (G ) =
let
statℓ 4
. . .

Program

Data

Collection
Dℓ
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(a) Hybrid BayesWC
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(b) Hybrid BayesPC

Fig. 3. Two hybrid resource analysis techniques for composing static and data-driven resource analysis.

Subexpression 4 in program 5 has a cannot be analyzed using AARA: it is analyzed using Bayesian inference.

and + = {G1 : E1, G2 : E2}, we may define i (+ , E) = ( |E1 |, |E2 |, |E1 | + |E2 |, |Ẽ |) ∈ N4. The unique input
sizes (5.4) are #D ≔ {i (+8 , Ẽ8 ) | 8 = 1, . . . , # }. The models cv in BayesWC and BayesPC are now
indexed by v ≔ ((+8 , Ẽ8 ), 8 = 1, . . . , =). Remaining details generalize with minor modifications.

General type judgments. When generalizing the resource-annotated typing judgment (5.1) to the
form {G1 : 01, G2 : 02, . . . , G< : 0<} ;?0 ⊢ 4 : ⟨0, @0⟩ in Eq. (4.3), each resource-annotated type 08 is
associated with symbolic coefficients ®?8 (8 = 1, . . . ,<), and the output type 0 with coefficients ®@.
The constant potentials ?0 and @0 are unchanged. The linear programs (Opt-LP) and (BayesWC-LP)
and the BayesPC generative model (5.14)–(5.16) are then defined over this expanded collection
of coefficients. Simulations in Eq. (5.13) produced from BayesPC, for example, may be written as

equivalently (?′0,
{
®?′8
}<
8=1

, ®@, @′0) ∼ cv (·|c) or (?
′
0, Γ

′, 0′, @′0) ∼ cv (·|c). In the latter case, the sampled

typing environment Γ′ is obtained by using the sampled coefficient ®?′8 in place of the symbolic
coefficient within each resource-annotated type 08 (8 = 1, . . . ,<), and similarly for 0′ and ®@′.

6 HYBRID RESOURCE ANALYSIS

Having described two novel methods for Bayesian data-driven resource analysis, we next present
hybrid resource analysis (Hybrid AARA), which integrates data-driven analysis for parts of the
program tagged by statℓ with static AARA analysis (Section 4) on remaining parts. Hybrid AARA
is based on a formal typing system that extends AARA with a new type judgment:

Γ;?0 ⊢D statℓ 4 : ⟨0, @0⟩. (6.1)

Eq. (6.1) extends (4.3) by including a dataset D of runtime measurements that are collected using
the procedure described in Section 3.3. We also describe novel type inference algorithms and key
technical challenges in the design of the interface between data-driven resource analysis using
Bayesian inference and conventional AARA using static inference and linear programming.
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6.1 Hybrid BayesWC and Opt

Typing rules. Opt and BayesWC are integrated into the AARA type system (described in Appen-
dix A) by adding the following rules for statℓ subexpressions:

H:Opt

?0 + Φ(+ ℓ
8 : Γ) ≥ @0 + Φ(E ℓ8 : 0) + 2

ℓ
8

(8 = 1, . . . , |Dℓ |)

Γ;?0 ⊢D statℓ 4 : ⟨0, @0⟩

H:BayesWC

?0 + Φ(+ ℓ
8 : Γ) ≥ @0 + Φ(E ℓ8 : 0) + 2

′ℓ
i (+ ,E)

2′ℓ= ∼ c ℓ
vℓ
(·|cℓ ) (8 = 1, . . . , |Dℓ |;= ∈ #Dℓ

)

Γ;?0 ⊢D statℓ 4 : ⟨0, @0⟩
. (6.2)

H:Opt states that the consequent holds whenever the input potential ?0 + Φ(+ : Γ) is large enough
to cover both cost 2 and leftover potential @0 + Φ(E : 0) for every measurement (+ , E, 2) ∈ Dℓ . In
H:BayesWC, we use labels ℓ to disambiguate data-driven inferences related to different labeled
statℓ sites in the program. That is, we have Dℓ =

{
(+ ℓ

8 , E
ℓ
8 , 2

ℓ
8 ) | 8 = 1, . . . , "ℓ

}
, vℓ ≔ ((+ ℓ

8 , E
ℓ
8 ), 8 =

1, . . . , "ℓ ), and c
ℓ
≔ (2ℓ8 , 8 = 1, . . . , "ℓ ). The corresponding probabilistic model (e.g., Eq. (5.12))

used within statℓ is denoted c
ℓ . H:BayesWC is similar to H:Opt, except that each observed cost 2

within a measurement (+ , E, 2) is replaced with a posterior sample 2′ℓ
i (+ ,E)

from BayesWC (5.8) that

captures inferential uncertainty about the true worst-case cost 2max
i (+ ,E)

.

