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Abstract

Recent years have seen a surge in the attention drawn by deep learning as its presence
gets stronger in numerous application domains, including safety-critical systems such as
autonomous vehicles. Although neural networks have superb generalization ability in
object recognition, they are surprisingly susceptible to adversarial perturbations that
are often imperceptible to the human eye and yet can trick the neural networks into a
misclassification. One promising approach to improving the robustness of neural net-
works is adversarial training, whereby neural networks are trained using adversarially
perturbed examples as well as the original training data.

In evaluating the robustness of a neural network, it is a common practice to measure
the zero-one loss of the neural network with respect to adversarially perturbed examples.
However, because the zero-one loss function is not smooth, other loss functions are in-
stead used to train neural networks. This raises the question of what loss function should
be used in the training in order to provide the highest degree of robustness to neural
networks. Focusing on a concrete variant of adversarial training called distributionally
robust optimization (DRO), this work attempts to empirically answer this question.

The present work has found out that optimal loss functions for DRO vary from DRO
algorithm to DRO algorithm. In addition, the cross entropy loss function, which is
widely used in training neural networks, yields acceptable robustness in all three DRO
algorithms considered in this work. Therefore, as far as the robustness of neural networks
in DRO is concerned, there is no need to reconsider the standard use of the cross entropy
loss function in training neural networks.
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Chapter 1

Introduction

1.1 Background

Inspired by the structure of the human brain, artificial neural networks (often abbrevi-
ated to neural networks) were invented as one of the paradigms for machine learning.
Neural networks have recently garnered substantial attention from the research commu-
nity and industry due to the neural networks’ noteworthy performance in a wide range
of machine learning tasks where humans have traditionally been superior to computers.
Notable examples include

1. Computer vision: Krizhevsky et al. [2012] won the ImageNet Large Scale Visual
Recognition Challenge (LSVRC) in 2012 by a significant margin, demonstrating
that the neural network is a promising approach to computer vision.

2. Natural language processing: Wu et al. [2016] incorporated neural networks into
Google Translate, successfully improving the quality of statistical machine trans-
lation.

3. Playing games: Silver et al. [2016] used a neural network to create the program
AlphaGo that outperformed pre-existing programs for the game of Go.

As neural networks become increasingly widely employed in safety-critical systems
(e.g. autonomous vehicles), it is essential to ensure safety of systems with machine learn-
ing components. Despite the stellar performance of neural networks, they have been
found to be vulnerable to so-called adversarial perturbations in compute vision [Szegedy
et al., 2013]. That is, it is relatively easy to trick neural networks into a misclassifica-
tion by introducing a small and often imperceptible perturbation to an input image. A
sample adversarial example (i.e. an adversarially perturbed image) is given in Figure 1.1.

Since the discovery of adversarial perturbations in neural networks, adversarial per-
turbations have drawn much attention in the research community. Although adversarial
perturbations have been studied extensively, no definitive solution has been found.

One promising approach to enhancing the robustness of neural networks is adversarial
training (AT) [Goodfellow et al., 2015], which trains neural networks using not only the
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Figure 1.1: Adversarial example of a yellow cab generated using FGSM [Goodfellow
et al., 2015]. The original image is correctly classified as a cab with the confidence of
0.999, whilst the adversarial example is incorrectly classified as a jigsaw puzzle with the
confidence of 0.629. The adversarial perturbation in this example is discernible, but
[Szegedy et al., 2013; Kurakin et al., 2017] contain examples of adversarial perturbations
that are hardly recognizable by the human eye. The original image of the yellow cab
comes from the ImageNet dataset [Deng et al., 2009], which is publicly available at
http://www.image-net.org/.

original training data but also adversarial examples. In conventional AT, a user-specified
limit is imposed on the size of a perturbation for each individual datapoint from the
training dataset. Thus, conventional AT considers “pointwise” adversarial perturbations.
By contrast, a variant of adversarial training called distributionally robust optimization
(DRO) considers distributional adversarial perturbations, where a limit is imposed on
the overall size of a perturbation on the entire probability distribution (as opposed to
perturbations on individual datapoints) [Staib and Jegelka, 2017; Sinha et al., 2018].

A key advantage of DRO over conventional AT is that DRO is a generalization of
conventional adversarial training. Consequently, whilst conventional AT assumes that all
pointwise adversarial perturbations are equally likely, DRO does not [Staib and Jegelka,
2017].

To execute adversarial training, we need to compute adversarial examples as a sub-
problem. Intuitively, an adversarial example can be devised by searching for an example
where there is a significant difference between the correct result and the actual prediction
result of a neural network. More formally, computation of an adversarial example can
be formulated as the maximization problem of a loss function, which quantifies the dis-
crepancy between the correct and actual prediction results. The literature abounds with
loss functions, and the choice of loss functions depends on a specific machine learning
task/algorithm.

In their highly influential paper, Carlini and Wagner [2017] empirically investigate
the relationship between loss functions and the robustness of neural networks in the
setting of adversarial attacks. Based on the optimal loss function they have identified,
they devise a new adversarial attack that successfully circumvents some of the defenses
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that had not been compromised previously.
In the literature of adversarial training (including DRO), the robustness of a neural

network is measured by first creating adversarial examples from a dataset and then
calculating the proportion of (adversarial) examples that the neural network misclassifies
[Staib and Jegelka, 2017; Sinha et al., 2018]. In other words, the goal of adversarial
training is minimization of the zero-one loss function, which returns 1 if the prediction
is different from the correct result and otherwise returns 0. However, since most regions
in the zero-one loss function is flat, it is unsuitable to be used in a training algorithm
(i.e. backpropagation algorithm) for neural networks. This is because in order to train
neural networks, it is necessary to compute gradients of a loss function, and the zero-one
loss function rarely gives non-zero gradients. Hence, we need to use a “smoother loss
function” in practice when training neural networks, although the objective of adversarial
training is minimization of the “zero-one loss function”. This begs the question: what
loss function is the most suitable in adversarial training where robustness is evaluated
in terms of the zero-one loss?

Inspired by [Carlini and Wagner, 2017], in this work, I apply their idea to the setting
of DRO, investigating which loss function will offer the highest degree of robustness to
neural networks. This research is worthwhile for two reasons:

1. From a theoretical viewpoint, it is interesting to see whether the empirical findings
on optimal loss functions by Carlini and Wagner [2017] will carry over from the
setting of adversarial attacks to the setting of DRO, which relies on adversarial at-
tacks. It is reasonable to expect that being able to find better adversarial examples
in the process of adversarial training will improve the robustness of adversarially
trained neural networks. Accordingly, it is also reasonable to expect optimal loss
functions in [Carlini and Wagner, 2017] to be optimal in the setting of adversarial
training (DRO in particular) as well.

2. From an empirical viewpoint, it is useful to know what loss function(s) will give
the highest degree of robustness and whether the cross entropy loss function, which
is widely adopted, produces satisfactory robustness in DRO.

1.2 Related work

1.2.1 Properties of adversarial perturbations

Adversarial examples were first reported by Biggio et al. [2013] and Szegedy et al. [2013].
Szegedy et al. [2013] additionally observed the transferability of adversarial examples:
a number of adversarial examples carry over from one deep neural network to another
network with different hyper-parameters (e.g. architectures and initial weights).

Goodfellow et al. [2015] maintain that adversarial examples are prevalent due to
the (locally) linear nature of deep neural networks. For instance, ReLU, which is a
popular choice for activation functions because it can prevent gradients from vanish-
ing/exploding, is a piecewise linear function and hence can make neural networks (lo-
cally) linear.
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Bubeck et al. [2018] construct a classification problem that is easy to learn with a
high degree of robustness information-theoretically but is computationally difficult to
learn with a high degree of robustness under the statistical query (SQ) learning model.
As a result, they show that the difficulty of creating robust neural networks may be due
to computational constraints rather than information-theoretic ones.

Jacobsen et al. [2019] investigate invariance-based adversarial examples (as opposed
to perturbation-based adversarial examples), reporting that the standard cross entropy
loss function commonly used in training neural networks is partially responsible for
vulnerability of neural networks to invariance-based adversarial perturbations.

The relationship between loss functions and properties of neural networks (e.g. test
accuracy and convergence rate of empirical loss to expected loss) is investigated in
[Rosasco et al., 2004; Janocha and Czarnecki, 2017]. Saito and Roy [2018] empirically
study the influence of loss functions on the robustness of neural networks to adversarial
perturbations. In [Saito and Roy, 2018], neural networks are trained using the standard
backpropagation algorithm (and hence not adversarial training). On the other hand,
in the present work, I use neural networks that are trained by distributionally robust
optimization (DRO), which is a variant of adversarial training.

1.2.2 Adversarial attacks and training

Szegedy et al. [2013] suggest a method to generate adversarial examples based on an
optimization method L-BFGS. Exploiting the local linearity of deep neural networks,
Goodfellow et al. [2015] use one-step optimization method called the fast gradient sign
method (FGSM) to generate adversarial examples. Goodfellow et al. [2015] also exper-
iment with adversarial training using FGSM-generated adversarial examples, reporting
that adversarial training makes neural networks more robust.

Madry et al. [2017] propose robust optimization (RO) as a unifying framework of
adversarial training. This RO-based formulation of adversarial training has been ex-
tended to one based on distributionally robust optimization (DRO) [Staib and Jegelka,
2017; Sinha et al., 2018]. In DRO, we consider perturbations on entire probability distri-
butions of datapoints (instead of perturbations on individual points as in conventional
adversarial training). DRO with the Wasserstein distance (in a context outside adver-
sarial training of neural networks) is also investigated in [Blanchet et al., 2016; Gao
and Kleywegt, 2016; Mohajerin Esfahani and Kuhn, 2018]. DRO with different metrics
(e.g. f -divergences) are studied in [Duchi et al., 2016; Ben-Tal et al., 2013].

Papernot et al. [2016b] introduce defensive distillation to make neural networks more
robust. This defense yields promising results in protecting against adversarial examples
crafted by four adversarial attacks: L-BFGS, FGSM, Deepfool [Moosavi-Dezfooli et al.,
2016], and JSMA [Papernot et al., 2016a]. However, by empirically examining different
loss functions for adversarial attacks, Carlini and Wagner [2017] show that solving opti-
mization problems with carefully designed loss functions can foil defensive distillation.
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1.3 Contributions

The first contribution of this project is identifying two issues with the current literature
on distributionally robust optimization (DRO): (i) mismatch between loss functions used
in practice and loss functions in the theoretical formulation of DRO; (ii) the use of
pointwise adversarial attacks instead of distributional attacks to evaluate the robustness
of neural networks (See Section 3.3).

The second contribution is proving that the DRO algorithm developed by Sinha
et al. [2018], which is named WRM, can be viewed as adversarial training in which
adversarial examples are computed using the framework of [Carlini and Wagner, 2017]
(See Section 4.3). Building on this, the third contribution of the project is empirically
studying the relationship between loss functions and the robustness of neural networks
trained by three distinct DRO algorithms (including WRM), thereby addressing the
first issue mentioned above. I systematically evaluate seven different loss functions from
[Carlini and Wagner, 2017] in terms of the resulting robustness in the DRO setting of
[Staib and Jegelka, 2017; Sinha et al., 2018] (See Chapter 5).

1.4 Outline of the report

This document is structured as follows.
In Chapter 2, basic terminologies and concepts necessary to understand distribu-

tionally robust optimization (DRO) are presented. Specifically, I will introduce robust
optimization, supervised learning, neural networks, and adversarial attacks/training.

In Chapter 3, I will provide a formulation of DRO and describe previous research
work by Staib and Jegelka [2017] and Sinha et al. [2018] on DRO algorithms. Chap-
ter 4 discusses the empirical studies by Carlini and Wagner [2017] on the relationship
between loss functions and robustness of neural networks in the setting of adversarial
attacks. The highlight of this chapter is the analysis showing that WRM, which is a
DRO algorithm developed by Sinha et al. [2018], can be viewed as adversarial training
where adversarial examples are computed using the framework for adversarial attacks
in [Carlini and Wagner, 2017].

This is followed by Chapter 5, where the first part describes the experiments con-
ducted to confirm some of the results in the previous research work, and the second
part describes the experiments for comparing loss functions in terms of their resulting
robustness in three DRO algorithms.

Finally, Chapter 6 concludes the report. Basics of optimization are presented in
Appendix A. Appendix B provides details on adversarial attacks and training. Addi-
tional analysis and experiment results are available in Appendix C and Appendix D,
respectively.
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Chapter 2

Preliminaries

2.1 Robust optimization

Robust optimization concerns optimization under uncertainty in data and seeks to pro-
duce an optimized solution that is resistant to perturbation in data [Ben-Tal et al., 2009].
To illustrate robust optimization, consider linear programming:

minimize cᵀx

subject to Ax ≤ b,

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. This can be more succinctly written as

min
x
{cᵀx | Ax ≤ b}.

Here, cᵀx is an objective value, and the function x 7→ cᵀx is called an objective function.
If x satisfies Ax ≤ b, then x is said to be a feasible solution. If x = arg miny{cᵀy | Ay ≤
b}, x is called an optimal solution.

Suppose an optimal solution to the above optimization problem is x∗. If the entries
of A possess uncertainty, they may cause x∗ to violate the constraint Ax∗ ≤ b. In some
application scenarios of optimization, violation of constraints is unacceptable and must
be avoided at all costs. In such a situation, it is critical to ensure that a solution remains
feasible even when it is subject to perturbations within a certain degree of uncertainty.
Thus, in robust optimization, we aim to compute x that optimizes the “worst-case”
objective value under uncertainty.

Formally, let U be the set of possible values for entries inA, b, and c under uncertainty.
This U is called an uncertainty set. The above optimization problem is transformed into
the following robust optimization problem [Ben-Tal et al., 2009]:

min
x

{
sup

(A,b,c)∈U
cᵀx | ∀(A, b, c) ∈ U .Ax ≤ b

}
.
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2.2 Empirical risk minimization (ERM)

This section will establish a formal setting of supervised learning, which is one of ma-
chine learning paradigms, and will introduce empirical risk minimization (ERM). The
presentation style of this section follows that of [Mohri et al., 2012]. Let X be an instance
space (i.e. a set of possible of inputs) and Y be a set of possible outputs. Because I will
focus on classification problems, Y is finite. Throughout this document, I refer to x ∈ X
as an instance/example.

A “concept” is a function c : X → Y. The goal of supervised learning is to
recover c (or its approximation) using a training sample generated by c; i.e. a set
{(x1, c(x1)), . . . , (xm, c(xm))}, where xi ∈ X for all i. The output of a machine learning
algorithm is a function h : X → Y (called a hypothesis) that approximates c. The
distinction between concepts and hypotheses is that concepts are the mapping that gen-
erates the data and that we would like to learn, whereas hypotheses are the output
mappings of machine learning algorithms.

In a noise-free setting such as the PAC (probably approximately correct) learning
model [Valiant, 1984], learning algorithms aim to learn a target concept c that generates
training data. In the real-world applications, on the other hand, it is more reasonable
to assume that training data contain noise. Therefore, unlike in PAC learning where
we work with distributions over instance space X , in this document, we work with
distributions D over X × Y.

Let ` : Θ×X×Y → R denote a loss function, where Θ is the set of all possible param-
eters of a machine learning model (e.g. neural networks). The loss `(θ, x, y) quantifies
the discrepancy between y (which is usually the ground-truth label) and the prediction
result Fθ(x). Here, Fθ is a machine learning model with parameter(s) θ and (x, y) is
drawn from D (denoted by (x, y) ∼ D). A loss function is usually a hyper-parameter
specified by a user.

When we disregard adversarial perturbations, the goal of training a model is to
evaluate an approximate minimizer θ for

E
(x,y)∼D

[`(θ, x, y)],

which is called an expected risk/error/loss.
In practice, D is unknown, and we are instead given a training sample drawn from

D. Given a sample S = {(x1, y1), . . . , (xm, ym)}, the empirical loss of a hypothesis θ
with respect to this sample is

1

m

m∑
i=1

`(θ, xi, yi).

Empirical risk minimization (ERM) refers to finding parameters in machine learning
models that (approximately) minimize empirical risks.

