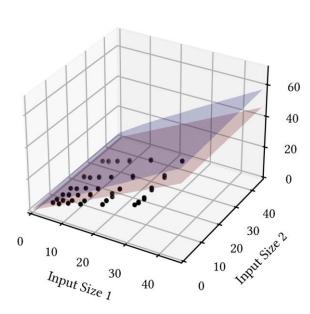
Robust Resource Bounds with Static Analysis and Bayesian Inference



Long Pham, Feras Saad, Jan Hoffmann

Carnegie Mellon University

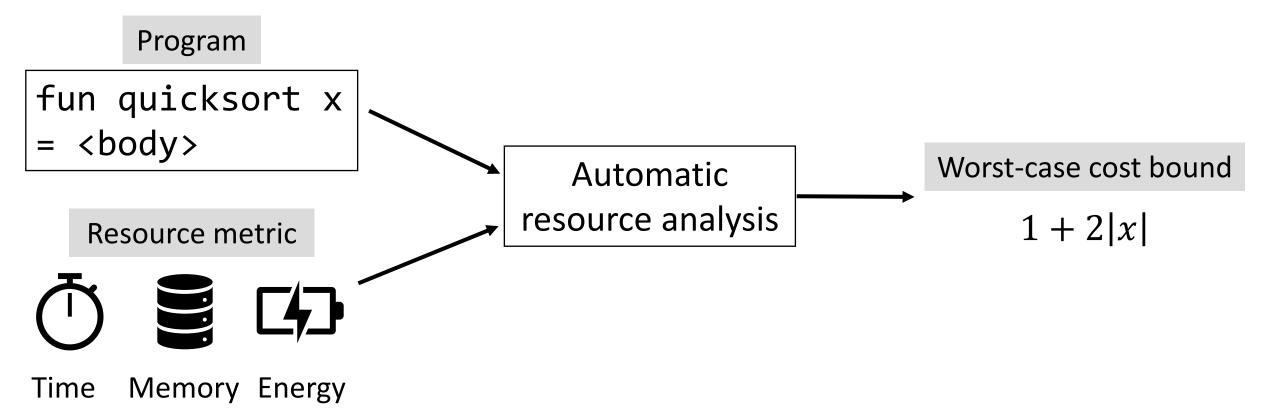
PLDI 2024

June 28, 2024

Resource Analysis

Goal of resource analysis:

Infer a worst-case bound of the cost of a program as a function of inputs



Applications of Resource Analysis

1. Detect algorithmic complexity attacks by inferring worst-case resource usage / inputs

2. Estimate job size for job scheduling in cloud computing

3. **Infer** tool used at Meta/Facebook

4. Worst-case execution time (WCET) of safety-critical embedded systems

https://github.com/facebook/infer

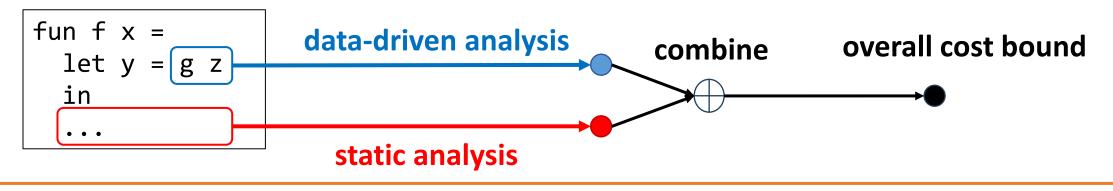
Contribution: Hybrid Resource Analysis

Static analysis of the source code + Sound: any result is a valid bound - Incomplete: cannot handle all programs

Data-driven analysis of runtime data

- + Always returns a result
- No soundness guarantee

Our contribution: Integrate static analysis and data-driven analysis to combine their complementary strengths and mitigate their respective weaknesses



Outline

Motivation for Hybrid Resource Analysis

□State-of-the-Art Resource Analysis

- Static Analysis
- Optimization-Based Data-Driven Analysis

Contribution 1: Bayesian Data-Driven Analysis

Contribution 2: Hybrid Analysis

Evaluation

State of the Art in Static Analysis

Static analysis examines the source code, constructs constraints defining the worst-case behavior, and solves them

- Type systems (e.g., AARA by Hoffmann, Hofmann, Jost et al.)
- Recurrence relations (e.g., COSTA by Albert et al.)
- Ranking functions (e.g., AProVE and KoAT by Giesl et al.)