Type inference. Because the premises of H:Opt and H:BayesWC are linear constraints over
the resource coefficients in 4 , type inference operates similarly to conventional AARA. Figure 3a
shows the type inference workflow for BayesWC. Given the runtime data D we first perform data-
driven BayesWC inference to produce" batches of posterior samples of c′ℓ9 ≔ (2′ℓ=,9 , = ∈ #Dℓ

) for

9 = 1, . . . , " and each label ℓ , which define" versions of H:BayesWC for each statℓ subexpression.
Next, for each 9 = 1, . . . , " we perform a static pass, denoted AARA+H:BayesWC in Fig. 3a, that
constructs a template typing tree according to the conventional AARA type system for traditional
expressions and uses (the posterior sample of) H:BayesWC for statℓ subexpressions. This process
produces " systems of linear constraints � 9 ( 9 = 1, . . . , "), where the linear constraints within
each � 9 are derived from two provenances: those from the conventional AARA type system and
those from the H:BayesWC type rule. Each � 9 is provided to an LP solver to provide a typing
judgment � 9 for the root node’s typing context, which translates to an inferred cost bound.

Linear Programming Objective. When solving the overall linear program in AARA+H:BayesWC

or AARA+H:Opt, our solver first minimizes the sum of cost gaps form the data-driven components
(i.e., (Opt-LP) or (BayesWC-LP)) and then performs minimization of input coefficients at the root.
As with conventional AARA [42], it is possible to either minimize the sum of coefficients at the root
or minimize higher-degree coefficients with higher priorities. Our prototype of hybrid resource
analysis allows users to make either choice.

6.2 Hybrid BayesPC

Key challenge. Integrating Bayesian data-driven resource analysis with BayesPC into conven-
tional AARA is fundamentally more difficult as compared to integrating Opt and BayesWC. This
difficulty arises because resource coefficients in the typing judgment Γ;?0 ⊢D statℓ 4 : ⟨0, @0⟩
are sampled using Bayesian inference in BayesPC, while they are optimized using LP solvers in
both Opt and BayesWC. AARA poses a challenge because we do not know in advance how much
potential should be stored in ⟨0, @0⟩. Unlike in fully data-driven resource analysis, in hybrid resource
analysis the output of statℓ 4 may be used in a subsequent computation that also consumes potential.
Both Γ and ?0 should store enough potential to pay for both its own cost and the cost of subsequent
computation. Naïvely sampling resource annotations (Γ, ?0, 0, @0) for the statℓ subexpressions using
BayesPC and providing them to a conventional AARA pass over the remaining program will
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Fig. 4. Posterior distributions over resource coefficients restricted to convex polytopes using BayesPC.

likely produce a system with no solution. Hence, we need an interface between sampling-based
probabilistic inference over some coefficients and linear programming over other coefficients.

Type inference. Weaddress this challenge by adding linear constraints to theBayesPC probabilistic
models that encode feasible regions of linear programs computed by conventional AARA. This
approach guarantees that judgments from BayesPC cannot impose new constraints that cause the
linear programs to fail to have a solution.
Figure 3b shows our type inference approach. We start by performing a static analysis pass

through the program using the conventional AARA type system to obtain a set of linear constraints
�0, treating any statℓ using the rule H:Opt to ensure consistency with runtime data Dℓ . Next, for
each subexpression statℓ encountered in the first pass, we apply a variant of BayesPC that combines
both the runtime dataDℓ and constraints�0 from the first pass to infer a resource-annotated typing
judgment of the form Γ;?0 ⊢D statℓ 4ℓ : ⟨0, @0⟩.

Let c ℓ
vℓ
(\, Γ, ?0, @0, 0, c) denote the BayesPC probabilistic model for statℓ (e.g., Eqs. (5.14)–(5.16)).