Under the assumption that each instance in a sample is drawn randomly from D, we
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have

E
S∼Dm

[
1

m

m∑
i=1

`(θ, xi, yi)

]
= E

(x,y)∼D
[`(θ, x, y)].

By the weak law of large numbers, as long as we have sufficiently many examples in
the training data, empirical risk minimization will produce a hypothesis whose expected
risk is close to the smallest expected risk attainable. However, the rate of convergence
may be painfully slow, and consequently, the amount of necessary training data may
be impractically large. The relationship between empirical and expected risks is one of
the primary questions addressed by computational/statistical learning theory [Vapnik,
1999].

2.3 Neural networks

An artificial neural network is composed of layers of nodes, each of which plays the role
of a neuron in the human brain. Although some neural networks are also called “deep”
neural networks, the word “deep”, which is usually interpreted as having multiple layers
of nodes, is not rigorously defined in the literature. The technique of using deep neural
networks to solve machine learning tasks is known as deep learning [LeCun et al., 2015].

In this document, we will focus on feedforward neural networks, in which information
only flows in one direction (hence “feedforward”). Other architectures of neural networks
include recurrent neural networks, which process sequences of input data.

2.3.1 Feedforward neural networks

Definition Suppose that an instance space is X = Rd0 and the set of outputs is Y =
{1, . . . , k}. A “vanilla” feedforward neural network is a function F : X → Y of the form

F := Fn ◦ · · · ◦ F1,

where each Fi : Rdi−1 → Rdi for 1 ≤ i ≤ n is

Fi(x) := ρi(Aix+ bi).

Here, both Ai ∈ Rdi×di−1 and bi ∈ Rdi store trainable/learnable parameters, and each ρi
is a non-linear activation function. For consistency, we should have k = dn.

Activation functions Non-linear activation functions are crucial as they provide non-
linearity to neural networks, thereby enabling neural networks to express a wide range
of non-linear functions in addition to linear functions. Four common activation functions
are

• tanh: x 7→ ex−e−x
ex+e−x

• Sigmoid: x 7→ 1
1+e−x
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• Rectified linear unit (ReLU): x 7→ max(x, 0)

• Exponential linear unit (ELU):

x 7→

{
α(ex − 1) if x ≤ 0

x otherwise,

where α is a user-specified hyper-parameter and is usually 1 by default.

These activation functions are applied to an input vector in a pointwise fashion. For the
last function Fn, the activation function is usually the softmax function, which, given
x ∈ Rk, returns y ∈ Rk such that

yi :=
exi∑k
j=1 e

xj
.

This function squeezes each xi into yi ∈ [0, 1] in such a way that
∑k

j=0 yj = 1 and
arg max1≤i≤k xi = arg max1≤i≤k yi. Thus, yi can be interpreted as the probability (also
called confidence) that the correct class label is i.

Beyond vanilla feedforward neural networks The feedforward neural networks used in
practice are more involved than the vanilla feedforward neural network described above.
For instance, various types of layers have been invented and used in practice; e.g. con-
volutional layers and dropout layers. In Chapter 5, we will use convolutional layers for
experiments, but it is not necessary to understand the details of convolutional layers.
Hence, I will omit an explanation on convolutional layers.

2.3.2 Training by backpropagation

Cross entropy loss function Training a neural network amounts to determining trainable
parameters such that an empirical loss of the neural network is (approximately) mini-
mized. For computer vision, a common loss function is the cross entropy loss function:

`(θ, x, t) := − ln(Fθ(x)t),

where x is an instance, t is the correct class label, and Fθ(x)t is the confidence for class
t in the output of the neural network Fθ.

Backpropagation Suppose we are given a training dataset {(xi, yi) | 1 ≤ i ≤ m} and we
are to use a loss function `. Training of neural networks is done by the backpropagation
algorithm [LeCun et al., 2015], which calculates the gradient∇θ 1

m

∑m
i=1 `(θ, xi, yi). Then

θ is adjusted by making one step in the direction of the loss’s steepest descent.
In theory, it is expected to calculate a gradient using all instances in a training

dataset. To speed up the computation of gradients, GPUs, which are capable of efficiently
handling matrices, are employed. However, since it is impractical to fit an entire dataset
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in the memory of a GPU, the dataset is split into batches whose size is usually 128, 256,
or 512. This split is usually done randomly in the training phase. Once the dataset is
split into batches, we visit them sequentially, using each batch to calculate a gradient and
updating the weights of the neural network accordingly. When we have gone through all
batches, we divide the dataset randomly into batches again and repeat the same process.
Each round of traversing the entire dataset is called an epoch.

Optimizers A component within the backpropagation algorithm responsible for updat-
ing the neural network’s weights based on a gradient is called an optimizer. Amongst
popular optimizers for deep learning are stochastic gradient descent (SGD), RMSprop
[Tieleman and Hinton, 2012], and Adam [Kingma and Ba, 2014].

2.4 Adversarial attack and training

2.4.1 Adversarial attacks

Adversarial examples and perturbations can be informally defined as follows.

Definition 2.4.1 (Adversarial examples and perturbations). Let F : X → {1, . . . , k} be
a classifier and let c : X → Y be a target concept to be learned. An adversarial example
is x + δ ∈ X that is obtained by applying an adversarial perturbation δ to an original
example x, where (x, c(x)) ∼ D and F (x) = c(x), such that F (x+ δ) 6= c(x).

It is unnecessary to consider the case of F (x) 6= c(x) (i.e. the prediction result of
F is already wrong even without a perturbation), because we are concerned with the
robustness of a neural network only when its accuracy is high.

In most cases, additional requirements are imposed on the above definition of adver-
sarial examples. One common constraint is an upper limit on the size of perturbations
δ. This is called an “adversarial budget” and denoted by ε. In order for a perturbation
δ to be adversarial, we expect δ to be relatively small; otherwise, if we were allowed to
inject as much perturbation as we wish, any reasonable machine learning model could
be tricked and hence would never be robust. However, an upper limit on the size of δ is
determined by users and hence is problem dependent.

Regarding distance functions that we use to measure the size of perturbations, com-
mon distances in computer vision include the L2 and L∞ distances. However, none
of the distance functions that have been used in computer vision faithfully reflects the
human perception of similarity between images [Carlini and Wagner, 2017].

Another constraint is the target class of adversarial attacks; i.e. F (x+ δ). If a target
class is specified, the attack is called targeted; otherwise, it is said to be untargeted.

The literature has a large body of knowledge on approaches to finding adversarial
examples [Akhtar and Mian, 2018], and some of them are presented in Appendix B.1.
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2.4.2 Adversarial training

A family of defenses called adversarial training incorporates adversarial examples into
training data, thereby improving neural networks’ classification accuracy on adversarial
examples. Although we know that adversarial training increases the robustness of deep
neural networks, it remains unknown to what the extent adversarial training is effective.
Many of early research results on adversarial training are focused on specific training
schemes and tend to be of experimental nature rather than theoretical nature. Therefore,
it is necessary to develop a theoretical framework in which we can investigate adversarial
training rigorously and holistically (as in computational learning theory).

Recognizing this need, Madry et al. [2017] suggest robust optimization (RO) as a
theoretical framework for adversarial training. The use of RO in the setting of deep
neural networks first appeared in [Shaham et al., 2015; Huang et al., 2015; Lyu et al.,
2015].

As adversarial training is not strictly defined, it encompasses a broad array of al-
gorithms to train neural networks, whilst the RO framework for adversarial training is
rigorously defined. Therefore, not all adversarial training algorithms can be faithfully de-
scribed in the RO framework. Nonetheless, RO is instrumental in providing a theoretical
model of adversarial training that captures the intent of adversarial training. Therefore,
this situation is analogous to statistical learning theory, where we have a number of dif-
ferent learning models such as PAC learning and statistical query learning, all of which
capture the main intent of machine learning whilst using different assumptions.

I now introduce adversarial training in the form of robust optimization using the
presentation style of Madry et al. [2017]. Consider a set S of possible perturbations
around any instance x ∈ X . Adversarial training can be viewed as the following robust
optimization problem:

min
θ
ρ(θ), (2.4.1)

where ρ(θ) (adversarial loss) is given by

E
(x,y)∼D

[
max
δ∈S

`(θ, x+ δ, y)

]
. (2.4.2)

An optimization problem of the shape (2.4.1) is called a saddle-point problem because
it has a maximization problem embedded inside a minimization problem [Madry et al.,
2017].

In (2.4.1), the inner maximization problem is interpreted as computing adversarial
examples with respect to parameter θ of a neural network. The outer minimization
problem seeks to find θ such that ρ(θ) is minimized.

In practice, adversarial training proceeds by first computing the (approximately)
worst adversarial example within S around some x. This step can be achieved using, for
example, FGSM and PGD (See Appendix B.1). Using the resulting adversarial examples,
we run the backpropagation algorithm to adjust θ such that the neural network classifies
these adversarial examples correctly with high confidence. A mathematical justification
behind this workflow of adversarial training is discussed in Appendix B.2.
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Chapter 3

Distributionally robust optimization (DRO)

3.1 Formalization

In distributionally robust optimization (DRO), entire probability distributions, instead
of individual datapoints, are perturbed. Whilst robust optimization (RO) in neural net-
works is primarily motivated by adversarial attacks, distributionally robust optimization
is motivated by not only adversarial attacks but also changes in data distribution [Sinha
et al., 2018]. In real-world applications of deep learning, the probability distribution gen-
erating training data may not coincide with the probability distribution that generates
data for testing or prediction.

We will work with the Wasserstein distance as a distance between probability dis-
tributions. I will follow the presentation style of Staib and Jegelka [2017]. Let d(·, ·) :
Z ×Z → R be a metric/distance on some metric space Z (See Appendix A.1 for precise
definitions of metric spaces and distances). Using this metric, we define the p-Wasserstein
distance as follows:

Definition 3.1.1 (p-Wasserstein distance). The p-Wasserstein distance is defined as

Wp(D, D̃) := inf

{∫
d(z, z̃)p dγ(z, z̃) | γ ∈ Π(D, D̃)

} 1
p

,

where Π(D, D̃) is the set of couplings of probability distributions D and D̃ over Z.

Villani [2003] provides an alternative definition:

Definition 3.1.2 (Wasserstein distance). Given a cost function c : Z × Z → R, the
Wasserstein distance is defined as

W (D, D̃) := inf

{∫
c(z, z̃) dγ(z, z̃) | γ ∈ Π(D, D̃)

}
,

where Π(D, D̃) is the set of couplings of probability distributions D and D̃ over Z. The
cost function c does not need to be a metric; however, c is required to be measurable
and non-negative [Villani, 2003]. Also, since c is sometimes allowed to return ∞, its
codomain can be R≥0 ∪ {∞}.
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There is no need to understand what it means for a function to be measurable in
Definition 3.1.2—it suffices to remember that measurable functions are not necessarily
metrics/distances.

The above two definitions of the Wasserstein distance are equivalent becauseWp(D, D̃)

(according Definition 3.1.1) is equal to the W
1
p (D, D̃) (in Definition 3.1.2), where the

cost function is dp(·, ·). To distinguish between the two definitions, I will write Wp for
the first definition and W1 for the second one.

In [Villani, 2008], couplings of two probability distributions are defined as follows.

Definition 3.1.3 (Coupling). Let (Ω1, µ) and (Ω2, ν) be two probability spaces, where
Ω1 and Ω2 are outcome spaces and µ and ν are probability measures. Coupling µ and ν
means constructing two random variables X and Y on probability space (Ω,P) such that
law(X) = µ and law(Y ) = ν. Ω is commonly set to Ω1 × Ω2.

Also, a coupling of two random variables A and B is a pair (X,Y ) of random variables
on the same outcome space such that the probability distributions of X and Y are
identical to those of A and B, respectively. Hence, the joint probability distribution of
a coupling specifies how to “transport” the probability distribution of X to that of Y .
The Wasserstein distance therefore represents the minimum cost of transporting D to
D̃.

The goal of DRO is to find parameter θ of a deep neural network that satisfy the
following:

min
θ

max
D̃:Wp(D,D̃)≤ε

E
(x,y)∼D̃

[`(θ, x, y)]. (3.1.1)

The metric dX ,Y on X × Y that is used to define Wp is given by

dX ,Y((x, y), (x̃, ỹ)) := d(x, x̃) +∞ · 1y 6=ỹ,

where the base metric d is chosen by the user. The distance dX ,Y imposes an infinite
penalty if y 6= ỹ because we assume that the adversary can only perturb instances and
not labels [Staib and Jegelka, 2017; Sinha et al., 2018]. Consequently, if Wp(D, D̃) <∞,
any coupling π ∈ Π(D, D̃) with the optimal cost is not allowed to assign a positive
probability to the transport from (x, y) to (x̃, ỹ), where y 6= ỹ.

One advantage of DRO over robust optimization (RO) is that DRO encompasses RO.
Hence, if a neural network can be trained to be robust (i.e. the distributional adversarial
loss is small) in the DRO framework, it automatically implies that the neural network
also has a small adversarial loss in RO. This is made precise by the following theorem:

Lemma 3.1.1 (Staib and Jegelka [2017]). Fix parameters θ and a metric d on X . For
any p ∈ [1,∞], we have

E
(x,y)∼D

[
max

x̃∼Bε(x)
`(θx̃, y)

]
≤ max
D̃:Wp(D,D̃)≤ε

E
(x,y)∼D̃

[`(θ, x, y)], (3.1.2)

where Bε(x) := {x̃ | d(x, x̃) ≤ ε}. Equality holds for p =∞.
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In (3.1.2), when p = ∞, the Wasserstein distance W∞(D, D̃) represents the the
largest distance (measured using d) between any x ∈ X and y ∈ Y. This is analogous to
the L∞-distance of vectors, which measures the larges component-wise distance. This is
why equality holds in in (3.1.2) when p =∞.

Another related advantage of DRO is that DRO does not assume that all perturba-
tions are equally likely, whilst RO does. This is because we impose an upper bound on the
total perturbation across entire probability distributions instead of individual point-wise
perturbations. However, this means that DRO considers distribution-wise perturbations
in which individual point-wise perturbations are unrealistically large. This should not be
a serious problem, since if some point-wise perturbation is large, its probability should
be relatively low (such that the total distribution-wise perturbation remains bounded by
ε). Consequently, as long as `(θ, ·, y) is reasonably proportional to the distance measured
by d, we should not have an issue.

According to Staib and Jegelka [2017], another (practical) advantage of DRO over RO
is that it is unknown how well RO generalizes (i.e. the extent to which a small empirical
adversarial loss in RO will translate to a small expected adversarial loss), whereas the
theoretical foundation of DRO is known better. The generalization guarantee of DRO
with the Wasserstein distance is studied in [Blanchet et al., 2016; Gao and Kleywegt,
2016; Mohajerin Esfahani and Kuhn, 2018]. Personally, since DRO subsumes RO, I
wonder why we cannot use the generalization guarantee of DRO to derive one for RO.

3.2 Approaches to solving distributionally robust optimization

3.2.1 Introduction

Distributionally robust optimization (DRO) with Wp is formulated as (3.1.1). Let OPT
denote the inner maximization problem of (3.1.1):

OPT := max
D̃:Wp(D,D̃)≤ε

E
(x,y)∼D̃

[`(θ, x, y)]. (3.2.1)

Let us fix θ so that we can focus on the inner maximization problem. In (3.2.1), the
true instance distribution D is unknown. Thus, at best we can only (approximately)
solve the following new inner problem:

OPTempirical := max
D̃:Wp(Dn,D̃)≤ε

E
(x,y)∼D̃

[`(θ, x, y)],

where Dn is an empirical distribution; i.e. an instance distribution constructed from
the training dataset. As suggested in [Staib and Jegelka, 2017], this new optimization
problem can be approximately solved by considering

MIX := max
x̃1,...,x̃n

1

n

n∑
i=1

`(θ, x̃i, yi)

subject to
1

n

n∑
i=1

dp(x̃i, xi) ≤ εp.
(3.2.2)

17



Note that (3.2.2) perturbs Dn by moving individual examples such that the total
transport cost is bounded above by ε. Hence, the probability distribution considered in
(3.2.2) has the Wasserstein distance at most ε from OPTempirical. This implies MIX ≤
OPTempirical.