Advantage:

+ Soundness guarantee

Disadvantages:

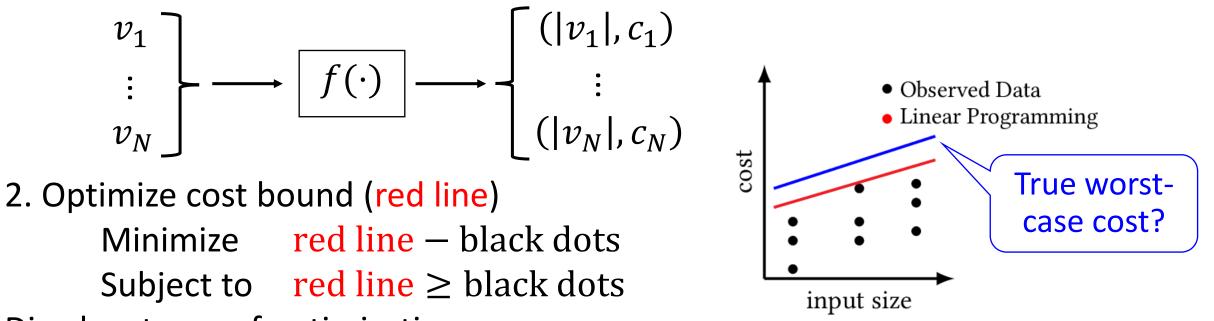
- Incomplete due to the undecidability of resource analysis
- Rewriting a program is difficult for non-expert users

State of the Art in Data-Driven Analysis (Optimization)

Examples: Input-sensitive profiling (Coppa et al.),

Algorithmic profiling (Zaparanuks et al.), Dynaplex (Ishimwe et al.)

1. Collect cost measurements of inputs v_1, \ldots, v_N



Disadvantages of optimization:

- Does not incorporate the user's domain knowledge
- No quantitative measure of statistical uncertainty

Contribution: Bayesian Data-Driven Analysis

Our contribution: Bayesian data-driven resource analysis

- 1. Define a probabilistic model $\pi(\theta, D)$ θ : latent parameter (cost bound) D: observed data (cost measurements)
- 2. Collect observed data D_{obs}
- 3. Compute/approximate the posterior distribution Bayes' rule: $\pi(\theta \mid D = D_{obs}) = \frac{\pi(\theta, D = D_{obs})}{\int \pi(\theta, D = D_{obs}) d\theta}$ Draw posterior samples: $\theta_1, \dots, \theta_M \sim \pi(\theta \mid D = D_{obs})$

Advantages over optimization:

+ Can incorporate the domain knowledge in the probabilistic model + Posterior distribution captures statistical uncertainty

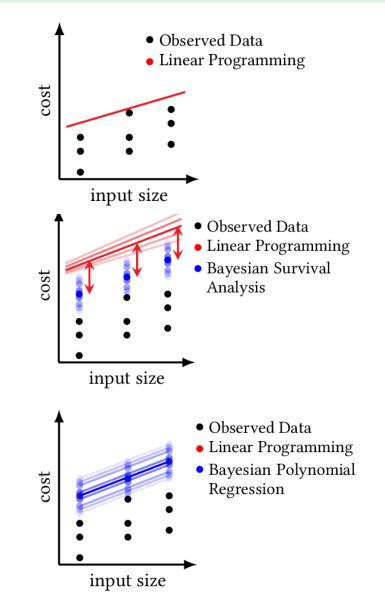
8

Data-Driven Analysis: Overview

Previous: Optimization (Opt)