The constraints �0 are used to construct a modified probabilistic model c ℓ
vℓ |�0

(Y, \, Γ, ?0, @0, 0, c),

where Y is a collection of nuisance parameters that contains all the resource coefficients appearing
in the AARA constraints �0. Letting ℎ(Y) denote an uninformative prior (e.g., uniform if �0 is
bounded), the modified probabilistic model is restricted to the convex polytope defined by �0:

c ℓ
vℓ |�0

(Y, \, Γ, ?0, @0, 0, c) ∝ ℎ(Y)c ℓ
vℓ
(Y, \, Γ, ?0, @0, 0, c)I[(Y, . . . ) ∈ �0], (6.3)

where I[(Y, . . . ) ∈ �0] is 1 if the resource coefficients in the arguments to c ℓ
vℓ |�0

satisfy constraints

�0 and 0 otherwise. Figure 4 shows an example: the original “Feasible Region” (grey, Fig. 4a) in
BayesPC induced by runtime data is further constrained by the constraints from the first AARA
pass (orange, Fig. 4b), with the distribution re-normalized appropriately.

Eq. (6.3) is then used to sample judgments

(Γℓ9 , ?
ℓ
0, 9 , 0

ℓ
9 , @

ℓ
0, 9 ) ∼ c ℓ

vℓ |�0
(Γ, ?0, @0, 0 |c

ℓ ) ( 9 = 1, . . . , " ; ℓ ∈ !′), (6.4)

which are shown as the output of BayesPC in Fig. 3a. Each sampled typing judgment in Eq. (6.4)
corresponds to a concrete realization of symbolic LP variables in �0 created by the corresponding
H:Opt rule at label ℓ during the first pass. We can then obtain" new constraints

� 9 ≔ �0 ⊕
{
(Γℓ9 , ?

ℓ
0, 9 , 0

ℓ
9 , @

ℓ
0, 9 ) | ℓ ∈ !′

}
( 9 = 1, . . . , ") (6.5)

by syntactically replacing the symbolic LP variables in�0 with concrete variables at all labels ℓ ∈ !′.
Each � 9 is then fed to an LP solver to obtain" posterior samples (�1, . . . , �" ) of cost bounds.
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6.3 Soundness

We formulate and prove two soundness theorems for Hybrid AARA.
Theorem 6.1 establishes that inferred cost bounds from Hybrid AARA are sound with respect to

all # measurements in the runtime data (collected using the procedure described in Section 3.3)

Theorem 6.1. Given a program P, expression 4 and D be the runtime data such that (+8 ⊢P 4 ⇓28

E8 )
#
8=1 | D. The following property holds with probability one: If Γ;?0 ⊢D 4 : ⟨0, @0⟩ holds in the type

system of hybrid resource analysis, then Φ(+8 : Γ) + ?0 − Φ(E8 : 0) − @0 ≥ 28 for any 8 = 1, . . . , # .

Proof. The proof proceeds by nested induction on (+8 ⊢ 4 ⇓28 E8 )
#
8=1 | D (outer induction)

and Γ; ?0 ⊢D 4 : ⟨0, @0⟩ (inner induction), following the same structure as the soundness proof
of conventional AARA [39, 40]. The only necessary modification is proving the base case where
4 ≡ statℓ 4

′ for some expression 4′, for the new inference rulesH:Opt,H:BayesWC, andH:BayesPC.
We argue that for each typing rule, the resource-annotated judgment Γ; % ⊢D statℓ 4

′ : ⟨0, @0⟩
is sound with respect to any measurement (+ , E, 2) ∈ Dℓ , meaning that the typing rule ensures
Φ(+ : Γ) + ?0 − Φ(E : 0) − @0 ≥ 2 holds with probability one. For H:OPT, the property follows
immediately from the premise of the typing rule. For H:BayesWC, Proposition 5.1 establishes a
condition that guarantees, for any runtime sample (+ , E, 2) ∈ Dℓ , the probabilistic model cv used in
BayesWC has zero probability of simulating a cost 2′ℓ

i (+ ,E)
< 2 . Our choice of the likelihood function

6 in Eq. (5.12) satisfies this requirement. Using this fact, the premise of H:BayesWC implies

Φ(+ : Γ) + ?0 − Φ(E : 0) − @0 ≥ 2′ℓi (+ ,E) ≥ 2̂max,ℓ
i (+ ,E)

≥ 2 = 1 almost surely, (6.6)

and the conclusion follows. ForH:BayesPC, Remark 5.3 establishes that the c ℓ
v assigns zero posterior

probability density to any (Γ, ?0, 0, @0) that satisfies Φ(+ : Γ) + ?0 − Φ(E : 0) − @0 < 2 for some
runtime sample (+ , E, 2) ∈ Dℓ . As constraining c ℓ

v to the convex polytope �0 in Eq. (6.3), cannot
possibly increase its support, the conclusion follows for H:BayesPC. □

The next result establishes the probability (over the randomness of the collected runtime data)
that inferred cost bounds from Hybrid AARA are sound up to a given input-size limit converges to
one as the dataset size # tends to infinity.