Additionally, the following theorem, which is originally Corollary 2 (iv) of Gao and
Kleywegt [2016] and is subsequently simplified by Staib and Jegelka [2017], establishes
another connection between MIX and OPTempirical:

Theorem 3.2.1 (Gao and Kleywegt [2016] and Staib and Jegelka [2017]). Fix θ and
suppose that `(θ, ·, y) is an L-Lipschitz function for all y. Then we have OPT ≤ MIX +
LD
n , where D bounds the maximum deviation of a single point.

In summary, we obtain

OPTempirical −
LD

n
≤ MIX ≤ OPTempirical.

This gives a bound on |MIX−OPTempirical|. The convergence of the distance between
OPT and OPTempirical is discussed in Appendix C.1.

3.2.2 Distributional projected gradient descent

If the distance function for X is d = Lq, the optimization problem (3.2.2) can be ex-
pressed as

max
X̃

1

n

n∑
i=1

`(θ, x̃i, yi)

subject to
∥∥∥X̃ −X∥∥∥

q,p
≤ n

1
p ε,

(3.2.3)

where X and X̃ are matrices in which each column is a datapoint. The matrix norm
Lq,p of A ∈ Rd×n is defined as

‖A‖q,p :=

 n∑
j=1

(
d∑
i=1

‖Ai,j‖q
) p

q


1
p

.

The constraint in (3.2.3) is called a mixed-norm ball since it contains two different norms.
One plausible approach to solving this optimization problem is projected gradient

descent (PGD), which in each iteration projects an intermediate solution to the feasi-
ble region specified by the constraint. For details on PGD, the reader is referred to
Appendix A.2.2.

To apply PGD, it is necessary to compute the projection of X̃ on the feasible region

specified by
∥∥∥X̃ −X∥∥∥

q,p
≤ n

1
p ε. The feasible region is rather conceptually simple—

it is an Lq,p-ball. However, the projection operator used in PGD is defined using the
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Euclidean distance (equivalently, the L2 or L2,2 norm), and there is no general and
straightforward way to compute Euclidean projection on an Lq,p-ball. Research results
on efficient projection algorithms are available for some special cases; e.g. when p = 1
and q ≥ 1 [Sra, 2012]. Also, if we have p = q, the Lp,q norm is reduced to the vector
norm Lp. When p = q = 2 or p = q = ∞, projection is trivial. When p = q = 1, the
algorithm by Duchi et al. [2008] can be employed.

In order to avoid confusion, I will henceforth refer to this DRO algorithm as “distri-
butional” projected gradient descent (PGD), distinguishing this from PGD attacks.

3.2.3 Frank-Wolfe method with stochastic block coordinate descent

Staib and Jegelka [2017] suggest using the Frank-Wolfe method together with stochastic
block coordinate descent (BCD) to approximately solve DRO. The Frank-Wolfe method
for convex optimization is explained in Appendix A.2.4, and coordinate descent is ex-
plained in Appendix A.2.5. For brevity, this Frank-Wolfe method based approach to
solving DRO is abbreviated to FWDRO or even FW.

In this approach, we start with an initial value at which the Lq,p constraint is tight. In
the t-th iteration, we first randomly choose a block of coordinates (specifically, multiple
columns of X̃ in this case). Let X denote the matrix composed of training examples
and X̃ denote the matrix containing all variables to be optimized. Further, I write
XS and X̃S for the projection of the corresponding matrices on the columns we have
selected. For the projection of matrices on those columns that were not selected, I use
the subscript of N , which is short for “not selected”. The original constraint on X̃ is∥∥∥X̃ −X∥∥∥p

q,p
≤ nεp. It is easy to see∥∥∥X̃ −X∥∥∥p

q,p
=
∥∥∥X̃S −XS

∥∥∥p
q,p

+
∥∥∥X̃N −XN

∥∥∥p
q,p
.

Therefore, the (local) constraint imposed on X̃S is∥∥∥X̃S −XS

∥∥∥p
q,p
≤ nεp −

∥∥∥X̃N −XN

∥∥∥p
q,p
. (3.2.4)

The Frank-Wolfe method is then used to update the variables in X̃S by solving the
following linear optimization problems in terms of Y :

maximize

(
∇X̃S

(
1

n

n∑
i=1

`(θ, x̃i, yi)

))ᵀ

Y

subject to ‖Y −XS‖pq,p ≤ nε
p −

∥∥∥X̃N −XN

∥∥∥p
q,p
.

In the objective function above, we need to flatten the two matrices before taking their
inner product. This optimization problem can be cast into

maximize CᵀY

subject to ‖Y −D‖q,p ≤ δ,
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where C, D, and δ take appropriate constants. Introducing a dummy variable Z :=
Y −D, we can express the above optimization problem as

maximize Cᵀ(Z +D)

subject to ‖Z‖q,p ≤ δ,

which can be transformed into

maximize CᵀZ

subject to ‖Z‖q,p ≤ δ,

because D is a constant. Note that the optimal solution Z to this problem is not neces-
sarily a scalar product of vector C. For example, in an L∞-ball in the two-dimensional
space, the optimal solution to the above problem is usually a vector from the origin to
one of the corners of the square; hence, it does not always have the same direction as C.
Details on how to solve this optimization problem are provided in Appendix B of [Staib
and Jegelka, 2017].

The pseudocode for FWDRO is in Algorithm 1.

Algorithm 1 Distributionally robust optimization by the FW method and stochastic
BCD

Require: Dataset {(xi, yi)}ni=1, batch size k, budget ε, step-size sequence (αt > 0)T−1
t=0

1: Initialise εi ← ε for all i = 1, . . . , n
2: for t = 0, . . . , T − 1 do
3: Randomly draw a subset S ⊆ {1, . . . , n} of size k
4: Compute the budget for the local constraint εS := ‖XS‖q,p using (3.2.4) and εi

for i /∈ S
5: To compute X̃S , use the Frank-Wolfe method to solve

max
X̃S

1

k

∑
i∈S

`(θ, x̃i, yi)

subject to
∥∥∥X̃S −XS

∥∥∥
q,p
≤ εS

. Apply clipping at the end of each iteration in the FW method if necessary
6: εi ← ‖x̃i‖q for all i ∈ S
7: θ ← θ − αt∇θ

(
1
k

∑
i∈S `(θ, x̃i, yi)

)
In this algorithm, we do not store the adversarial examples computed in line 5 for

future use. Instead, we only store the amount of perturbation, namely εi, for each

i ∈ S. This is because we can use εi to calculate
∥∥∥X̃N −XN

∥∥∥p
q,p

in (3.2.4). Hence, it is

unnecessary to store the entire X̃ for the purpose of computing X̃N .
The values of εi are initialized to ε (as opposed to 0, for instance) for all 1 ≤ i ≤ n

in line 1. This is because in BCD we start with a point where the constraint is tight,
and this can be attained by setting εi = ε for all 1 ≤ i ≤ n.
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In my implementation of FWDRO, to further reduce memory usage, I use ε instead
of εS in line 4 in every iteration.

3.2.4 Lagrangian relaxation

Sinha et al. [2018] use Lagrangian relaxation to approximately solve distributionally
robust optimization (DRO) and term this approach WRM (it is probably short for
Wasserstein Robust Method). In their paper, they use Definition 3.1.2 in lieu of Def-
inition 3.1.1 for the Wasserstein distance. Basics of general Lagrangian relaxation are
available in Appendix A.3.1.

Recall that DRO can be formulated as

min
θ∈Θ

max
D̃:W1(D̃,D)

E
(x,y)∼D̃

[`(θ, x, y)],

where D is a fixed instance distribution (e.g. empirical instance distribution) and Θ is
the set of possible model parameters θ. This expression is obtained by replacing Wp in
(3.1.1) with W1 (in Definition 3.1.2).

By Lagrangian relaxation, the inner problem is transformed into

sup
D̃

[
E

(x,y)∈D̃
[`(θ, x, y)]− λW1(D̃,D)

]
,

where γ ≥ 0 is fixed. Note that since the inner problem is a maximization problem,
the penalty term in the above Lagrangian is negated, unlike in Section A.3.1, where the
objective was minimization.

The following result (originally proved by Blanchet and Murthy [2016], and an alter-
native proof is provided by Sinha et al. [2018]) establishes strong duality.

Theorem 3.2.2 (Proposition 1 in [Sinha et al., 2018] and Theorem 1 in [Blanchet
and Murthy, 2016]). Suppose loss function ` : Θ × X × Y → R and cost function c :
(X ×Y)× (X ×Y)→ R≥0 ∪ {∞} are continuous. Then for any distribution Q and any
ε > 0, we have

sup
P :W1(P,Q)≤ε

E
(x,y)∼P

[`(θ, x, y)] = inf
λ≥0

[
λε+ E

(x,y)∼Q
[φλ(θ, x, y)]

]
, (3.2.5)

where
φλ(θ, x, y) := sup

(x′,y′)∈X×Y

[
`(θ, x′, y′)− λc((x, y), (x′, y′))

]
. (3.2.6)

This is called a robust surrogate. Furthermore, for any λ ≥ 0, we have

sup
P

[
E

(x,y)∼P
[`(θ, x, y)]− λW1(P,Q)

]
= E

(x,y)∼Q
[φλ(θ, x, y)]. (3.2.7)
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In (3.2.5), the left hand side is a constrained optimization problem, and the right
hand side can be rewritten as

inf
λ≥0

[
sup
P

E
(x,y)∼P

[`(θ, x, y)]− λ(W1(P,Q)− ε)
]
,

where W1(P,Q)− ε ≤ 0 is the constraint of DRO. Hence, the left hand side of (3.2.5) is
in accord with the definition of Lagrangian duality given in Section A.3.1.

(3.2.7) is useful because on the left hand side is the relaxed inner maximization
problem of (3.1.1), which takes a supremum over probability distributions, and on the
left hand side is an expression that takes a supremum over individual points rather than
over probability distributions. Consequently, by (3.2.7), the Lagrangian relaxation of
DRO by Sinha et al. [2018] becomes

min
θ∈Θ

E
(x,y)∼D

[φλ(θ, x, y)],

or equivalently

min
θ∈Θ

E
(x,y)∼D

[
sup

(x′,y′)

[
`(θ, x′, y′)− λc((x, y), (x′, y′))

]]
(3.2.8)

by the definition of the robust surrogate in (3.2.6). We can notice that (3.2.8) closely
resembles

min
θ∈Θ

E
(x,y)∼D

[
max

x̃∈Bε(x)
`(θ, x̃, y)

]
,

that is, robust optimization (RO) for adversarial training. In fact, (3.2.8) is a Lagrangian
relaxation of RO as well as a Lagrangian relaxation of DRO.

(3.2.8) is then solved by stochastic (projected) gradient descent (GD) in [Sinha et al.,
2018]. In their paper, Sinha et al. [2018] also provide a theoretical result on the conver-
gence of stochastic (projected) GD under several assumptions on ` and c. Two of the
major assumptions are

1. ` is smooth (See Definition A.2.2) in the first argument. For this reason, they
recommend the use of smooth loss functions when their approach to DRO is used.
Additionally, this is why they use the exponential linear unit (ELU) in place of
the rectified linear unit (ReLU) in their experiments.

2. γ is sufficiently large. Due to the duality result in Theorem 3.2.2, larger γ means
smaller ε (i.e. adversarial budget). This inverse relationship between γ and ε is
explained in more detail in Section C.2.

The pseudocode of WRM is in Algorithm 2.
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Algorithm 2 Distributionally robust optimization by Lagrangian relaxation and SGD

Require: Training data distribution D0, penalty parameter λ, parameter space Θ, step-
size sequence {αt > 0}T−1

t=0

for t = 0, . . . , T − 1 do
Sample (x, y) ∼ D0 and find an approximate maximizer x̃t of `(θ, x̃t, y)−λd(x, x̃t)
θt+1 ← ProjΘ(θt − αt∇θ`(θt, x̃t, y)) . Apply clipping if necessary

3.3 Issues with the previous research work on DRO

I have discovered that the previous research work on DRO by Staib and Jegelka [2017]
and Sinha et al. [2018] suffers from the following issues:

1. In the typical formulation of DRO, users have a choice over a loss function. How-
ever, in many experimental studies, success/error rates on defenses against adver-
sarial examples are used to measure performance of adversarial training procedures.
This suggests that instead of allowing users to select loss functions by themselves,
we should fix the loss function used in DRO’s formulation to be the zero-one loss
function:

`0,1(θ, x, y) := 1Fθ(x) 6=y, (3.3.1)

where Fθ is a neural network with parameter θ.

However, to train neural networks using the bakpropagation algorithm, it is nec-
essary to use loss functions that are smoother than `0,1. This raises the question
of what loss functions gives the highest level of robustness in DRO where the ro-
bustness is evaluated using `0,1. This will be one of the main goals of the empirical
studies in Chapter 5.

2. DRO is more suitable than RO when we impose a limit on the total perturbation
on the entire probability distribution rather than the perturbation of individual
points. However, in many empirical studies comparing adversarial training pro-
cedures (including RO and DRO), adversarial attacks are launched on individual
points rather than on the entire probability distributions. For instance, in [Staib
and Jegelka, 2017], although the authors are aware that DRO and RO make differ-
ent assumptions on the nature of adversaries, they only use pointwise adversarial
attacks to evaluate DRO algorithms.

Appendix D.1 addresses this issue, showing the experiment results of the use of
distributional PGD as a distributional adversarial attack (instead of as a DRO
algorithm). However, this approach suffers a significantly lower attack success rate
than pointwise PGD for an unknown reason. Hence, this needs further investiga-
tion in future work.
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Chapter 4

Tuning of loss functions

Carlini and Wagner [2017] develop an adversarial attack that successfully breaks defen-
sive distillation, a defense against adversarial perturbations proposed by Papernot et al.
[2016b]. As one of the strongest adversarial attacks to date, the attack developed by
Carlini and Wagner [2017] is commonly used as a benchmark [Madry et al., 2017].

This chapter describes the research work of Carlini and Wagner [2017] and discusses
the theoretical connection between their formulation of adversarial attacks and the for-
mulation of distributionally robust optimization (DRO).

4.1 Adversarial attacks with tuned loss functions

Given a neural network whose last layer is the softmax function, let F : X → Rn and
Z : X → Rn, where n = |Y|, represent the neural network with and without the softmax
function, respectively. In addition, define C : X → Y as C(x) := arg maxy∈Y Fy(x),
where Fi(x) denotes the i-th confidence value in F (x).

Carlini and Wagner [2017] consider the following problem of crafting targeted adver-
sarial examples:

minimize d(x, x+ δ)

such that C(x+ δ) = t

x+ δ ∈ X .
(4.1.1)

Here, d : X ×X → R is a user-specified distance metric, C : X → Y is a classifier, and t
is the target class of an adversarial example.

If we introduce a function f such that C(x+ δ) = t ⇐⇒ f(x+ δ) ≤ 0, (4.1.1) can
be equivalently expressed as

minimize d(x, x+ δ)

such that f(x+ δ) ≤ 0

x+ δ ∈ X .
(4.1.2)
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(4.1.2) is then converted to

minimize d(x, x+ δ) + cf(x+ δ)

such that x+ δ ∈ X ,
(4.1.3)

where c > 0 is a fixed penalty parameter that will be chosen appropriately.
We can make two remarks at this point:

1. The formulation of adversarial attacks in (4.1.3) can be considered as either the
penalty method (See Appendix A.3.2) or Lagrangian relaxation, depending on the
property of f . If f(x+ δ) = 0 holds whenever C(x+ δ) = t, (4.1.3) is the penalty-
method formulation derived form (4.1.1) (i.e. the original problem formulation of
crafting adversarial attacks). Conversely, if f(x + δ) = 0 ⇐⇒ C(x + δ) = t
does not hold, (4.1.3) is regarded as the Lagrangian relaxation of (4.1.2), which is
equivalent to (4.1.1).

2. Another important observation is that (4.1.3) can be seen as not only the La-
grangian relaxation of (4.1.2) but also the Lagrangian relaxation of

max
δ∈X

`(θ, x+ δ, y),

which appears inside (2.4.2). Here, X is a ball around x with the distance function
d, and we have f(·) := `(θ, ·, y), which is a partially applied loss function. This
means that in a sense (4.1.3) serves as a bridge connecting (4.1.2) and (2.4.2),
which are two distinct formulations of adversarial attacks.