New: Bayesian inference of worst-case costs (BayesWC)

New: Bayesian inference of polynomial coefficients (BayesPC)



Data-Driven Analysis via BayesWC

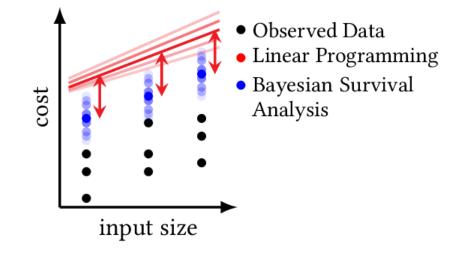
Bayesian inference of worst-case costs (BayesWC)

1. Define a probabilistic model

 $\pi(\theta, c^{\max}, c)$ c^{\max} : hidden worst-case cost (blue dots) c: observed cost (black dots)

2. Draw posterior samples of c^{\max}

3. Optimize cost bound (red line)Minimizered line - blue dotsSubject tored line \geq blue dots



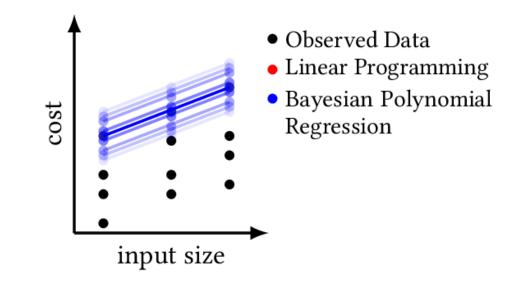
Data-Driven Analysis via BayesPC

Bayesian inference of polynomial coefficients (BayesPC)

1. Define a probabilistic model

π(p, c)
p: cost bond (blue line)
c: observed cost (black dots)

2. Draw posterior samples of cost bound p (blue line)



Outline

Motivation
State-of-the-Art Resource Analysis

- Static Analysis
- Optimization-Based Data-Driven Analysis

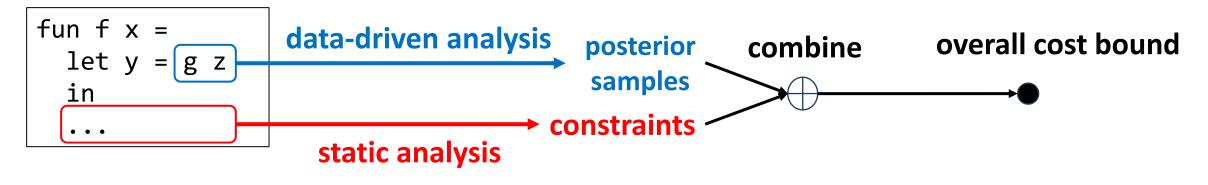
Contribution 1: Bayesian Data-Driven Analysis

Contribution 2: Hybrid Resource Analysis

Hybrid Analysis: Challenge

Hybrid analysis needs an interface between:

- 1. Bayesian data-driven analysis draws posterior samples
- 2. Static analysis solves constraints



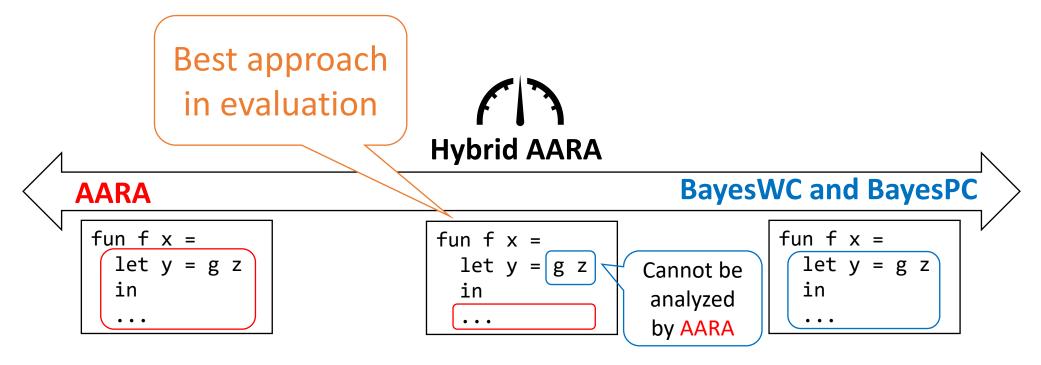
Key challenge:

How do we coherently combine constraints and posterior samples?

