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Resource Analysis

Goal of resource analysis:

Infer a worst-case bound of the cost of a program as a function of inputs

Program

fun quicksort x
Automatic Worst-case cost bound
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Applications of Resource Analysis

1. Detect algorithmic complexity attacks by inferring
worst-case resource usage / inputs

2. Estimate job size for job scheduling in
cloud computing

3. Infer tool used at Meta/Facebook

https://github.com/facebook/infer

4. Worst-case execution time (WCET)
of safety-critical embedded systems



https://github.com/facebook/infer

Contribution: Hybrid Resource Analysis

Static analysis of the source code Data-driven analysis of runtime data
+ Sound: any result is a valid bound + Always returns a result

- Incomplete: cannot handle all - No soundness guarantee

programs

Our contribution:
Integrate static analysis and data-driven analysis to combine their
complementary strengths and mitigate their respective weaknesses
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Outline

Eﬁ/lotivation for Hybrid Resource Analysis

(AState-of-the-Art Resource Analysis
e Static Analysis
e Optimization-Based Data-Driven Analysis



State of the Art in Static Analysis

Static analysis examines the source code, constructs constraints defining the
worst-case behavior, and solves them

* Type systems (e.g., AARA by Hoffmann, Hofmann, Jost et al.)
e Recurrence relations (e.g., COSTA by Albert et al.)
e Ranking functions (e.g., AProVE and KoAT by Giesl et al.)

Advantage:

+ Soundness guarantee

Disadvantages:

- Incomplete due to the undecidability of resource analysis
- Rewriting a program is difficult for non-expert users



State of the Art in Data-Driven Analysis (Optimization)

Examples: Input-sensitive profiling (Coppa et al.),
Algorithmic profiling (Zaparanuks et al.), Dynaplex (Ishimwe et al.)
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2. Optimize cost bound (red line)
Minimize red line — black dots
Subject to red line = black dots

Disadvantages of optimization:
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- Does not incorporate the user’s domain knowledge
- No quantitative measure of statistical uncertainty



Contribution: Bayesian Data-Driven Analysis

Bayesian data-driven resource analysis

1. Define a probabilistic model (6, D)
0: latent parameter (cost bound)
D: observed data (cost measurements)

2. Collect observed data D,

3. Compute/approximate the posterior distribution

¢ (0, D=Dyps
Bayes’ rule: m(0 | D = Dy ) = fn((H D=D0b2))d6

Draw posterior samples: 04, ...,0y; ~ w(6 | D = Dyy¢)

Advantages over optimization:
+ Can incorporate the domain knowledge in the probabilistic model
+ Posterior distribution captures statistical uncertainty



Data-Driven Analysis: Overview

Previous: Optimization (Opt)

Bayesian inference of
worst-case costs (BayesWC)

Bayesian inference of
polynomial coefficients (BayesPC)
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Data-Driven Analysis via BayesWC

Bayesian inference of worst-case costs (BayesWC)
1. Define a probabilistic model A
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3. Optimize cost bound (red line)
Minimize red line — blue dots
Subjectto red line = blue dots



Data-Driven Analysis via BayesPC

Bayesian inference of polynomial coefficients (BayesPC)

1. Define a probabilistic model N
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2. Draw posterior samples of cost bound p (blue line)
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Hybrid Analysis: Challenge

Hybrid analysis needs an interface between:
1. Bayesian data-driven analysis draws posterior samples
2. Static analysis solves constraints

et 5 ) _ data-driven analysis> posterior  combine overall cost bound
- [ 3 samples >® @
... | > constraints

static analysis

Key challenge:
How do we coherently combine constraints and posterior samples?
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Contribution: Hybrid AARA

We design, implement, and evaluate Hybrid AARA, which integrates

- Bayesian data-driven analysis (BayesWC and BayesPC) and

- Automatic Amortized Resource Analysis (AARA), a type-based static analysis
by a novel interface between sampling algorithms and linear programming

™

Hybrid AARA
< AARA BayesWC and BayesPC>

fun £ x = fun £ x = fun £ x =

lety =gz let y =YfCannot be lety =gz
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L ) \7byAARA
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Static Analysis: AARA

 Each variable is equipped with a polynomial potential function (from
amortized analysis of algorithms)

* Infer polynomial coefficients by solving linear programs

Why we choose AARA for static analysis:

+ Compositionality offered by types

+ Automatic bound inference by LP solving

+ Precise cost bounds by amortized analysis

+ Soundness guarantee

+ Cost-bound certificates in the form of type derivations



Hybrid AARA: AARA + BayesWC

. . . 1 ® Observed Data
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Hybrid AARA: AARA + BayesPC

Run reflective Hamiltonian Monte Carlo (Chalkis et al., 2023), which draws
samples from a probability distribution within a bounded convex polytope