In order to choose appropriate c, by viewing (4.1.3) as the penalty method, we can
test multiple values for c until we obtain an optimal solution x∗ that satisfies f(x∗) ≤
0. Although this is a simple strategy, it is not guaranteed that such c exists (See
Appendix A.3.2).

Carlini and Wagner [2017] observe that it empirically works well to choose the small-
est c whose optimal solution satisfies f(x + δ∗) = 0. Presumably, they have always
succeeded in eventually finding c such that the resulting optimal solution δ∗ satisfies
f(x + δ∗) = 0. The reason why it is generally sensible to choose a small c is that
large c can drastically distort the landscape of the search space by creating steep hills,
thereby making it more difficult for numerical optimization algorithms to find accurate
approximations to the true optimal solutions.

In [Carlini and Wagner, 2017], the metrics L0, L2, and L∞ are specifically considered.
Different candidates for f are examined, and the best one is selected for each of the L0,
L2, and L∞ distances. In the present project, I will focus on the L2 distance.
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4.2 Loss functions

Carlini and Wagner [2017] examine the following seven loss functions:

f1(x) := lossF,t(x)− 1

f2(x) :=

(
max
i 6=t

Fi(x)− Ft(x)

)+

f3(x) := softplus

(
max
i 6=t

Fi(x)− Ft(x)

)
− ln 2

f4(x) := (0.5− Ft(x))+

f5(x) := ln(2− 2Ft(x))

f6(x) :=

(
max
i 6=t

Zi(x)− Zt(x)

)+

f7(x) := softplus

(
max
i 6=t

Zi(x)− Zt(x)

)
− ln 2.

Here, (x)+ is short for max(x, 0), which is equivalent to ReLU, and softplus(x) :=
ln(1 + ex), which resembles ReLU. lossF,t(x) is the cross entropy loss function of x with
the correct label being t; i.e. lossF,t(x) := − log2(Ft(x)). Some of these formulas are
adjusted by the addition of constants such that C(x + δ) = t ⇐⇒ f(x + δ) ≤ 0 are
satisfied.

In f1, f4, and f5, Carlini and Wagner [2017] seem to assume that the confidence
values for correct labels must be at least 1

2 whenever prediction is correct. However,
if n > 2 (i.e. the number of classes is more than 2), the confidence value for a correct
label can be strictly less than 1

2 whilst still being the highest confidence value. Thus,
C(x+ δ) = t ⇐⇒ f(x+ δ) ≤ 0 does not always hold in f1, f4, and f5.

Nonetheless, all of f1, f4, and f5 measure a deviation from the correct prediction,
each in a different way. Thus, they can be properly interpreted as loss functions.

4.3 Adversarial attacks and WRM

This section proves that WRM can be viewed as adversarial training where adversarial
examples are computed using the adversarial attacks of [Carlini and Wagner, 2017]. As
explained in [Staib and Jegelka, 2017], the original formulation of DRO in (3.1.1) can be
approximated by (3.2.2), which is reproduced below for convenience:

MIX := max
x̃1,...,x̃n

1

n

n∑
i=1

`(θ, x̃i, y)

subject to
1

n

n∑
i=1

d(x̃i, xi)
p ≤ εp.
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Further, Lagrangian relaxation can transform MIX into

1

n

n∑
i=1

max
x̃i
{`(θ, x̃i, yi)− λd(x̃i, xi)

p}. (4.3.1)

This coincides with WRM proposed in [Sinha et al., 2018]. In their formulation, the
inner maximization problem of DRO can be approximated by

E
(x,y)∼Dn

[φλ(θ, x, y)], (4.3.2)

where
φλ(θ, x, y) = sup

(x′,y′)
{`(θ, x′, y′)− λc((x, y), (x′, y′))}. (4.3.3)

Here, c : (X × Y)× (X × Y) → R≥0 ∪ {∞} is a cost function. Since Sinha et al. [2018]
use the W1 distance instead of the general Wp distance, we have c((x, y), (x′, y′)) =
d(x, x′)p+∞·1y 6=y′ . It is straightforward to see that (4.3.1) is an empirical approximation
of (4.3.2).

Now we can notice the similarity between (4.1.3) and (4.3.3) (or (4.3.1)). To compare
these two expressions more easily, we rename variables and modify the objective of
optimization (i.e. minimization or maximization) in (4.1.3). As a result, (4.1.3) becomes

max
x̃i
{`(θ, x̃i, yi)− λd(x̃i, xi)}. (4.3.4)

Here, ` in (4.3.4) corresponds to f in (4.1.3).
For (4.3.3), since c returns ∞ whenever y 6= y′, we obtain

max
x̃i
{`(θ, x̃i, yi)− λc(x̃i, xi)}. (4.3.5)

Thus, if we view d in (4.3.4) as a cost function, (4.3.4) and (4.3.5) are identical. Indeed,
the L2-adversarial attack in [Carlini and Wagner, 2017] uses (x, x′) 7→ ‖x− x′‖22, which
is exactly what Sinha et al. [2018] use for c as well. Therefore, the inner maximization
problem of WRM (i.e. (4.3.3)) is identical to the adversarial attack’s formulation in
[Carlini and Wagner, 2017] (i.e. (4.1.3)).

A crucial difference between WRM and the adversarial attack setting of [Carlini
and Wagner, 2017] is in the original problems that (4.3.4) and (4.3.5) seek to solve. In
[Carlini and Wagner, 2017], the problem of crafting adversarial examples is originally
formulated as (4.1.1), which can be generalized to

minimize c(x̃, x)

such that `0,1(θ, x̃, y) = 1,
(4.3.6)

where c is a cost function and `0,1 is the one-zero loss function (which is defined in
(3.3.1)).
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On the other hand, for DRO, the aim of (4.3.5) is to solve

max
x̃1,...,x̃n

1

n

n∑
i=1

`0,1(θ, x̃i, yi)

subject to
1

n

n∑
i=1

c(x̃i, xi) ≤ εp.
(4.3.7)

Comparing (4.3.6) and (4.3.7), we can see that the former seeks to optimize the cost
function (that is, perturbation size), whilst the latter seeks to optimize the loss.

Due to this theoretical connection between WRM and the adversarial attacks in
[Carlini and Wagner, 2017], it is reasonable to expect the optimal loss function(s) iden-
tified by Carlini and Wagner [2017] for adversarial attacks to be optimal in the setting
of WRM as well. This is based on the assumption that if we can find better adversar-
ial examples for WRM’s inner maximization problem, the robustness of WRM-trained
neural networks will be higher.

4.4 Empirical evaluation of loss functions in adversarial attacks

Carlini and Wagner [2017] use Adam as an optimizer because they find it to converge
more quickly than stochastic gradient descent (SGD) and the SGD’s variant with mo-
mentum. To solve the optimization problem (4.1.3), they test multiple values of the
Lagrangian parameter c. They conduct binary search (on log scale) on c ∈ [10−2, 102]
using 20 iterations, and for each fixed value of c, they run 104 iterations of gradient
descent.

As for datasets, they use MNIST and CIFAR-10, both of which produce identical
results on the relative performance of loss functions. For experiment results, they report

• the quality of adversarial examples in terms of the size of δ;

• the success rate of adversarial attacks.

Regarding loss functions for the L2-norm based attacks, [Carlini and Wagner, 2017]
report that the best one is f6, which consistently performs well in most cases. Although
they also claim that the worst-performing loss function is f1, it does not seem to be
uniquely the worst. For example, f1 can always find adversarial examples, whereas f2,
f3, and f4 do not. In this regard, f1 is not the worst-performing.
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Chapter 5

Empirical studies

This chapter describes the experiments1I conducted for this project. The first section
provides an overview of the experiment setup used in all experiments, and subsequent
sections present experiment results.

The experiments conducted for this project fall into two categories. The first category
(Section 5.2) is the experiments conducted with the goal of reproducing some of the
experiment results in [Staib and Jegelka, 2017; Sinha et al., 2018] (in a similar but not
identical setting). The second category (Section 5.3) is the experiments for identifying
an optimal loss function for distributionally robust optimization (DRO).

5.1 Basic experiment setup

Dataset Since both [Staib and Jegelka, 2017] and [Sinha et al., 2018] use the MNIST
dataset, I will use it as well. This contains 6 · 104 images of (black-white) hand-written
digits for training and 104 images for testing, where each image has the dimension of
28×28. In many major deep learning frameworks, each MNIST image is represented by
a vector from [0, 1]1×28×28 (to be more precise, each pixel value should be a multiple of

1
255 , but this detail is inconsequential).

Neural network In [Staib and Jegelka, 2017] and [Sinha et al., 2018], the same convo-
lutional neural network (CNN) architecture is used to empirically evaluate adversarial
training algorithms. The layer structure of the CNN used in [Staib and Jegelka, 2017;
Sinha et al., 2018] is presented in Table 5.1. It is not important to know the details
of convolutional neural layers and what kernels mean—Table 5.1 is provided only for
interested readers.

All convolutional layers use the same activation function, which is either the rectified
linear unit (ReLU) or the exponential linear unit (ELU). The linear layer uses softmax

1The source code for my experiment is available at https://github.com/LongPham7/

Distributionally-Robust-Optimization.
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Layer type Output shape Kernel size Stride size

Input (1, 28, 28) N/A N/A
2D convolutional (64, 14, 14) (8, 8) (2, 2)
2D convolutional (128, 5, 5) (6, 6) (2, 2)
2D convolutional (128, 1, 1) (5, 5) (1, 1)

Linear (10) N/A N/A

Table 5.1: Architecture of the neural network in [Staib and Jegelka, 2017] and [Sinha
et al., 2018]

for activation. The learnable parameters in neural networks are initialized using the
Glorot/Xavier method.

Regarding activation functions, ELU is recommended by Sinha et al. [2018] due to
its smoothness, which is necessary for the theory behind their DRO algorithm (See
Section 3.2.4). Staib and Jegelka [2017], on the other hand, use ELU only for WRM and
use ReLU for all the other training procedures.

Programming environment The code for experiments is written in Python, which is a
predominant programming language in machine learning and data science. As for deep
learning frameworks for Python, I use PyTorch, which is one of the major deep learning
frameworks along with TensorFlow. The primary reason for selecting PyTorch is that it
is easier to learn than TensorFlow.

For adversarial attacks, I use an open-source library developed by IBM and called
ART (adversarial robustness toolbox) [Nicolae et al., 2018].

Training algorithms The training algorithms for neural networks that we study in this
chapter include empirical risk minimization (ERM) and three DRO algorithms: distribu-
tional PGD, FWDRO, and WRM. With regard to DRO, I will focus on the W2 distance
with the underlying distance function of L2. The hyper-parameters for ERM and the
three DRO algorithms are summarized in Table 5.2.

Hyper-parameters ERM
Distributional

PGD
FWDRO WRM

Adversarial budget ε = 0 ε = 2.8 ε = 2.8 γ ∈ {0.0001, . . . , 3.0}
Batch size 128 128 128 128

Epochs 25 25 25 25
Iterations for inner

problems
N/A 15 15 N/A

Activation ReLU/ELU ReLU/ELU ReLU/ELU ReLU/ELU
Optimizer Adam/SGD Adam Adam Adam

Loss function N/A {f1, . . . , f7} {f1, . . . , f7} {f1, . . . , f7}

Table 5.2: Hyper-parameters of ERM and DRO algorithms
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In this table, the row “iterations for inner problems” refers to the number of itera-
tions for solving the inner maximization problem of (3.1.1). This is only applicable to
distributional PGD and FWDRO.

The reason for selecting ε = 2.8 for distributional PGD and FWDRO is that if each
pixel in an MNIST image (whose dimension is 28 × 28) is perturbed by 0.1, then the
overall size of a perturbation in the L2 norm (or more precisely L2,2 matrix norm) is 2.8.
The perturbation size of 0.1 for each pixel comes from [Staib and Jegelka, 2017], where
the W2 distance and the underlying distance function of L∞ (as opposed to L2 as in this
project) are used.

Details on the range of γ for WRM and definitions of f1, . . . , f7 will be given in later
sections (See Sections 5.2.2 and 5.3).

Adversarial attacks The adversarial attacks we use to evaluate the robustness of neural
networks are FGSM and PGD. In fact, I have also experimented with the use of distribu-
tional PGD to produce distributional adversarial perturbations (as opposed to pointwise
perturbations). In this attack, we use PGD to solve (3.2.3). However, it does not per-
form well in terms of attack success rates. This is discussed in detail in Section D.1.
Table 5.3 summarizes the hyper-parameters of FGSM and PGD attacks.

Hyper-parameters FGSM PGD

Norm L∞, L2 L∞, L2

Adversarial budget ε ∈ [0, 0.4], [0, 4.0] ε ∈ [0, 0.4], [0, 4.0]
Iterations N/A 15

Loss function cross entropy cross entropy

Table 5.3: Hyper-parameters of adversarial attacks

Regarding the adversarial budget of FGSM and PGD, the range of ε is [0, 0.4] for
the L∞ norm and [0, 4.0] for the L2 norm. For both ranges, twenty-one evenly separated
samples of ε are collected.

To evaluate the robustness of neural networks, for each fixed value of ε, the entire
test dataset of MNIST, which contain 10,000 images, are used to generate adversarial
examples. The number of misclassified examples are calculated, and the proportion of
this to the total number of images in the test data is referred to as a “adversarial attack
success rate”. A line graph of adversarial attack success rates at various values of ε is
then created.

Note that those adversarial examples whose original images are already misclassified
also count towards an adversarial attack success rate. In fact, because the the test
accuracy (in the absence of adversarial perturbations) of neural networks is usually very
close to 1, it does not matter whether we count those adversarial examples whose original
images are misclassified or not in the calculation of adversarial attack success rates.
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5.2 Reproducing previous empirical studies

In this section, the experiments for reproducing some of the experiment results in [Staib
and Jegelka, 2017; Sinha et al., 2018] are described. Specifically, the following three
experiments are conducted:

1. An experiment to test the robustness of ERM-trained neural networks, that is,
neural networks that do not go through adversarial training.

2. An experiment to determine an optimal γ in WRM such that subsequent experi-
ments can focus on this optimal γ.

3. An experiment to determine the best-performing DRO algorithm among distribu-
tional PGD, FWDRO, and WRM.

5.2.1 Empirical risk minimization (ERM)

Overview

This experiment aims to reproduce the performance of ERM-trained neural networks
reported in [Staib and Jegelka, 2017] and [Sinha et al., 2018]. Since Staib and Jegelka
[2017] use ReLU in their neural networks and Sinha et al. [2018] use ELU, I have tested
both activation functions.

Additionally, with respect to optimizers, Staib and Jegelka [2017] use SGD in their
experiments (apart from WRM, for which they use Adam). On the other hand, Sinha
et al. [2018] use Adam in their experiments according to their source code2. However,
their source code only contains the code for WRM and does not contain any code for
other training algorithms (e.g. ERM). Hence, it is unknown what optimizer they used
to generate the data for ERM-trained neural networks presented in their paper. Thus,
for completeness, I have tested both Adam and SGD.

Results

The robustness results of ERM-trained neural networks are presented in Figures 5.1 and
5.2.

To evaluate robustness, adversarial attacks (FGSM or PGD) are mounted using all
of the 10000 test images from MNIST. The success rates of the adversarial attacks are
then used as a measure of robustness.

Figure 5.1 is for the L∞ norm, and Figure 5.2 is for the L2 norm. The graphs on the
left hand side are for FGSM, and those on the right hand side are for PGD.

Looking at Figures 5.1 and 5.2, we can make the following observations:

1. SGD generally produces less robust neural networks than Adam.

2The source code for WRM by Sinha et al. [2018] is publicly available at https://github.com/

duchi-lab/certifiable-distributional-robustness.
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Figure 5.1: Robustness of ERM-trained models with the L∞ norm

Figure 5.2: Robustness of ERM-trained models. The L2 norm is used in adversarial
attacks.

2. If SGD is used in training, there is no significant difference in robustness between
ReLU and ELU.

3. If Adam is used, ELU produces more robust neural networks than ReLU, although
the prediction accuracy on the test data (i.e adversarial attack with the budget of
0) is slightly but consistently higher with ReLU than with ELU.