Theorem 6.2. Let D be runtime data such that (+8 ⊢P 4 ⇓28 E8 )
#
8=1 | D, where (+8 )

#
8=1 are #

i.i.d. samples from an (unknown) input distribution and 4 is an expression in program P. Assume there

exists an integer< and finite set V< of well-typed environments such that for all + ∈ V< : i (+ ) < <

and + has nonzero probability of appearing in D. Then for any typing judgment Γ;?0 ⊢D 4 : ⟨0, @0⟩
inferred from Hybrid AARA, the probability that it satisfies Φ(+ : Γ) + ?0 − Φ(E : 0) − @0 ≥ 2 for all

+ such that + ⊢P 4 ⇓2 E and i (+ ) ≤ < converges to one as # → ∞.

Proof. For each = = 1, . . . ,<, there exists a worst-case environment

+max
= ≔ arg max

+ ∈V<

{2 | q (+ ) = =,+ ⊢P 4 ⇓2 Ẽ} (6.7)

with a maximal execution cost. Let ?max
= > 0 be the probability +max

= is selected. Let,=,# be
the event that +max

= is sampled within # i.i.d. draws. The probability that all worst-case inputs
+max
1 , . . . ,+max

< occur in runtime dataset D of size # is

P
(⋂<

==0,=,#

)
= 1 − P

(⋃<
==0, =,#

)
≥ 1 −

∑<
==1 P(, =,# ) = 1 −

∑<
==1 (1 − ?max

= )# (6.8)

where, =,# denotes the complement of event,=,# . The inequality follows from the union bound.
The last expression converges to one as # → ∞ because ?max

= > 0 for each =. The conclusion
follows from Theorem 6.1, which establishes that resource-annotated typing judgements from
Hybrid AARA are sound with respect to the environments used to generate runtime data D. □
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7 EVALUATION

Implementation. We implemented a prototype of Hybrid AARA [76] that integrates data-driven
(optimization-based and Bayesian) resource analysis into Resource-Aware ML (RaML) [42] and
evaluated it on challenging benchmarks that purely static analysis cannot solve. Each analysis run
using the prototype requires: (i) an OCaml program annotated with Raml.tick and Raml.stat; (ii)
a list of inputs for runtime cost data generation; and (iii) a configuration file, which includes e.g., a
polynomial degree, a data-driven analysis technique, a probabilistic model, and hyperparameters.
Appendix B describes an empirical Bayesian procedure to automatically determine hyperparameters.

Benchmarks. We built a benchmark suite of 10 functional programs (source code in Appendix C).

• MapAppend: Given two lists, G and ~, for each element of G , run some (statically unanalyzable)
function 5 and append its output to the cumulative result (whose initial value is ~).

• Concat: Given a nested list, recursively append inner lists to the cumulative result.
• InsertionSort2: Sequentially run insertion sort twice on a list. We focus on the cost of
comparisons in the second insertion sort.

• QuickSort: Run deterministic quicksort on lists with their heads as pivots for partition.
• QuickSelect: Given an integer 8 and a list, run deterministic quickselect and return the 8th

smallest element in the list. Like Quicksort, it uses the heads of lists as pivots.
• MedianOfMedians: Given an integer 8 and a list, recursively compute the 8th smallest element
in the list by first computing the median of medians then using it to partition the list.

• ZAlgorithm: Given a list G , return a list ~ such that ~ [8] stores the maximum integer ℓ such
that G [0, . . . , ℓ − 1] = G [8, . . . , 8 + ℓ − 1].

• BubbleSort: Run bubble sort where pairs of adjacent reverse-ordered elements are repeatedly
swapped until no such pairs exist (i.e., saturation).

• Round: Given a natural number G (represented as a list), compute a natural number ~ such
that ~ is the largest power of two below G . Once ~ is computed, we traverse ~.