Contribution: Hybrid AARA

We design, implement, and evaluate Hybrid AARA, which integrates

- Bayesian data-driven analysis (BayesWC and BayesPC) and
- Automatic Amortized Resource Analysis (AARA), a type-based static analysis
- by a novel interface between sampling algorithms and linear programming



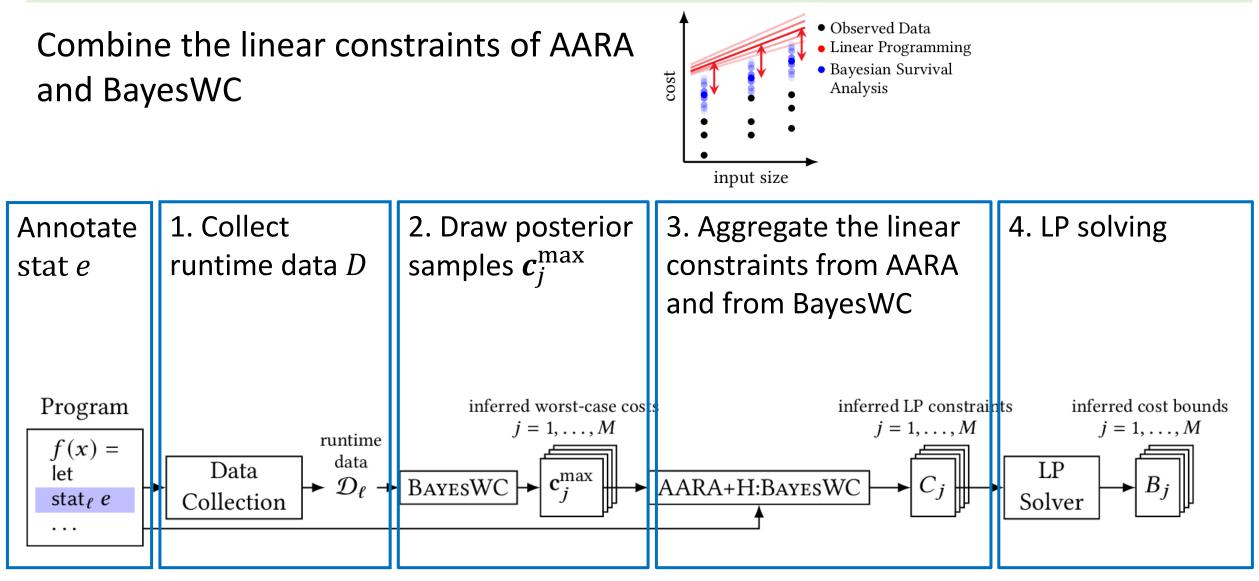
Static Analysis: AARA

- Each variable is equipped with a polynomial potential function (from amortized analysis of algorithms)
- Infer polynomial coefficients by solving linear programs

Why we choose AARA for static analysis:
+ Compositionality offered by types
+ Automatic bound inference by LP solving
+ Precise cost bounds by amortized analysis
+ Soundness guarantee