These robustness results are consistent with what Staib and Jegelka [2017] (c.f. Fig-
ure 1 (a) and Figure 3) and Sinha et al. [2018] (c.f. Figure 3) report. Moreover, I deduce
that Sinha et al. [2018] use SGD for ERM. In Figure 3 of [Sinha et al., 2018], the adver-
sarial attack success rate of PGD with the L2 norm on an ERM-trained neural network
is close to 1 when ε = 2.0, and according to my experiment results, this cannot be the
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case if Adam is used.

5.2.2 Optimal value of γ for WRM

Overview

The formulation of WRM developed by Sinha et al. [2018] contains a Lagrangian pa-
rameter denoted by γ. As explained in Section C.2, γ and ε are inversely related by
(C.2.3). However, we do not have a closed-form formula available to compute a corre-
sponding value of ε from a given value of γ. In this experiment, I test different values of
γ ∈ {0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0} for two purposes:

1. to select an optimal γ to be used in subsequent experiments;

2. to check whether the optimal value of γ = 0.001 reported by Staib and Jegelka
[2017] is plausible.

In line with the experiment setup of [Sinha et al., 2018], Adam is used in this exper-
iment to train neural networks.

Results

The results for FGSM attacks with the L∞ and L2 norms are displayed in Figures 5.3
and 5.4, respectively. The results for PGD are available in Figures D.2 and D.3, both of
which are in Appendix D.2.

Figure 5.3: Robustness of WRM-trained models to FGSM with the L∞ norm

The following observations can be made on these results:

1. Figure 5.3 suggests that although γ = 1.0 results in the highest robustness for
some regions in ε, the difference is marginal. Likewise, in Figure D.2, all values of
γ produce similar results, and γ = 1.0 is not optimal by any means. Thus, if we
use the L∞ norm, no value of γ uniquely stands out.
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Figure 5.4: Robustness of WRM-trained models to FGSM with the L2 norm

2. Figure 5.4 suggests that γ = 1.0 is markedly optimal in terms of the resulting
robustness when ε is sufficiently large. The same remark applies to Figure D.3.
However, when ε is small, γ = 1.0 is not optimal. This is in accord with the finding
by Tsipras et al. [2019] that robustness and accuracy may be conflicting.

In respect of consistency with the results obtained by Staib and Jegelka [2017] and
Sinha et al. [2018], we remark:

1. Staib and Jegelka [2017] obtained the optimal value of γ = 0.001. They use PGD
with the L∞ norm (equivalently, IFGSM) to evaluate robustness, and Figure D.2
shows that all neural networks exhibit closely clustered lines of robustness. Thus,
their result of γ = 0.001 being optimal is plausible.

2. Figure 1 (a) in [Staib and Jegelka, 2017] contains the robustness result for a WRM-
trained model with γ = 0.001, where the attack method is IFGSM (i.e. PGD with
the L∞ norm). Their line graph looks similar to Figure D.2. One difference is that
at ε = 0.1, Figure D.2 exhibits a higher attack success rate (i.e. less robustness)
than Figure 1 (a) in [Staib and Jegelka, 2017].

3. Figure 2 in [Staib and Jegelka, 2017] displays the robustness of a WRM-trained
model, where γ = 0.001, with respect tot PGD with the L2 norm. Again, their
line graph looks similar to Figure D.2. However, at ε = 1.0, their graph indicates
the attack success rate is less than 0.1, whereas Figure D.2 tells us that the attack
success rate is higher than 0.1.

4. Figures 6 (c) and (d) in [Sinha et al., 2018], where they use γ = 0.37, give slightly
lower attack success rates than Figures D.3 and D.2, respectively. Nonetheless,
overall Figure 6 of [Sinha et al., 2018] is consistent with my experiment results.
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5.2.3 Comparison of DRO-trained models

Overview

This experiment aims to compare three DRO algorithms, distributional DRO, FWDRO,
and WRM, where we use the W2 distributional distance and the L2 distance for the
underlying metric.

I will use γ = 1.0 for WRM since it is uniquely optimal if we use the L2 norm in
FGSM and PGD attacks. Also, γ = 1.0 does not significantly deviate from the optimal
value when FGSM and PGD use the L∞ norm. Notice that γ = 1.0 is larger than
γ = 0.37, which Sinha et al. [2018] use for MNIST. Thus, there should not be an issue of
γ = 1.0 being too small and consequently violating an underlying assumption of WRM.

Now that we have selected an optimal γ, we are ready to compare three DRO al-
gorithms: WRM, the Frank-Wolfe method, and PGD (which is only valid for the W2

distance with the underlying distance metric of L2). For the FW method and PGD, I
use ε = 2.8 in training.

Results

The results are presented in Figures 5.5 and 5.6.

Figure 5.5: Robustness of models trained by various DRO algorithms. The L∞ norm is
used in adversarial attacks. The label “Lag” refers to the Lagrangian relaxation based
DRO, that is, WRM.

Irrespective of the norm in use, the following trend emerges: the Frank-Wolfe method
with ReLU is the most robust if ε is sufficiently small; otherwise, WRM with ELU is the
most robust.

This experiment result is consistent with what Staib and Jegelka [2017] report: FW-
DRO is better than WRM for all ε ∈ [0, 0.20] in the IFGSM attack (i.e. PGD with the
L∞ norm). Note that their experimental setup differs from mine in that they use the
underlying distance function of L∞, whilst I use the L2 distance.

36



Figure 5.6: Robustness of models trained by various DRO algorithms. The L2 norm is
used in adversarial attacks. The label “Lag” refers to the Lagrangian relaxation based
DRO, that is, WRM.

It is surprising that distributional PGD does not perform as well as other DRO
algorithms because intuitively, distributional PGD reflects the theoretical formulation of
DRO (See (3.2.2)) the most faithfully among the three DRO algorithms. In contrast to
distributional PGD, FWDRO employs a more complicated optimization method (viz. the
Frank-Wolfe method) so that it can deal with not only the L2 norm but also the L∞
norm for the underlying distance function. Likewise, WRM makes use of Lagrangian
relaxation, which is an approximation technique.

Further, the relatively poor performance of distributional PGD as a training algo-
rithm ties in with the poor performance of distributional PGD as an adversarial attack
(See Appendix D.1).

5.3 Comparison of loss functions

This section compares loss functions in terms of the robustness of the resulting neural
networks. The following DRO settings are considered:

1. WRM with ReLU and γ = 1.0;

2. FWDRO with ReLU and ε = 2.8;

3. Distributional PGD with ReLU and ε = 2.8.

The loss functions I examine are obtained by dropping constant terms from the seven
loss functions in [Carlini and Wagner, 2017] listed in Section 4.2. As a result, the loss
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functions become:

f1(x) := lossF,t(x)

f2(x) :=

(
max
i 6=t

Fi(x)− Ft(x)

)+

f3(x) := softplus

(
max
i 6=t

Fi(x)− Ft(x)

)
f4(x) := (0.5− Ft(x))+

f5(x) := log2(2.125− 2Ft(x))

f6(x) :=

(
max
i 6=t

Zi(x)− Zt(x)

)+

f7(x) := softplus

(
max
i 6=t

Zi(x)− Zt(x)

)
.

The original paper defines f5(x) := ln(2 − 2Ft(x)). However, I use f5 := log2(2.125 −
2Ft(x)) instead so as to avoid arithmetic overflow (the base is changed from e to 2 for
convenience). The original function ln(2− 2Ft(x)) approaches −∞ as Ft(x) approaches
1. Consequently, we obtain an NaN for the loss, which then leads to all weights in a
neural network becoming NaN’s.

5.3.1 WRM-trained neural networks

Overview

This section presents the experiment that compares the performance of f1, . . . , f7 on
WRM. In addition to the primary purpose of identifying an optimal loss function, this
experiment serves another purpose: to check if the experiment results of [Carlini and
Wagner, 2017] apply to not only adversarial attacks but also adversarial training (specif-
ically WRM). As noted at the end of Section 4.3, WRM is essentially adversarial training
where the inner maximization problem (i.e. the problem of finding adversarial examples)
is solved by the adversarial attacks in [Carlini and Wagner, 2017]. Hence, it is reasonable
to expect that the results of [Carlini and Wagner, 2017] will transfer to the setting of
WRM.

There are three differences between the experiment setup in my experiment and that
in [Carlini and Wagner, 2017]:

1. The Lagrangian parameter in WRM is fixed (my experiment uses γ = 1.0), whilst
in the adversarial attacks of [Carlini and Wagner, 2017], we ought to first search
for an optimal Lagrangian parameter (i.e. c in (4.1.3)).

2. Carlini and Wagner [2017] use a different architecture of neural networks. Their
neural networks have a couple of max pooling layers and more convolutional layers
than the architecture used in [Staib and Jegelka, 2017] and [Sinha et al., 2018].

38



3. Carlini and Wagner [2017] consider targeted adversarial attacks, whilst in WRM,
the inner maximization problem of DRO is solved using untargeted attacks.

4. Carlini and Wagner [2017] evaluate loss functions mainly by the average size of
perturbations rather than adversarial attack success rates. This is because their
adversarial attack problem given in (4.1.1) is an optimization problem for the
perturbation size.

The activation function for neural networks in this experiment is ReLU. Since the
experiment results in Section 5.2.3 indicate that ReLU and ELU yield comparable ro-
bustness, I could use ELU instead. However, in view of the fact that one purpose of this
experiment is to see if the experiment results of Carlini and Wagner [2017] carry over
to the setting of WRM, I decided to use ReLU because this is what Carlini and Wagner
[2017] use.

Carlini and Wagner [2017] report that f6 is the best-performing loss function. Hence,
if their results carry over from adversarial attacks to adversarial training despite the
above two differences in the experimental setups, f6 should also be the best-performing
loss function.

Results

As indicated by Figures 5.7 and 5.8, f6 is not an optimal loss function.

Figure 5.7: Robustness of WRM-trained neural networks with various loss functions.
The L∞ norm is used in adversarial attacks.

We can make the following remarks on these graphs:

1. Regardless of whether we use the L∞ or L2 norm in adversarial attacks, f5 is
uniquely the best-performing loss function. When the L2 norm is used in attacks,
the test accuracy of f5 is worse than those of other loss functions. However, as
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Figure 5.8: Robustness of WRM-trained neural networks with various loss functions.
The L2 norm is used in adversarial attacks.

soon as we start introducing adversarial perturbations to input images, f5 quickly
emerges with the highest degree of robustness to adversarial perturbations.

2. As for the next best-performing loss functions, if we use the L∞ norm in adversarial
attacks (See Figure 5.7), f1 and f3 are close contenders. For the L2 norm, on the
other hand, f3 is uniquely the second best-performing,

3. The performance of f6 is fairly poor—in fact, it is one of the worst-performing loss
functions.

In conclusion, of the seven loss functions tested in the experiment, f5 yields the most
robust neural networks. Also, f1 and f3 perform fairly well, whereas f6 performs poorly.
The high degree of robustness arising from f5 ties in with the good performance of f5

reported in [Carlini and Wagner, 2017] (although their experiment results indicate f6 is
marginally better than f5). However, the results on the performance of f1 and f6 in my
experiment stand in contrast with the results in [Carlini and Wagner, 2017] since they
conclude that f1 is one of the worst-performing and f6 is the best-performing.

5.3.2 FW-trained neural networks

This section empirically compares f1, . . . , f7 on FWDRO. The activation function for
this experiment is ReLU because the results in Section 5.2.3 show that overall ReLU
gives more robustness than ELU when FWDRO is used.

The results are displayed in Figure 5.9 and 5.10.
We can observe the following:

1. Irrespective of adversarial attack types and norms, f1 gives the highest degree of
robustness. The closest contender of f1 is f7.
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Figure 5.9: Robustness of FW-trained neural networks with various loss functions. The
L∞ norm is used in adversarial attacks.

Figure 5.10: Robustness of FW-trained neural networks with various loss functions. The
L2 norm is used in adversarial attacks.

2. Some loss functions exhibit lines that are nearly horizontal. f2 and f5 result
in considerably low test accuracy that is very close to 0 even in the absence of
adversarial perturbations; hence, there is no room for an increase in adversarial
attack success rates. On the other hand, for f6 with the L2-FGSM attack, the
line is nearly horizontal even though there is some room for an increase in the
adversarial attack success rate. This implies that f6 can provide robustness to
neural networks. However, since f6 gives an unacceptably low test accuracy, this
loss function is not recommendable in practice.

3. It is surprising that f5, which is the best-performing loss function in WRM (Sec-
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tion 5.3.1), is completely useless when used in FWDRO. It is unknown what causes
the poor performance of f5 in FWDRO.

5.3.3 PGD-trained neural networks

In this section, I test the performance of f1, . . . , f7 on distributional PGD. The activation
function is again ReLU, for Section 5.2.3 indicates that ReLU gives more robustness than
ELU.

The results are displayed in Figure 5.11 and 5.12.

Figure 5.11: Robustness of PGD-trained neural networks with various loss functions.
The L∞ norm is used in adversarial attacks.

Figure 5.12: Robustness of PGD-trained neural networks with various loss functions.
The L2 norm is used in adversarial attacks.

We can make the following observations:
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1. When the L2 norm is used in adversarial attacks, f3 is markedly the best-performing
loss function. However, if L∞ norm is used, although f3 is one of the three best-
performing loss functions, it is not uniquely the best. Other contenders are f1 and
f7. Speaking of f1, when the L2 norm is used in adversarial attacks, although
f1 clearly does not give as much robustness as f3, f1 is nonetheless the second
best-performing loss function.

2. As in the experiment on FWDRO (Section 5.3.2), f5 exhibits an unacceptably low
test accuracy and a nearly horizontal line of adversarial attack success rates. This
is true for both of FGSM and PGD and both of the L∞ and L2 norms.

43



Chapter 6

Conclusion

6.1 Conclusion

In this work, I have identified two issues with the current state of research on DRO (Sec-
tion 3.3). I have also proved that WRM, which is a distributionally robust optimization
(DRO) algorithm by Sinha et al. [2018], can be viewed as an algorithm for adversar-
ial training where adversarial examples are devised using the formulation of adversarial
attacks in [Carlini and Wagner, 2017] (Section 4.3).

Furthermore, I have empirically studied the relationship between loss functions and
the robustness of neural networks in the same setting of DRO as [Staib and Jegelka,
2017; Sinha et al., 2018] (Chapter 5). In these empirical studies, I have tested three DRO
algorithms (i.e distributional PGD, FWDRO, and WRM), evaluating the performance
of the seven loss functions used in [Carlini and Wagner, 2017] and identifying an optimal
loss function for each DRO algorithm. In addition, I have conducted experiments in
order to reproduce part of the experiment results reported by Staib and Jegelka [2017]
and Sinha et al. [2018], confirming that their results generally agree with my experiment
results.

Regarding the relationship between loss functions and the robustness of neural net-
works trained by DRO, the key takeaways are:

1. Optimal loss functions are not universal; rather, they are specific to settings and
hyper-parameters. Concretely, through the experiment results of this project, we
know that optimal loss functions depend on DRO algorithms and that an opti-
mal loss function for one DRO algorithm may perform poorly on another DRO
algorithm.

2. As far as the three DRO algorithms examined in this project and the specific
neural network architecture used in this project are concerned, the cross entropy
loss function, which is widely used, generally produces acceptable performance
with respect to the robustness of neural networks.
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6.2 Future work

Potential avenues for future research are discussed below.

Dependency of optimal loss functions on neural network architecture The fact that [Carlini
and Wagner, 2017] and this project yield different optimal loss functions suggests that
optimal loss functions in one setting (whether it is for adversarial attacks or adversarial
training) do not necessarily carry over to other settings. The differences between the
setting of [Carlini and Wagner, 2017] and this project’s settings are listed in Section 5.3.1.
This motivates further research on dependencies of optimal loss functions in adversarial
attacks/training; e.g. architecture of neural networks.

Development of distributional adversarial attacks As explained in Section D.1, if we use
distributional PGD to launch distributional adversarial attacks, the algorithm has a
considerably lower attack success rate than conventional PGD. One direction for fu-
ture research is to investigate why distributional PGD is less effective than (pointwise)
PGD. This research direction is worthwhile because as of now, DRO algorithms are
tested against pointwise adversarial attacks, which DRO is not meant to deal with (See
Section 3.3). To evaluate DRO algorithms in a fair manner, it is required to establish
methodologies for “distributionally” adversarially perturbing probability distributions.