• EvenOddTail: Given a natural number G (represented as a list), first traverse the list and if G
is even, we divide it by two; otherwise, we subtract one from it.

Conventional AARA cannot return a tight cost bound for any of these 10 programs. Specifically,
it cannot analyze 7/10 programs at all as they contain statically unanalyzable code fragments. For
BubbleSort, AARA cannot even reason about its termination due to bubble sort being saturation-
based. For MedianOfMedians, AARA cannot reason about the mathematical properties of medians.
For Round, to prove its linear complexity, AARA would need an infinitely tall resource-annotated
typing tree. The four benchmarks MapAppend, Concat, QuickSort, and QuickSelect fail because
they contain some complex function that conventional AARA cannot analyze (e.g., OCaml’s built-in
polymorphic comparator). For the remaining 3/10 programs, to infer some polynomial cost bound,
conventional AARA requires a wrong polynomial degree that is too high.

Proportions of sound cost bounds. Table 1 shows the proportion of inferred cost bounds that
are sound as well as analysis runtimes for all 10 benchmarks using data-driven analysis (Opt,
BayesWC, BayesPC) and their hybrid counterparts, where applicable. Optimization-based resource
analyses (data-driven and hybrid Opt) always return a single inferred cost bound, while Bayesian
resource analyses return collections of samples of cost bounds drawn from the posterior probability
distribution. In all benchmarks, for both data-driven and hybrid analyses, BayesWC produces
strictly higher proportions of sound cost bounds than Opt. This finding demonstrates that cost
bounds inferred by BayesWC are more robust than those inferred by Opt in 10/10 cases (data-
driven) and 7/7 cases (hybrid); that is, BayesWC has a strictly positive probability of inferring a
sound bound even though the runtime cost dataset does not contain worst-case inputs. In contrast,
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Table 1. Percentage of inferred cost bounds that are sound and analysis runtime for 10 benchmark programs.

Benchmark Conventional Analysis Fraction of Sound Inferred Bounds Analysis Runtime
Program AARA Method Data-Driven Hybrid Data-Driven Hybrid
MapAppend Cannot Analyze Opt 0% 0% 0.01 s 0.01 s

BayesWC 68.5% 100% 1.87 s 12.44 s
BayesPC 75.5% 100% 51.83 s 360.80 s

Concat Cannot Analyze Opt 0% 0% 0.00 s 0.01 s
BayesWC 67.3% 96.7% 2.54 s 14.73 s
BayesPC 96% 100% 113.53 s 125.28 s

InsertionSort2 Wrong Degree Opt 0% 0% 0.01 s 0.02 s
BayesWC 57.6% 100% 1.53 s 5.46 s
BayesPC 21% 57.5% 10.68 s 220.66 s

QuickSort Cannot Analyze Opt 0% 0% 0.01 s 0.11 s
BayesWC 4% 96% 2.20 s 144.88 s
BayesPC 0% 100% 13.72 s 274.51 s

QuickSelect Cannot Analyze Opt 0% 0% 0.02 s 0.19 s
BayesWC 0.2% 98.2% 1.83 s 222.47 s
BayesPC 0% 100% 12.39 s 277.20 s

MedianOfMedians Cannot Analyze Opt 0% 0% 0.17 s 0.21 s
BayesWC 11.5% 71.3% 2.36 s 93.89 s
BayesPC 0% 100% 70.39 s 896.98 s

ZAlgorithm Wrong Degree Opt 0% 0% 0.09 s 0.13 s
BayesWC 13.7% 95.9% 1.96 s 72.21 s
BayesPC 28% 100% 11.11 s 509.29 s

BubbleSort Cannot Analyze Opt 0% Cannot Analyze 0.01 s ∅
BayesWC 40.1% Cannot Analyze 2.69 s ∅
BayesPC 31.5% Cannot Analyze 11.70 s ∅

Round Cannot Analyze Opt 0% Cannot Analyze 0.01 s ∅
BayesWC 58.3% Cannot Analyze 1.91 s ∅
BayesPC 81% Cannot Analyze 12.87 s ∅

EvenOddTail Wrong Degree Opt 0% Wrong Degree 0.01 s ∅
BayesWC 65.1% Wrong Degree 1.98 s ∅
BayesPC 70% Wrong Degree 11.79 s ∅
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Fig. 5. Estimation gaps of inferred cost bounds with respect to ground-truth worst-case costs on 5 benchmarks.

in these benchmarks, Opt never returns a sound bound. Likewise, BayesPC returns more robust
bounds than Opt in 7/10 (data-driven) and 7/7 cases (hybrid). These improvements highlight the
benefits of probabilistic inference as compared to optimization.
Between fully data-driven Bayesian analysis and Hybrid AARA using BayesWC and BayesPC,

the latter delivers a substantially larger fraction of sound cost bounds in all seven benchmarks.
These results illustrate the benefits of integrating data-driven analysis with static type inference on
the remaining parts of the program not tagged with stat expressions.