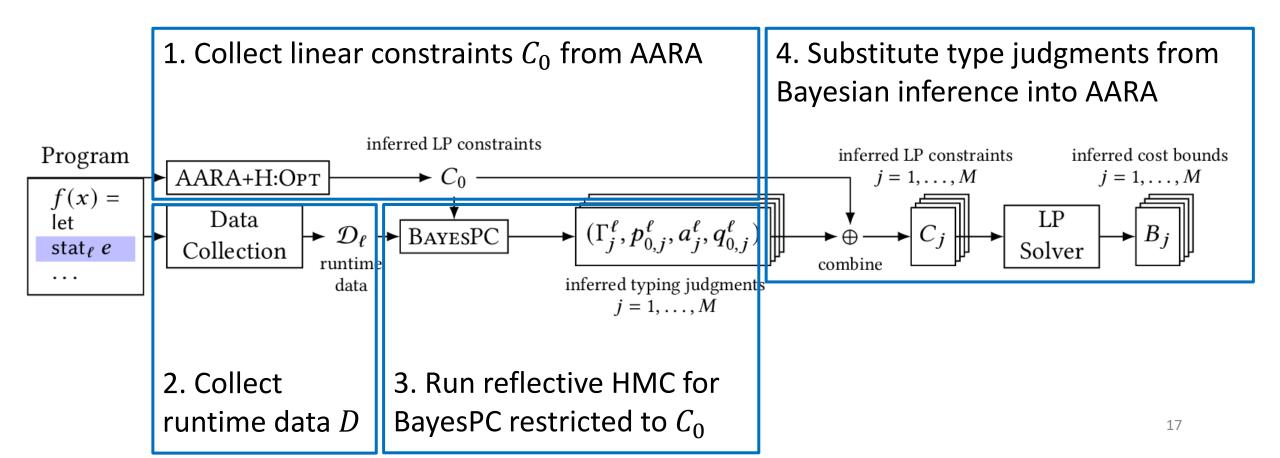
+ Cost-bound certificates in the form of type derivations

Hybrid AARA: AARA + BayesWC



Hybrid AARA: AARA + BayesPC

Run reflective Hamiltonian Monte Carlo (Chalkis et al., 2023), which draws samples from a probability distribution within a bounded convex polytope



Example Evaluation for Quicksort

Resource metric: comparisons, each of which varies between 0.5 and 1.0

1. Bayesian analysis is more accurate than optimization BayesPC Opt BayesWC 10^{4} 10^{4} 10^{3} Data-Cost driven Runtime Data 10^{1} Inferred Bound 10^{0} 10^{0} 50 50 100 150 200 150 2000 50 100 150 200 Input Size Input Size Input Size 10^{4} 104 10^{3} 10 Hybrid Cost Cost Runtime Data 10^{1} True Bound Inferred Bound 18 50 15050 100 150 200 50 100 150 Input Size Input Size Input Size

2. Hybrid analysis is more accurate than data-driven analysis

Evaluation: Proportions of Sound Cost Bounds

Benchmark	Conventional	Analysis	Fraction of Sound Inferred Bounds		Analysis Runtime	
Program	AARA	Method	Data-Driven	Hybrid	Data-Driven	Hybrid
MapAppend	Cannot Analyze	Opt	0%	0%	0.01 s	0.01 s
		BAYESWC	68.5%	100%	1.87 s	12.44 s
		BAYESPC	75.5%	100%	51.83 s	360.80 s
Concat	Cannot Analyze	Opt	▲ 0%	▲ 0%	0.00 s	0.01 s
		BAYESWC	67.3%	96.7%	2.54 s	14.73 s
		BAYESPC	96%	100%	113.53 s	125.28 s
InsertionSort2	Wrong Degree	Opt	0%	0%	0.01 s	0.02 s
		BAYESWC	57.6%	100%	1.53 s	5.46 s
		BAYESPC	21%	57.5%	10.68 s	220.66 s
QuickSort	Cannot Analyze	Opt	0%	0%	0.01 s	0.11 s
		BAYESWC	4%	96%	2.20 s	144.88 s
		BAYESPC	0%	100%	13.72 s	274.51 s
QuickSelect	Cannot Analyze	Opt	0%	0%	0.02 s	0.19 s
		BAYESWC	0.2%	98.2%	1.83 s	222.47 s
		BAYESPC	0%	100%	12.39 s	277.20 s
MedianOfMedians	Cannot Analyze	Opt	0%	0%	0.17 s	0.21 s
		BAYESWC	11.5%	71.3%	2.36 s	93.89 s
		BAYESPC	0%	100%	70.39 s	896.98 s
ZAlgorithm	Wrong Degree	Opt	0%	0%	0.09 s	0.13 s
		BAYESWC	13.7%	95.9%	1.96 s	72.21 s
		BAYESPC	28%	100%	11.11 s	509.29 s
BubbleSort	Cannot Analyze	Opt	0%	Cannot Analyze	0.01 s	Ø
		BAYESWC	40.1%	Cannot Analyze	2.69 s	Ø
		BAYESPC	31.5%	Cannot Analyze	11.70 s	Ø
Round	Cannot Analyze	Opt	0%	Cannot Analyze	0.01 s	Ø
		BAYESWC	58.3%	Cannot Analyze	1.91 s	Ø
		BAYESPC	81%	Cannot Analyze	12.87 s	Ø
EvenOddTail	Wrong Degree	Opt	0%	Wrong Degree	0.01 s	Ø
		BAYESWC	65.1%	Wrong Degree	1.98 s	Ø
		BAYESPC	70%	Wrong Degree	11.79 s	Ø