Investigation into loss functions with low accuracy In the experiment results of Sec-
tions 5.3.2 and 5.3.3, we observe that some loss functions produce nearly horizontal lines
of high adversarial attack success rates across the whole range of ε (including ε = 0).
What is worth noting is that f5, which performs well in WRM, yields a significantly low
test accuracy at ε = 0 if we use FWDRO. It is therefore interesting to examine why f5,
for instance, does not perform well in FWDRO.
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Appendix A

Fundamentals of optimization

A.1 Distances, Lipschitz continuity, and norms

This section introduces formal definitions of three notions that come up often in the
literature of deep neural networks and adversarial perturbations: distances, Lipschitz
continuity, and norms.

A.1.1 Distances and Lipschitz continuity

Definition A.1.1 (Metric space). Given a set A and a function dA : A × A → R, the
pair (A, dA) is a metric space if and only if the following properties are satisfied:

∀x, y.dA(x, y) ≥ 0

∀x, y.dA(x, y) = 0 ⇐⇒ x = y

∀x, y.dA(x, y) = dA(y, x)

∀x, y, z.dA(x, z) ≤ dA(x, y) + dA(y, z).

The function dA is called a metric/distance.

Definition A.1.2 (Lipschitz continuity). Consider a function f : X → Y , where
(X, dX) and (Y, dY ) are metric spaces. The function f is said to be Lipschitz continuous
(or K-Lipschitz continuous) if and only if there exists a real constant K ≥ 0 such that

dY (f(x1, x2)) ≤ KdX(x1, x2)

for all x1, x2 ∈ X. K is called a Lipschitz constant, and the smallest such K, denoted
by Kbest, is called the best Lipschitz constant.

Intuitively, Lipschitz continuity means that the function’s output cannot change at
an arbitrarily large rate with respect to the change in the function’s input. If a function
is differentiable at all points in the domain, then its Lipschitz constant is an upper
bound of the function’s gradient. For instance, f : R>0 → R defined as f := 1

x is not
Lipschitz continuous, since its derivative on the interval (0,∞) cannot be bounded by
any constant.
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A.1.2 Norms

Vectors are ubiquitous in this field of artificial neural networks, serving as tools to express
weights and states of neural networks. The definition of metrics allows many distinct
distances to be defined, whether we deal with matrices or other mathematical entities.
If we focus on vector spaces, their metrics are usually defined using the notion of norms,
which formalizes the intuitive concept of “length” of a vector.

As we mostly work with real numbers as opposed to complex numbers in artificial
neural networks, it suffices to consider vector spaces over the real field. Henceforth, I
only consider vector spaces over the real field.

The following definitions for bilinear forms, positive definiteness, and inner products
are taken from the lecture notes on linear algebra at the University of Oxford in 2014.

Definition A.1.3 (Bilinear form). Given a vector space V over the real field, a function
θ : V × V → R is a bilienar form if and only if θ satisfies

θ(λu+ µv,w) = λθ(u,w) + µθ(v, w)

θ(u, λv + µw) = λθ(u, v) + µθ(u,w),

where u, v, w ∈ V and λ, µ ∈ R. θ is said to be symmetric if and only if

θ(u, v) = θ(v, u)

for all u, v ∈ V .

Definition A.1.4 (Positive definiteness). A symmetric bilinear form θ on a vector space
V is positive definite if and only if for all u ∈ V we have

θ(u, u) ≥ 0

and
θ(u, u) = 0 ⇐⇒ u = 0

Definition A.1.5 (Inner product). Given a vector space V over the real field, an inner
product on V is defined as a positive definite symmetric bilinear form. In other words,
an inner product on V is 〈·, ·〉 : V × V → R such that the following are satisfied:

1. Positive definiteness: for all v ∈ V , we have 〈u, u〉 ≥ 0 and 〈u, u〉 ⇐⇒ u = 0.

2. Symmetry: for all u, v ∈ V , we have 〈u, v〉 = 〈v, u〉.

3. Linearity: for all u, v, w ∈ V and λ, µ ∈ R, we have 〈λu + µv,w〉 = λ〈u,w〉 +
µ〈v, w〉.

The standard inner product of column vectors is

〈x, y〉 = xᵀy =

D∑
i=1

xiyi,

where x and y have the dimension of D. The same definition applies to row vectors,
with slight modification (i.e. we should have xyᵀ instead of xᵀy).
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Definition A.1.6 (Norm). Given a vector space V over the real field, a function f :
V → R is a norm on V if and only if it satisfies

1. Positive definiteness: f(u) ≥ 0 for all u ∈ V and f(u) = 0 ⇐⇒ u = 0.

2. Homogeneity: f(cu) = |c| f(u) for all c ∈ R and u ∈ V .

3. Triangle inequality: f(u+ v) ≤ f(u) + f(v) for all u, v ∈ V .

We can obtain norms from inner products as stated in the next proposition.

Proposition A.1.1. Given an inner product 〈·, ·〉 on a vector space V , f(u) =
√
〈u, u〉

is a norm.

Some commonly used norms of column/row vectors belong to the class of the Lp
norms, where p ≥ 1 (and it is possible to have p = ∞). If u = (u1, . . . , uD) or u =
(u1, . . . , uD)ᵀ, then its Lp norm is given by

‖u‖p =

(
D∑
i=1

|upi |

) 1
p

.

The L1 norm is also known as the Manhattan distance, and the L2 norm is the
Euclidean distance. Further, we can define the L∞ norm by taking the limit of the Lp
norm as p approaches infinity. This yields

‖u‖∞ = max
1≤i≤D

|ui| .

In a vector space of column/row vectors, the most predominant metric is the Lp
norm of the difference between two input vectors. Formally, this metric is defined as

d(x, y) = ‖x− y‖p .

A.2 Primer on convex optimization

This section reviews some widely deployed gradient descent algorithms for (constrained)
convex optimization. I will begin by introducing key definitions and concepts in convex
optimization to set the stage. The presentation style of this section is attributed to
Bubeck [2015].

A.2.1 Introduction

A convex optimization problem takes the shape of

minimise f(x)

subject to x ∈ X ,
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where the objective function f(x) is convex and X is a convex set. Without loss of
generality, the aim of convex optimization is assumed to be minimizing an objective
function instead of its maximization.

In numerical optimization, one common paradigm is the black-box model, where we
can only retrieve information about individual points of an objective function to be op-
timized. If we only need to access the values of an objective function, this optimization
method is said to be zeroth order. If we additionally need to access gradients of the
objective function (i.e. ∇f(x)), the optimization method is first order. As for the con-
straints specifying feasible regions, in the black-box model, we can assume that they are
known. Alternatively, we can use a more restrictive model in which we only have access
to a separation oracle. A separation oracle tells whether a given point is in the feasible
region or not (and if not, the oracle returns a hyperplane separating the point and the
feasible region).

Another paradigm in numerical optimization is called the structured model, in which
we can access information about the global structure of an objective function. For
instance, in the LASSO problem, the loss function, which is usually the least squared
error, is smooth, whilst the penalty term is not smooth (smoothness will be formally
defined later). By exploiting this structure, we can develop an efficient algorithm to the
LASSO problem.

Convex optimization problems are an important class of optimization problems to
investigate for numerous reasons, a couple of which are

1. Convexity gives rise to some nice properties that are helpful in optimization. One
particularly noteworthy property is that local optima are also global optima. To
check whether a given point is locally optimal, we only need local information.
On the other hand, it is much more difficult to check whether a given point is
globally optimal (under no additional assumptions on the objective function or the
feasible region) if we use the black-box model. By contrast, in convex optimization
problems, finding global optima amounts to finding local optima.

2. Many real-world problems can be formulated (or reformulated) as convex opti-
mization problems.

On the first point, to prove that local optima are global optima in convex optimiza-
tion, we use not only the assumption that f is convex but also the assumption that
X is convex. Thus, in the definition of convex optimization problems, it is essential to
impose the convexity requirement on both objective functions and feasible regions. On
a related note, convex optimization problems are usually assumed to be constrained.
Unconstrained convex optimization can be viewed as constrained convex optimization
problems with the feasible region of Rn, which is indeed convex.

The second point by no means suggests that nonconvex optimization is less prevalent
than convex optimization. The real world also abounds with nonconvex optimization
problems, including deep neural networks. It is possible to borrow algorithms from
convex optimization and apply them to nonconvex optimization to obtain meaningful
results.

49



A.2.2 Projected subgradient descent

In gradient descent-based algorithms for convex optimization, we use gradients to de-
termine the direction in which an objective function decreases. One issue with using
gradients is that they are not well-defined if the objective function is not differentiable.
To sidestep this issue, we define the notion of subgradients, which play the same role as
gradients and can be well-defined even if the objective function is not differentiable.

Definition A.2.1 (Subgradients). Given X ⊆ Rn and f : X → R, g ∈ Rn is a subgra-
dient of f at x ∈ X if and only if for any y ∈ X , we have

f(x)− f(y) ≤ gᵀ(x− y).

The set of subgradients of f at x is denoted by ∂f(x).

The following proposition relates convexity of functions and existence of subgradients:

Proposition A.2.1 (Proposition 1.1 in [Bubeck, 2015]). Consider a convex set X ⊆ Rn
and a function f : X → R. If ∂f(x) 6= ∅ for all x ∈ X , f is a convex function.
Conversely, if f is convex, then for any x in the interior of X , ∂f(x) 6= ∅. Furthermore,
if f is convex and differentiable at x, then ∇f(x) ∈ ∂f(x).

Projected subgradient descent iteratively makes a step towards a minimizer of the
objective function using the following equation:

yt+1 := xt − ηgt
xt+1 := ΠX (yt+1),

where gt ∈ ∂f(xt), ΠX is a projection operator on X , and η is a fixed step size. Pro-
jected gradient descent (PGD) is a variant of projected subgradient descent in which the
objective function is differentiable and hence the gradient ∇f(xt) is used in place of a
subgradient.

The projection operator ΠX is formally defined by

ΠX (x) := arg min
y∈X
‖x− y‖2 .

It is worth observing that we use the Euclidean distance in the definition of project
operators for projected subgradient descent. The reason for using the Euclidean distance
will be revealed later in the convergence proof of projected subgradient descent.

The following property of projection operators will also prove to be useful in the
convergence proof:

Lemma A.2.1 (Lemma 3.1 in [Bubeck, 2015]). Given x ∈ X and y ∈ Rn, we have

(ΠX (y)− x)ᵀ(ΠX (y)− y) ≤ 0.
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Figure A.1: Projection on a convex set

This lemma is illustrated in Figure A.1, where point p is the projection of y on a
convex set. Due to convexity of the set, three points y, p, and x form an angle larger
than or equal to π

2 . Hence, (ΠX (y) − x)ᵀ(ΠX (y) − y), which is the dot product of two
vectors −→xp and −→yp, is smaller than or equal to 0. In addition, for the same reason, we
have ‖ΠX (y)− x‖22 + ‖ΠX (y)− y‖22 ≤ ‖y − x‖

2
2.

The following theorem provides us with a suitable step size and a convergence rate
of projected subgradient descent.

Theorem A.2.1 (Theorem 3.2 in [Bubeck, 2015]). Projected subgradient descent with
the step size of η = R

L
√
t

satisfies

f

(
1

t

t∑
s=1

xs

)
− f(x∗) ≤ RL√

t
,

where L is a Lipschitz constant of f , t is the number of iterations, and R is the radius
(in the Euclidean distance) of a ball that completely contains X . Here, x∗ ∈ X denotes
an optimal value.

Theorem A.2.1 suggests that f
(

1
t

∑t
s=1 xs

)
is a good approximation of f(x∗). Alter-

natively, the final output of projected subgradient descent can be the smallest objective
value that we have computed, namely min{f(xs) | 1 ≤ s ≤ t}. Similarly to Theo-
rem A.2.1, min{f(xs) | 1 ≤ s ≤ t} satisfies

min{f(xs) | 1 ≤ s ≤ t} − f(x∗) ≤ RL√
t
.

A.2.3 Important properties of objective functions

Here, I introduce two properties of objective functions that can speed up convergence
of projected subgradient descent (and more generally gradient descent-based iterative
algorithms for convex optimization problems).

The first property, β-smoothness, is defined below.
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Definition A.2.2. A continuously differentiable function f is said to be β-smooth if
and only if

‖∇f(x)−∇f(y)‖2 ≤ β ‖x− y‖2 .

In words, the gradient of f is β-Lipschitz continuous.

Because different notions of smoothness are utilized in the literature of numerical
optimization, we should be mindful of which definition of smoothness is in use in the
current context. For example, in [Nocedal and Wright, 1999], by smoothness, the authors
mean that the second derivatives exist and are continuous.

In projected subgradient descent, if the objective function is assumed to be β-smooth

as well as convex, the convergence rate improves from O
(

1√
t

)
to O

(
1
t

)
.

The second key property, strong convexity, is defined as follows.

Definition A.2.3. A (differentiable) convex function f : X → R is α-strongly convex if
and only if for any x, y ∈ X

f(x)− f(y) ≤ ∇f(x)ᵀ(x− y)− α

2
‖x− y‖22 .

We can define α-strong convexity even when f is convex but not differentiable. This
is achieved by replacing the gradient ∇f(x) in the above definition with a subgradient
g ∈ ∂f(x).

The following lemma offers an alternative characterization of α-strong convexity:

Lemma A.2.2 (Bubeck [2015]). A convex function f is α-strongly convex if and only
if x 7→ f(x)− α

2 ‖x‖
2
2 is convex.

The above lemma suggests that α is (a lower bound of) a measure of the curvature
of f . To illustrate this, for simplicity, suppose x is a one-dimensional variable, that is, a
scalar. If the second derivative of f is small (i.e. the curvature of f is low), x 7→ f(x)−α

2x
2

remains convex only for small α. Conversely, if f ’s second derivative is large (that is,
f ’s curvature is high), then α can be large before it makes x 7→ f(x)− α

2x
2 nonconvex.

Strong convexity alone improves the convergence rate of projected subgradient de-

scent from O
(

1√
t

)
to O

(
1
t

)
. Moreover, strong convexity combined with smoothness can

further improve the convergence rate [Bubeck, 2015].

A.2.4 Frank-Wolfe algorithm

The Frank-Wolfe algorithm (also known as conditional gradient descent) was first pub-
lished by Frank and Wolfe [1956]. Like projected subgradient descent, the Frank-Wolfe
method uses gradient descent to iteratively make a step towards a minimizer of an ob-
jective function. However, one major difference between them is that the Frank-Wolfe
algorithm does not use projection, for we always stay inside the feasible region X desig-
nated by constraints.
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We assume that f is β-smooth for the Frank-Wolfe method. The iterative update in
the Frank-Wolfe method works by

yt ∈ arg min
y∈X
∇f(xt)

ᵀy

xt+1 := (1− γt)xt + γtyt,

where (γs)s≥1 is a fixed sequence. It is clear that

yt = xt + arg min
α+xt∈X

∇f(xt)
ᵀα.

The optimal value for α has the longest component along the descent direction (that is,
the opposite of the directional derivative) of f at xt. Essentially, this step can be regarded
as finding an optimal point (within X ) of the linear approximation to f . Computing yt
amounts to solving a linear optimization problem (note that only the objective function
is linear; the constraint is not necessarily linear), which in some cases is computationally
more tractable than computing projection.

The Frank-Wolfe method then selects a point xt+1 located somewhere between xt
and yt. In order for the algorithm to work properly, xt in the first iteration (i.e. x0 or
x1, depending on the starting index) must be drawn from X . The first xt is usually
randomly drawn from X .

With regard to the sequence (γs)s≥1, there are various rules for determining xt+1

from xt and yt. One natural choice is to compute γs = arg minγ∈[0,1] f(xs + γ(ys − xs)),
and this scheme is known as line search. Another choice is to use γs = 2

s+1 for 1 ≤ s ≤ t.
In this case, the convergence rate is given by the following theorem.