Program
o AARA+H:OpT —— C
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let Data L, D
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runtimp
data
2. Collect

1. Collect linear constraints C, from AARA

inferred LP constraints

4. Substitute type judgments from
Bayesian inference into AARA
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Example Evaluation for Quicksort

Resource metric: comparisons, each of which varies between 0.5 and 1.0

1. Bayesian analysis is more accurate than optimization

BayesWC BayesPC
A\
2. Hybrid analysis is Data- "
driven
more accurate than
data-driven analysis
Hlo‘—’- i dm"—
Hybrid & 1 /, ¢+ 5
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Evaluation: Proportions of Sound Cost Bounds

Table 1. Percentage of inferred cost bounds that are sound and analysis runtime for 10 benchmark programs.

[ J [ [ ] [
Benchmark Conventional Analysis Fraction of Sound Inferred Bounds Analysis Runtime B ave S I a n vs O pt I m I Za t I 0 n

Program AARA Method Data-Driven Hybrid Data-Driven Hybrid

MapAppend Cannot Analyze || OpT 0% 0% 0.01s 0.01s
BavEsWC 68.5% 100% 1875 124ds BayesWC and Bayes PC have
BayesPC 75.5% 100% 51.83s 360.80s

Concat Cannot Analyze || Opt 0% 0% 0.00s 0.01s h : h : f d
BayesWC I[(ﬂﬁa I[ 96.7% 2.54s 14.73s Ig e r p ro po rt I O n S O SO u n
BayesPC 96% 100% 113.53s 125.28s

InsertionSort2  Wrong Degree OpT 0% 0% 0.01s 0.02s b oun d S t h an O pt .
BayesWC 57.6% <« » 100% 1.53s 5.465s
BayesPC 21% 57.5% 10.68's 220.66's

QuickSort Cannot Analyze || Opr 0% 0% 0.01s 0.11s
BayesWC 4% 96% 2.20s 144.88s
BayesPC 0% 100% 13.72s 274.51s

QuickSelect Cannot Analyze || Opt 0% 0% 0.02s 0.19s
BayesWC 0.2% 98.2% 1.83s 222.47s
BayesPC 0% 100% 12.39s 277.20s

MedianOfMedians  Cannot Analyze || OpT 0% 0% 0.17s 0.21s ° °
BAYESWC 11.5% 71.3% 2365 93.895 HVb rld VS Data-DrI\Ien
BayesPC 0% 100% 70.39s 896.98 s

ZAlgorithm Wrong Degree OpT 0% 0% 0.09s 0.13s .
BAYESWC 13.7% 95.97 1965 7221 Hybnd BayesWC and BayesPC
BayesPC 28% 100% 11.11s 509.29s

BubbleSort Cannot Analyze || Opr 0% Cannot Analyze 0.01s @ h h : h : f
BayEsWC 40.1% Cannot Analyze 2.69s @ ave I g e r p ro p O rt I O n S O
BayesPC 31.5% Cannot Analyze 11.70s @

Round Cannot Analyze || Opt 0% Cannot Analyze 0.01s @ S O u n d b O u n d S t h a n d a ta -
BavesWC 58.3% Cannot Analyze 1.91s %
BaYESPC 81% Cannot Analyze 12.87s ? d 1 d

EvenOddTail Wrong Degree OpT 0% Wrong Degree 0.01s ] rlve n BayeSWC a n Bayes PC .
BayesWC 65.1% Wrong Degree 1.98s 2
BayesPC 70% Wrong Degree 11.79s %)
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Takeaways

1. Bayesian resource analysis is more robust than the opt-based technique

2. Hybrid resource analysis = static (AARA) + data-driven (Bayesian)
* is more accurate and robust than data-driven analysis
* mitigates the incompleteness of static analysis

Further details in the paper:
* Type-based formulation of Hybrid AARA
* Two soundness theorems of Hybrid AARA

* Full experiment results



Static Analysis: AARA

Automatic Amortized Resource Analysis (AARA):
Type-based resource analysis that automates the potential method of
amortized analysis

Example: partition function Cost: one ul%lit per element

(=) (S} (=) (S}
[ [ (-] (-} (B} (BN} () (M}
Input: [1,2,3,4] Output: ([1,2], [3,4])

Typing judgment:
partition: (int X L?(int)) - (L*(int) x L*(int))
l ]

J \
| |

Input potential: 2 - n Output potential: 1 -n; +1 -n_2




Static Analysis: AARA

1. Assign variables

partition: (int X LP(int)) — (L91(int) X L92(int))

1H|q4 Output
1 /g, | potential

Sound: any cost bound inferred by AARA is a valid worst-case cost bound
Incomplete: there exists a polynomial-cost program that AARA cannot infer
because resource analysis is undecidable in general

2. Collect linear constraints

p
p

Input

=
potential |P |2
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