The right two columns of Table 1 show the analysis runtime. Opt uses an LP solver that is much
faster than sampling algorithms: it returns answers in less than one second, whereas Bayesian
resource analysis can take minutes. Between BayesWC and BayesPC, the former is faster in terms
of analysis time per iteration. The main reason is that BayesWC uses HMC sampling without
constraints, which is much simpler than reflective HMC sampling over convex polytopes (Fig. 4)
needed for inference in BayesPC.
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QuickSort (D) QuickSelect (D) MedianOfMedians (D) Round (D)

QuickSort (H) QuickSelect (H) MedianOfMedians (H) EvenOddTail (D)

Fig. 6. Plots of inferred bounds for various benchmarks and resource analysis methods shown in Fig. 5

(D=Data Driven; H=Hybrid). Each benchmark has three plots (le�-to-right): Opt, BayesWC, and BayesPC.
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Fig. 7. Plots of inferred multivariate cost bounds for MapAppend using data-driven resource analysis and

Hybrid AARA. Red planes show ground-truth tight worst-case bound and blue planes show inferred bounds.

Distributions of estimation gaps. Figure 5 shows relative estimation gaps of inferred cost bounds
with respect to the ground truth worst case bound in five benchmarks (full results in Appendix C).
In each benchmark, we fix three input sizes (10, 100, and 1000). For each size, we show the 5th,
50th, and 95th percentiles of relative estimation gaps. Because Opt infers a single bound, it has the
same estimation gap for all percentiles. Relative estimation gaps below 0 (resp. above 0) indicate an
underestimate (resp. overestimate) of the true bound. A cost bound is sound if its estimation gap is
at least 0. Figure 5 exhibits similar results as in Table 1. The QuickSort and QuickSelect panels
in Fig. 5 show an interesting finding. At input size 10, the bounds from Data-Driven BayesWC and
BayesPC are tighter than those from their Hybrid counterparts, but some of the former bounds are
unsound. As the input size increases, the estimation gaps from Hybrid AARA shrink but remain in
the “Sound Region,” whereas those from data-driven Bayesian analysis become unsound.

Posterior distributions of cost bounds. Figure 6 shows posterior distributions of cost bounds of five
benchmarks. Red curves are the true bounds and black dots show the runtime cost data. Blue curves
are median cost bounds, and light-blue shades around them show the 10–90th percentile ranges. In
both data-driven and hybrid analyses, Bayesian resource analysis delivers a sizeable fraction of
correct bounds. Certain datasets such as MedianOfMedians in Fig. 6 are particularly challenging for
purely data-driven analysis, however. Between data-driven and hybrid analyses, the cost bounds
from the latter are always more accurate (i.e., closer to sound worst-case cost bounds). Fig. 7 shows
inferred cost bounds for MapAppend, which are multivariate. The median bounds for the Bayesian
methods always lie about the ground-truth plane, whereas the single bounds for Data-Driven Opt

and Hybrid Opt are both incorrect.

Summary. Our evaluation has several key takeaways. First, in the 7/10 programs that conventional
AARA cannot solve (first 7 rows of Table 1), Hybrid AARA successfully returns accurate and robust
bounds using at least one of Hybrid BayesWC or Hybrid BayesPC. In the 3/10 programs that
Hybrid AARA cannot solve (last 3 rows of Table 1), purely data-driven analysis using BayesWC or
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BayesPC gives good proportions of sound bounds. Second, Bayesian resource analysis delivers a
substantially higher percentage of sound cost bounds as compared to optimization-based analysis
in both the purely data-driven and hybrid case. Between BayesWC and BayesPC, the former is
more conservative: it gives a larger fraction of sound bounds in the purely data-driven case, but its
cost gaps are higher. Third, for Hybrid AARA, incorporating static analysis (when possible) gives a
higher proportion of sound bounds than purely data-driven analysis with a similar runtime.
We have no clear winner between Hybrid BayesWC and Hybrid BayesPC: the latter is slower

but more accurate than the former in 5/7 cases. Additionally, BayesPC enables richer probabilistic
models than BayesWC since the probabilistic model of BayesPC models not only worst-case costs
but also resource coefficients. In practice, depending on the application, one can take the looser or
tighter result of the two methods.