Theorem A.2.2 (Theorem 3.8 in [Bubeck, 2015]). Fix a norm ‖·‖. Let f be convex
and β-smooth with respect to the norm ‖·‖. If R = supx,y∈X ‖x− y‖ and γs = 2

s+1 for
1 ≤ s ≤ t, then for any t ≥ 2, we have

f(xt)− f(x∗) ≤ 2βR2

t+ 1
.

In this theorem, the β-smoothness with respect to an arbitrary norm ‖·‖ is defined
by

‖∇f(x)−∇f(y)‖∗ ≤ β ‖x− y‖ ,

where ‖·‖∗ is the dual norm; i.e. ‖g‖∗ := supx∈Rn:‖x‖≤1 g
ᵀx. For instance, the dual norm

of the Lp norm is the Lq norm, where 1
p + 1

q = 1 (if one of p and q is 1, the other takes
the value of ∞).

In comparison with projected subgradient descent, if f is assumed to be convex and β-
smooth, both optimization methods have the convergence rate of O

(
1
t

)
. One advantage

of the Frank-Wolfe method over projected subgradient descent is that the former does
not require projection and instead uses a linear minimization oracle over X (i.e. an
algorithm to solve a linear optimization problem with the feasible region being X ). In
many applications in machine learning, it is easier to solve linear optimization problems
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than computing projection because the constraints that specify feasible regions are well-
structured. This is why the Frank-Wolfe method has recently gained more popularity in
the machine learning community [Lacoste-Julien, 2016; Reddi et al., 2016].

A.2.5 Stochastic gradient descent and coordinate descent

In this section, I briefly introduce two techniques to reduce the amount of computation
in each iteration of gradient-based optimization methods (e.g. projected subgradient
descent and the Frank-Wolfe method). Since they specify how to reduce the amount of
computation in each iteration rather than in what direction to make a step or how large
the step size should be, these techniques are orthogonal to convex optimization methods.
Hence, we can combine these techniques with any iterative convex optimization method
(although the convergence analysis may need to be carried out for each individual case).

The first technique works by computing an approximation of a subgradient whose
expected value (when seen as a random variable) is the true subgradient. If we use
this technique in projected subgradient descent, the resulting optimization algorithm
is known as stochastic gradient descent (SGD). In [Bubeck, 2015], SGD is studied in
the context of constrained convex optimization problems, but in other sources, SGD is
presented in the context of unconstrained convex optimization problems.

In many applications in machine learning, an objective function to be optimized is in
the form of

∑n
i=1 f(xi), where f is some function (e.g. composition of a neural network

and a loss function) and xi are training examples. When n is large, it is time-consuming
to compute the gradient of the objective function by summing all the gradients of f(xi)
for 1 ≤ i ≤ n. This is where projected gradient descent comes in handy, because
it computes an approximation to the gradient by using only a small set of randomly
chosen training examples.

The second technique to reduce the amount of computation in each iteration oper-
ates by updating only a small number of coordinates. An iterative convex optimization
method using this technique is called coordinate descent (CD), and there are many
variants of CD [Wright, 2015]. If more than one coordinate is updated in each itera-
tion and this fact is to be emphasized, this method is called block coordinate descent
(BCD). If the coordinates to be updated are picked out randomly, then the method
is called random/stochastic coordinate descent (RCD/SCD). With respect to the type
of optimization problems, many sources on coordinate descent seem to focus on the
unconstrained setting [Bubeck, 2015; Wright, 2015].

A.3 General constrained optimization

In this section, I give an overview of general constrained optimization, where we do not
assume convexity of objective functions and feasible regions. This section follows the
same presentation style as the one in [Ruszczyński, 2006].
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A.3.1 Lagrangian duality and relaxation

A general constrained optimization problem can be formulated as

minimize f(x)

subject to gi(x) ≤ 0 i = 1, . . . , p

hj(x) = 0 j = 1, . . . , q.

(A.3.1)

The Lagrangian of (A.3.1) is given by

L(x, λ, µ) := f(x) +

p∑
i=1

λigi(x) +

q∑
i=1

µihi(x).

The domain of this function is R × Λ0, where Λ0 = Rp≥0 × Rq. The primal function
associated with (A.3.1) is defined as

LP (x) := sup
(λ,µ)∈Λ0

L(x, λ, µ),

and the dual function is
LD(λ, µ) := inf

x∈R
L(x, λ, µ).

Additionally, the primal problem is

min
x∈R

LP (x),

and the dual problem is
max

(λ,µ)∈Λ0

LD(λ, µ).

If x is feasible in the original optimization problem (A.3.1), then we have Lp(x) =
f(x). In this case, because gi(x) ≤ 0 for all i and hi(x) = 0 for all i, the largest value for
Lp(x) is obtained by substituting λi = 0 for all i and any value for µj . Consequently,
we obtain Lp(x) = f(x) when x is feasible. Conversely, if x is infeasible in (A.3.1), then
Lp(x) =∞. To sum up, we have

LP (x) =

{
f(x) if x is feasible in (A.3.1)

∞ otherwise.

Here, we adopt the convention that the minimum of the empty set is ∞; hence, (A.3.1)
takes ∞ if there are no feasible points.

As for the dual function, it can be interpreted as a lower bound of the optimal
objective value of (A.3.1). To illustrate this, we can first see that if x is feasible

∀(λ, µ) ∈ Λ0.f(x) ≥ L(x, λ, µ).

This yields
∀(λ, µ) ∈ Λ0.f(x) ≥ min

y∈R
L(y, λ, µ) = LD(λ, µ),
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where x is assumed to be feasible. Here, because a feasible point exists (namely x),
miny∈R L(y, λ, µ) is smaller than or equal to L(x, λ, µ), which is no larger than f(x).
Therefore, for any feasible point x,

f(x) ≥ max
(λ,µ)∈Λ0

LD(λ, µ).

This means p∗ ≥ d∗, where p∗ is the optimal objective value of (A.3.1) and d∗ is the
optimal objective value of the dual problem (that is, max(λ,µ)∈Λ0

LD(λ, µ)). In fact,
p∗ ≥ d∗ holds regardless of whether (A.3.1) has feasible points. If (A.3.1) has a feasible
point, by the above reasoning, p∗ ≥ d∗ holds. Conversely, if we have no feasible points,
p∗ = ∞ and hence p∗ ≥ d∗ again holds. Thus, the optimal objective value of the dual
problem is a lower bound on the optimal objective value of the primal problem, and this
result is known as the weak duality.

The quantity p∗−d∗ is called a duality gap, and this is not always 0. However, under
some conditions on objective functions’ convexity and constraints, the duality gap is 0,
and this result is called strong duality.

If strong duality holds, we can solve the dual problem to obtain an optimal objective
value of the primal problem. More specifically, we first evaluate LD(λ, µ) for different
values of (λ, µ) and return the largest optimal objective value. Oftentimes, we only
evaluate LD(λ, µ) once with a fixed (λ, µ). This approach is known as Lagrangian
relaxation.

A.3.2 Penalty method

One general approach to general constrained optimization is to convert a given prob-
lem to a (sequence of) unconstrained optimization problem(s). This can be achieved
by embedding constraints in objective functions in the form of penalty, which is the
idea behind the penalty method. The presentation style of this section is attributed to
Ruszczyński [2006].

Suppose we are given
min
x∈X

f(x), (A.3.2)

where X is a feasible region encoded by constraints. To embed the constraints in the
objective function, we create a penalty function P : Rn → R such that

P (x) = 0 if x ∈ X
P (x) > 0 otherwise.

The objective function is then replaced with f(x) + λP (x), where λ > 0 is called a
penalty parameter. We consequently obtain the following unconstrained optimization
problem:

min
x∈R

f(x) + λP (x). (A.3.3)

The following lemma relates the solutions to (A.3.2) and (A.3.3):
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Lemma A.3.1 (Lemma 6.5 in [Ruszczyński, 2006]). If (A.3.3) has an optimal solution
x∗ for some λ > 0 such that x ∈ X , then x∗ is also an optimal solution to (A.3.2).

We cannot know in advance which value of λ will yield a solution that is feasible
in the original constrained optimization problem. Hence, in the penalty method, we
construct a sequence of values for λ and solve an unconstrained problem instance for
each λ in the sequence. One concrete strategy is to keep solving penalty problems with
different values for λ until an optimal solution that is also feasible in the original problem
is found. Termination of this strategy is not guaranteed; i.e. it can be the case that for
any λ, the associated penalty problem does not yield an optimal solution x∗ that satisfies
x∗ ∈ X . However, as stated in the following theorem, a sequence of penalty problems
may yield a subsequence converging to an optimal solution of the original problem.

Theorem A.3.1 (Theorem 6.6 in [Ruszczyński, 2006]). Suppose that (A.3.2) has an
optimal solution. Given a sequence (λk)k≥1 such that limk→∞ λk = ∞, suppose xk is
an optimal solution to the unconstrained optimization problem with λk. Then every
accumulation point of (xk)k≥1 is an optimal solution to (A.3.2).

Here, an accumulation point of a sequence is defined as a limit of some subsequence.
Note that this theorem does not guarantee the existence of an accumulation point in
(xk)k≥1—the theorem only asserts that accumulation points, if they exist, are also op-
timal solutions to the original optimization problem. To ensure the existence of an
accumulating point, we need to make an additional assumption. For more detail and
the proof of the theorem, the reader is referred to [Ruszczyński, 2006].

One common penalty function is a quadratic function. Given an inequality constraint
g(x) ≤ 0, the associated quadratic penalty function is (max{0, g(x)})2. An equality
constraint h(x) = 0 is associated with the penalty h(x)2. One advantage of using a
quadratic function for penalty is that (max{0, g(x)})2 is (continuously) differentiable
(provided that g is (continuously) differentiable), unlike max{0, g(x)}.

Finally, it is worth noting that although the penalty method resembles Lagrangian
relaxation, they are distinct. In the penalty method, the terms we add to the original
objective functions represent penalty for violating constraints, whereas in Lagrangian re-
laxation, for inequality constraints, the additional terms can represent “rewards” rather
than penalty. For instance, given an inequality constraint g(x) < 0, Lagrangian relax-
ation always adds g(x) to the Lagrangian, whilst in the penalty method, if g(x) < 0,
then P (x) = 0 (by the definition of penalty functions); consequently, 0 is added to the
objective function instead of g(x).
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Appendix B

Adversarial attacks and training

B.1 Adversarial attacks

B.1.1 L-BFGS

This is a targeted adversarial attack proposed by Szegedy et al. [2013].
Let F denote a classifier. Given an instance x ∈ X , a concept c to be learned, and

the target label t 6= c(x), Szegedy et al. [2013] formulate the problem of finding (optimal)
adversarial examples as follows:

minimize ‖δ‖
subject to F (x+ δ) = t

x+ δ ∈ X .

The norm operator ‖·‖ measures the size of the perturbation δ. Common norm operators
for adversarial examples in computer vision include the L2 norm and L∞ norm.

Note that this is by no means the only way to formulate adversarial examples. As F is
usually non-convex, we generally cannot precisely solve the above optimization problems
to compute (optimal) adversarial examples. Instead, the problem is “approximately”
solved by a numerical optimization method called L-BFGS.

B.1.2 Fast gradient sign method (FGSM)

This is untargeted adversarial attack proposed by Goodfellow et al. [2015].
Given an instance x ∈ X , a loss function `, and a user-specified adversarial budget

ε, an adversarial perturbation is given by

δ = ε · sign(∇x`(θ, x, y)). (B.1.1)

In those applications where each component of a vector x ∈ X is required to fall into
a range [a, b] (known as a box constraint), we need to apply clipping to x+ δ. Clipping
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is defined by clip[a,b] : x 7→ y such that

yi :=


a if xi < a

x if a ≤ x ≤ b
b if xi ≥ b.

The rationale behind the design of FGSM is based on the observation by Goodfellow
et al. [2015]: neural networks tend to be locally linear. Goodfellow et al. [2015] maintain
that the local linearity is attributed to many loss functions being locally linear. For
instance, ReLU is piecewise linear, and the tanh and sigmoid functions are nearly linear
in the region close to the origin.

There exists a variant of FGSM for the L2 norm, where the sign operation in (B.1.1)
is replaced by projection on a unit L2-ball around x. This variant is oftentimes called
fast gradient method (FGM) because we use Euclidean projection instead of the sign
function. Note that in FGSM, the sign function is not identical to the (Euclidean or L∞)
projection operator on a unit L∞-norm ball. This is because δ does not necessarily have
the same direction as ∇x`(θ, x, y); in other words, δ is not necessarily a scalar product
of ∇x`(θ, x, y) when we use FGSM.

B.1.3 Projected gradient descent (PGD)

Another adversarial attack employs projected gradient descent (PGD), which is a nu-
merical optimization technique (See Appendix A.2.2 for details of PGD in convex opti-
mization). This attack works by iteratively making a step along the gradient of the loss
and then applying projection.

More formally, assume that x is an instance from a training dataset, c is a target
concept to be learned, and ` is a loss function. PGD is guided by

xt+1 := Πε

(
xt + α · ∇xt`(θ, xt, c(x))

‖∇xt`(θ, xt, c(x))‖

)
,

where ‖·‖ is a norm operator and Πε is a projection operator on the ball of radius ε
(measured by ‖·‖) around x. Also, ε is the overall adversarial budget, and α is the size
of a step made in each iteration. Both ε and α are parameters chosen by users. As in
FGSM, if necessary, we apply clipping to xt+1 after the projection by Πε.

If we use the L∞ norm in PGD and we use the sign function in place of projection, the
resulting adversarial attack is an iterative variant of FGSM. This is known as iterative
FGSM (IFGSM) and is first introduced in [Kurakin et al., 2017].

Further details on PGD as an optimization method will be given in Section A.2.2.

B.2 Solving adversarial training in practice

In Section 2.4.2, adversarial training is formulated in terms of robust optimization. In
that section, it was explained that we usually run adversarial training by repeatedly
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alternate between (i) computing adversarial examples and (ii) update the weights of a
neural network accordingly. Although this workflow of adversarial training seems to be
reasonable at a first glance, there is a technical issue that needs to be resolved.

Adversarial training generally solves the outer minimization in (2.4.1) using gradient
descent whilst keeping δ in (2.4.2) fixed. That is, adversarial training implicitly assumes
that the maximizer δ of the inner problem is independent of θ. However, because δ can
be dependent on θ, solving the outer minimization problem whilst fixing the maximizer
(i.e. δ) may not yield a good approximation to the robust optimization problem’s solu-
tion. Assuming that we use gradient descent to solve the outer optimization problem,
Madry et al. [2017] resolve this issue by resorting to Danskin’s theorem. This states that
‘gradients at maximizers of the inner problem correspond to descent directions for the
saddle-point problem’:

Theorem B.2.1 (Danskin’s theorem from [Madry et al., 2017]). Let S be a nonempty
compact topological space. Given g : Rn×S → R, assume that g(·, δ) is differentiable for
every δ ∈ S and ∇θg(θ, δ) is continuous on R × S. Additionally, suppose δ∗(θ) = {δ ∈
arg maxδ∈S g(θ, δ)}. Then the corresponding max-function

φ(θ) := max
δ∈S

g(θ, δ)

is locally Lipschitz continuous and directionally differentiable. Further, its directional
derivative along vector h is

φ′(θ, h) = sup
δ∈δ∗(θ)

hᵀ∇θg(θ, δ).

In particular, if for some θ ∈ Rn the set δ∗(θ) = {δ∗θ} is singleton, then the max-function
is differentiable at θ and

∇φ(θ) = ∇θg(θ, δ∗θ). (B.2.1)

A directional derivative of a multivariate function f : Rn → R refers to the function’s
gradient along a given vector h ∈ Rn. Note that on the right hand side of (B.2.1), the
value of δ∗θ is fixed when the gradient of g(θ, δ∗θ) with respect to θ is evaluated. Therefore,
(B.2.1) equates the gradient of φ(θ), in which the maximizer δ can be dependent on θ,
with the gradient of g(θ, δ∗θ), in which the maximizer δ∗θ is fixed. Employing Danskin’s
theorem, we obtain the following corollary.

Corollary B.2.1 (Madry et al. [2017]). Let δ̄ ∈ S be a maximizer for maxδ `(θ, x+δ, y).
Then, −∇θ`(θ, x+ δ̄, y) is a descent direction for φ(θ) = maxδ∈S `(θ, x+ δ, y), provided
that ∇θ`(θ, x+ δ̄, y) is nonzero.