Table 1. Percentage of inferred cost bounds that are sound and analysis runtime for 10 benchmark programs.

Bayesian vs Optimization

BayesWC and BayesPC have higher proportions of sound bounds than Opt.

Hybrid vs Data-Driven

Hybrid BayesWC and BayesPC have higher proportions of sound bounds than datadriven BayesWC and BayesPC.

Takeaways

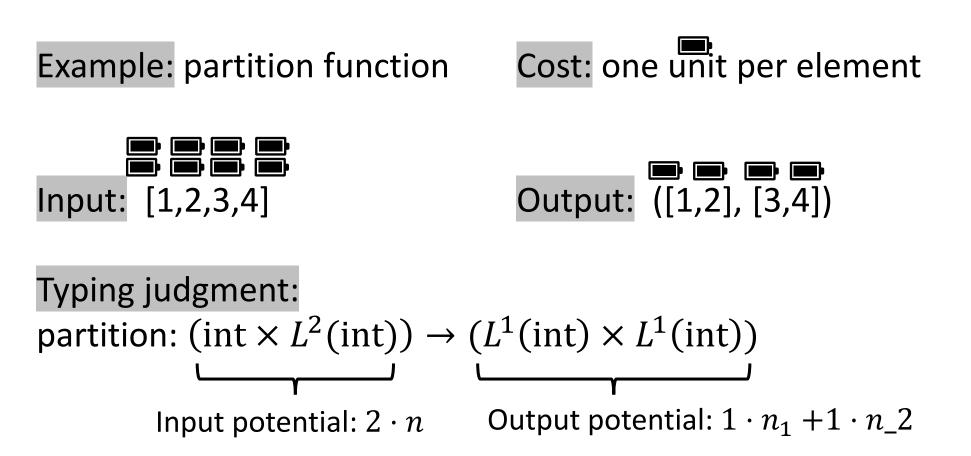
- 1. Bayesian resource analysis is more robust than the opt-based technique
- 2. Hybrid resource analysis = static (AARA) + data-driven (Bayesian)
 - is more accurate and robust than data-driven analysis
 - mitigates the incompleteness of static analysis

Further details in the paper:

- Type-based formulation of Hybrid AARA
- Two soundness theorems of Hybrid AARA
- Full experiment results

Static Analysis: AARA

Automatic Amortized Resource Analysis (AARA): Type-based resource analysis that automates the potential method of amortized analysis



Static Analysis: AARA

1. Assign variables

partition: $(int \times L^p(int)) \rightarrow (L^{q_1}(int) \times L^{q_2}(int))$

2. Collect linear constraints Input $p \ge 1 + q_1$ Output potential $p \ge 1 + q_2$ potential Cost

Sound: any cost bound inferred by AARA is a valid worst-case cost bound Incomplete: there exists a polynomial-cost program that AARA cannot infer because resource analysis is undecidable in general