8 RELATED WORK

Static resource analysis. Existing static resource techniques are based on type systems [5, 21,
24, 26, 38, 59, 86], recurrence relations [2, 25, 35, 55, 56, 88], term rewriting [6, 7, 49, 72], ranking
functions [12, 20, 31, 82], and abstract interpretation [3, 37, 91]. Our works builds on automatic
amortized resource analysis (AARA) [36, 39, 40, 42, 45, 48, 54, 57, 61] a type-based resource-
analysis technique to analyze functional programs by automating the potential method of amortized
analysis [83–85]. AARA also has been used to analyze imperative code [13], parallel programs [46],
probabilistic programs [8, 73, 87], and session-typed concurrent programs [27, 28]. We are not
aware of prior works that combine static resource analysis with data-driven resource analysis.

Experimental algorithmics. Inference of algorithmic complexity from experiment data has been
extensively studied in the field of experimental algorithmics [29, 52, 65, 66, 71, 81]. These works
focus on using experimental data for improving pen-and-paper analyses of asymptotic complexity of
algorithms. Instead, this work focuses on using data-driven approaches for deriving non-asymptotic
bounds for programs and combining data-driven analysis with static resource analysis.

Data-driven resource analysis. There exist tools for analyzing the complexity of programs from
runtime cost samples [23, 30, 33, 50, 77, 80, 90]. Most of these works deliver average-case bounds
instead of worst-case bounds. Dynaplex [51] first infers a recurrence relation of a recursive program
from its execution traces by optimization and then solves the recurrence relation by the master
theorem. Our work on data-driven Bayesian resource analysis differs from existing works in this
field in several ways. First, we develop novel data-driven resource analyses based on Bayesian
inference (Section 5), which give us posterior distributions over unknown bounds that are more
robust than point estimates from optimization-based inference (e.g., Demontiê et al. [30] use
polynomial interpolation and Goldsmith et al. [33] use least-square power regression). Second, we
integrate data-driven Bayesian resource analysis into AARA to obtain Hybrid AARA (Section 6),
which to our knowledge is the first such combination of static and data-driven analysis.

Worst-case execution time analysis. Data-driven techniques have been studied in the worst-case
execution time (WCET) analysis of real-time embedded systems. This area focuses on deriving
concrete (i.e., non-symbolic) cost bounds of programs running on real-world hardware. Typically,
the maximum number of loop iterations in programs is assumed to be a constant independent
of input sizes. Numerous works study the use of extreme-value theory in measurement-based,
probabilistic WCET analysis [1, 16, 32, 34, 63, 64, 68, 78]. These methods all leverage frequentist
(non-Bayesian) inference. The hybrid of static and measurement-based WCET analyses has been
studied [9, 10, 89]. Unlike WCET analysis, our work focuses on symbolic cost bounds of programs
parametric in input sizes.
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9 CONCLUSION

This article has introduced Hybrid AARA, which to the best of our knowledge is the first resource
analysis method that combines data-driven and static resource analysis. We have presented two
novel data-driven Bayesian resource analysis methods (BayesWC and BayesPC) for inferring
principled posterior distributions over cost bounds. The data-driven Bayesian resource analyses
introduced in this work deliver more accurate and robust bounds as compared to previous methods
that use greedy optimization, which only gives a single point estimate. Our main contribution—
Hybrid AARA—integrates our Bayesian data-driven resource analyses into conventional AARA
using a novel type inference system. Two notions of soundness for Hybrid AARA are identified and
proven. We implemented a prototype of Hybrid AARA by extending Resource-Aware ML (RaML)
and evaluated it on a set of 10 challenging benchmarks that conventional AARA cannot solve. The
results on this benchmark set indicate that Hybrid AARA achieves several of its design goals. Our
system demonstrates the benefits of integrating Bayesian inference with traditional type inference
for improving the coverage of static analysis on the one hand and the accuracy and robustness of
data-driven analysis on the other hand.
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