Proof. This proof is attributed to Madry et al. [2017]. To apply Theorem B.2.1, set

g(θ, δ) := `(θ, x+ δ, y).
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Theorem B.2.1 yields that the directional derivative of φ(θ) := maxδ∈S `(θ, x + δ, y) in
the direction of h = ∇θ`(θ, x+ x̄, y) is

φ′(θ, h) = sup
δ∈δ∗(θ)

hᵀ∇θ`(θ, x+ δ, y) (B.2.2)

≥ hᵀh. (B.2.3)

Thus, if h = ∇θ`(θ, x + δ̄, y) is nonzero, (B.2.3) is positive. Hence, on the left hand
side of (B.2.2), φ′(θ, h) should also be positive. It follows that −h is indeed a descent
direction.
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Appendix C

Supplementary analysis

C.1 Convergence the Wasserstein distance

In this section, I will analyze the difference between MIX and OPT. This analysis is
crucial because a bound on the convergence rate is necessary if we would like to know
how many training examples are needed to obtain a desired distance between MIX and
OPT.

To this end, because we have already derived a bound on |MIX−OPTempirical| in
Section 3.2.1, it remains to derive a bound on |OPT−OPTempirical|. The difference
between OPT and OPTempirical lies in the sets of probability distributions over which the
maximum of E[`(θ, x, y)] is evaluated. In OPT, the set of probability distributions under
consideration is {D̃ | Wp(D̃,D) ≤ ε}, whereas in OPTempirical, {D̃ | Wp(D̃,Dn) ≤ ε} is
used, where Dn is an empirical instance distribution. I will first examine the convergence
of Wp(D,Dn) to 0 and then investigate how Wp(D,Dn) affects |OPT−OPTempirical|.

Research results on the convergence of Wp(D,Dn) are already available in the liter-
ature [Fournier and Guillin, 2015; Lei, 2018]. For instance, Fournier and Guillin [2015]
derive moment estimates and concentration estimates, which respectively look like

E[Wp(D,Dn)] ≤ α(n) for all n ≥ 1,

and
P(Wp(D,Dn) ≥ x) ≤ α(n, x) for all n ≥ 1, x > 0.

As the exact details are complicated, I will not present them here.
Now that we have obtained a convergence rate of the Wasserstein distance, the next

step is to study the relationship between Wp(D,Dn) and |OPT−OPTempirical|. Fix
D and Dn, and suppose Wp(D,Dn) = δ. Figure C.1 depicts two uncertainty regions:
{D̃ | Wp(D̃,D) ≤ ε} and {D̃ | Wp(D̃,Dn) ≤ ε}. In this diagram, the uncertainty
regions are depicted as circles whose centers are D and Dn. Let A, B, and C denote
probability distributions that achieve the highest values of E[`(θ, x, y)] in respective
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Figure C.1: Uncertainty regions around D and Dn

regions. Consequently, we have

OPT = max

{
E
A

[`(θ, x, y)],E
B

[`(θ, x, y)]

}
OPTempirical = max

{
E
B

[`(θ, x, y)],E
C

[`(θ, x, y)]

}
.

Let B′ denote a probability distribution from {D̃ | Wp(D̃,D) ≤ ε,Wp(D̃,Dn) ≤ ε}
that is the closest to A in terms of the Wp distance. Since Wp(D,Dn) = δ, we have
Wp(A,B

′) ≤ δ. This can be formally proved as follows.

Proposition C.1.1. Let X be a Polish space and we consider probably distributions on
X. Assume that Wp(D,Dn) = δ. Further, given a probability distribution A, assume
that Wp(A,D) ≤ ε < Wp(A,Dn). If B′ is the closest probably to A (with respect to the
Wp distance) such that Wp(B

′,Dn) ≤ ε, then Wp(A,B
′) ≤ δ.

Proof. Since the Wasserstein distance is a distance metric, the triangle inequality holds,.
This gives

Wp(A,Dn) ≤Wp(A,D) +Wp(D,Dn)

≤ ε+ δ.

I will first focus on the case of p = 1. According to Section 7.4 of [Villani, 2003], for
any cost function c (in Definition 3.1.2), any probability measures µ1, µ2, ν1, ν2 and any
α ∈ [0, 1], we have

W1(αµ1 + (1− α)µ2, αν1 + (1− α)ν2) ≤ αW1(µ1, ν1) + (1− α)W1(µ2, ν2),

where these four probably measures are defined on a Polish space. Applying this in-
equality to our setting, we obtain

W1(αA+ (1− α)Dn, αDn + (1− α)Dn) ≤ αW1(A,Dn) + (1− α)W1(Dn,Dn)

∴W1(αA+ (1− α)Dn,Dn) ≤ αW1(A,Dn).

If we set B′′ = αA+ (1− α)Dn and α = ε
W1(A,Dn) , it gives

W1(B′′,Dn) ≤ ε.
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By a similar argument, we can prove

W1(B′′, A) ≤ δ.

Therefore, by definition, we also have W1(B′, A) ≤ δ.
Finally, to prove the general case of Wp, as explained in Section 3.1, we observe

Wp,d(X,Y ) = W1,dp(X,Y )
1
p , where the second subscript of W denotes the under-

lying distance metric. Hence, we can translate, for example, Wp,d(A,D) ≤ ε into
W1,dp(A,D) ≤ εp. As a consequence, we can lift the above result of W1(B′, A) ≤ δ
into

W1,dp(B
′, A) ≤ δp

∴Wp,d(B
′, A) ≤ δ.

This concludes the proof.

As Wp(A,B
′) ≤ δ, we have ∫

d(x, x′)p dγ(x, x′) ≤ δp (C.1.1)

for some coupling γ ∈ Π(A,B′) such that γ does not change labels. Fix this coupling γ.
Here, d : X × X → R≥0 is a metric on X . Since x 7→ xp for any p ∈ [1,∞) is a convex
function on the domain [0,∞) and d(·, ·) always returns non-negative values, it follows
from Jensen’s inequality that(∫

d(x, x′) dγ(x, x′)

)p
≤
∫
d(x, x′)p dγ(x, x′). (C.1.2)

Combining (C.1.1) and (C.1.2) yields∫
d(x, x′) dγ(x, x′) ≤ δ. (C.1.3)

The same result can be obtained for the case of p =∞.
Following the convention used in [Staib and Jegelka, 2017], I assume the Lq norm is

used for the underlying metric d. For any q ∈ [1,∞] and any x, x′ ∈ Rm, we have

1√
m

∥∥x− x′∥∥
2
≤ d(x, x′) ≤

√
m
∥∥x− x′∥∥

2
. (C.1.4)

This can be easily seen from Figure C.2, which illustrates the relationship between the
L1, L2, and L∞ norms in a two-dimensional space. As p increases, the unit circle of
Lp approaches a square of radius one. By comparing the unit circles of the three Lp

norms, it is straightforward to see that
‖x−x′‖1
‖x−x′‖2

≤
√

2 and
‖x−x′‖2
‖x−x′‖∞

≤
√

2 in R2. These

two upper bounds are generalized to
√
m if the space we work with has the dimension

m. Consequently, (C.1.4) is yielded.

64



Figure C.2: Unit circles with respect to the L1, L2, and L∞ norms

By (C.1.4), we obtain

1√
m

∫ ∥∥x− x′∥∥
2

dγ(x, x′) ≤
∫
d(x, x′) dγ(x, x′).

Combining this with (C.1.3) gives∫ ∥∥x− x′∥∥
2

dγ(x, x′) ≤ δ
√
m. (C.1.5)

Because a Lipschitz constant of `(θ, ·, y) is L for any y, |`(θ, x, y)− `(θ, x′, y)| ≤ L ‖x− x′‖2
holds, provided that we use the L2 norm in the definition of Lipschitz continuity. It fol-
lows from (C.1.5) that ∣∣∣∣EA[`(θ, x, y)]− E

B′
[`(θ, x, y)]

∣∣∣∣ ≤ Lδ√m.
By the definition of B, we have EB′ [`(θ, x, y)] ≤ EB[`(θ, x, y)]. Hence, EB[`(θ, x, y)] ≤
EA[`(θ, x, y)] + Lδ

√
m must hold. By the same reasoning, we have EB[`(θ, x, y)] ≤

EC [`(θ, x, y)] + Lδ
√
m. Therefore, by case analysis, we derive

|OPT−OPTempirical| ≤ Lδ
√
m.

C.2 Relationship between ε and γ

In a number of adversarial training procedures and adversarial attacks, ε is commonly
used as a robustness parameter (specifically, adversarial budget). On the other hand,
in WRM by Sinha et al. [2018], the relaxation parameter for the Lagrangian relaxation,
denoted by γ, is used to regulate robustness. In this section, I discuss the relationship
between these two parameters.
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Recall that DRO with the Wasserstein distance is formulated as

min
θ

max
D̃:W1(D,D̃)≤ε

E
(x,y)∼D̃

[`(θ, x, y)], (C.2.1)

where ε is a robustness parameter specified by the user and D is a distribution over
X × Y. Sinha et al. [2018] applies the Lagrangian relaxation to (C.2.1), transforming
the inner maximization problem to

sup
D̃

[
E

(x,y)∈D̃
[`(θ, x, y)]− λW1(D̃,D)

]
, (C.2.2)

where γ is a penalty parameter. Due to the duality result (See Theorem 3.2.2), we have
(3.2.5).

Thus, one approach to (numerically) solving the inner problem of (C.2.1) is to solve
(C.2.2) multiple times, each with a different value for γ, and pick the one with the
best objective value. In the specific context of adversarial training, instead of selecting
optimal γ in terms of λε + E(x,y)∼D[φλ(θ, x, y)] appearing in (3.2.5), it may be more
sensible to select γ that results in the highest robustness to adversarial attacks. Staib
and Jegelka [2017] adopt this approach in their experiments for comparing DRO methods
(e.g. the Frank-Wolfe method-based DRO) that use ε and the Lagrangian relaxation-
based method, which uses γ instead of ε. They tested γ drawn from

{0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1},

where the ratios between two consecutive values are approximately the same. They
report that γ = 0.001 produced the best performance against an IFGSM adversary.

However, this (supposedly optimal) value of γ is much lower than a typical value used
in the experiments by Sinha et al. [2018]. For instance, γ = 2 is used for a synthetic
dataset that has a circular decision boundary, and approximately γ = 0.37 is used for
MNIST. In [Sinha et al., 2018], (C.2.2) is solved using stochastic gradient descent (SGD),
and they derive the convergence bound under several assumptions on the loss function
`, the cost function c, and the value of γ. Specifically, Sinha et al. [2018] assume that
γ is sufficiently large, which corresponds to a sufficiently large value of ε. The inverse
relationship between ε and γ in effect follows from the duality result in (3.2.5).

In order to illustrate this inverse relationship more explicitly, we substitute (3.2.6)
into (3.2.5), yielding

sup
D̃:W1(D̃,D)≤ε

E
(x,y)∼D̃

[`(θ, x, y)] = inf
λ≥0

E
(x,y)∼D

[
sup
x′∈X

[
`(θ, x′, y)− λ(c(x, x′)− ε)

]]
, (C.2.3)

Here, for simplicity, the cost function is c : X × X → R≥0 instead of c : (X ×
Y) × (X × Y) → R≥0 ∪ {∞}. In other words, I adopt the standard convention that
c((x, y), (x′, y′)) =∞ whenever y 6= y′.

If ε increases, the left hand side will likely increase as well (or at least remains
the same). Thus, the right hand side must not decrease if ε increases. On the right

66



hand side, c(x, x′) − ε decreases as ε increases. Hence, γ needs to decrease such that

E(x,y)∼D

[
sup(x′,y′) [`(θ, x′, y′)− λ(c(x, x′)− ε)]

]
does not decrease. Therefore, ε and γ

are inversely related.
Additionally, the theory underlying WRM suggests that if γ is sufficiently large,

the resulting optimisation problem is strongly concave and hence can be approximately
solved with good accuracy by gradient descent. This is in accord with the experiment
results of [Sinha et al., 2018] (see Sections A.3 and A.4 of [Sinha et al., 2018]). As
γ decreases, the performance of the Lagrangian relaxation-based DRO becomes less
effective in the sense that it becomes more similar to the performance of other adversarial
training procedures. Hence, the Lagrangian relaxation-based DRO is meaningful only
when γ is large (or equivalently, ε is small).

In [Staib and Jegelka, 2017], the optimal γ is quite small A neural network trained
by WRM with a small value of γ is unlikely to faithfully exhibit the true nature of
WRM. Thus, it is worthwhile to investigate whether the same optimal value of γ can be
obtained.

Sinha et al. [2018], on the other hand, relate ε and γ in the following way:

ε2 := E
(x,y)∼Dn

[c(Tγ(θWRM, x, y), x)], (C.2.4)

where Tγ(θ, x, y) returns the maximizer of (3.2.6); that is,

Tγ(θ, x, y) := arg max
x′∈X
{`(θ, x′, y)− γc(x, x′)}. (C.2.5)

Also, θWRM refers to the parameters of a neural network trained using the Lagrangian
relaxation-based DRO and Dn is the empirical distribution. The justification of (C.2.4)
follows from the next proposition:

Proposition C.2.1 (Sinha et al. [2018]). Suppose

P (θ) :=
1

n

n∑
i=1

δTγ(θ,xi,yi) (C.2.6)

= arg max
D̃

{
E

(x,y)∼D̃
[`(θ, x, y)]− γW1(D̃,Dn)

}
, (C.2.7)

where {(xi, yi)}ni=1 is a training sample and δz denotes a probability distribution with a
unit mass as point z. Strictly speaking, the second line is ill-defined because it does not
return a unique probability distribution. However, since this abuse of notation does not
cause confusion, I will adopt this notational convention. Then for any parameters θ, we
have

E
(x,y)∼Dn

[c(Tγ(θ, x, y), x)] = W1(P (θ),Dn). (C.2.8)

Proof. By Theorem 3.2.2, for any probability distributions A and B, we have

sup
A

{
E

(x,y)∼A
[`(θ, x, y)]− γW1(A,B)

}
= E

(x,y)∼B
[φγ(θ, x, y)],
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where φγ is given in (3.2.6). By (C.2.7), we obtain

E
(x,y)∼P (θ)

[`(θ, x, y)]− γW1(P (θ),Dn) = E
(x,y)∼Dn

[φγ(θ, x, y)] (C.2.9)

∴ γW1(P (θ),Dn) = E
(x,y)∼P (θ)

[`(θ, x, y)]− E
(x,y)∼Dn

[φγ(θ, x, y)]. (C.2.10)

Therefore, we have

E
(x,y)∼Dn

[c(Tγ(θ, x, y), x)] = W1(P (θ),Dn)

⇐⇒ γ E
(x,y)∼Dn

[c(Tγ(θ, x, y), x)] = γW1(P (θ),Dn)

⇐⇒ E
(x,y)∼Dn

[γc(Tγ(θ, x, y), x)] = E
(x,y)∼P (θ)

[`(θ, x, y)]− E
(x,y)∼Dn

[φγ(θ, x, y)] by (C.2.10)

⇐⇒ E
(x,y)∼Dn

[γc(Tγ(θ, x, y), x)] + E
(x,y)∼Dn

[φγ(θ, x, y)] = E
(x,y)∼P (θ)

[`(θ, x, y)]

⇐⇒ E
(x,y)∼Dn

[`(θ, Tγ(θ, x, y), y)] = E
(x,y)∼P (θ)

[`(θ, x, y)],

where the last line follows from the definitions of φγ and Tγ given in (3.2.6) and (C.2.5).
Finally, it follows from the definition of P (θ) in (C.2.6) that the last equality holds.
Therefore, the claim (C.2.8) is true.

On the right hand side of (C.2.8), P (θ) is an adversarial probability distribution
that achieves the highest objective value, where the objective function is derived from
(C.2.1) by Lagrangian relaxation. To put it differently, P (θ) is an “relaxed/empirical”
estimate of arg maxD̃:W1(Dn,D̃)≤ε E(x,y)∼D̃[`(θ, x, y)]. Therefore, it is reasonable to take

the distance between Dn and P (θ) as a measure of the robustness achieved by a trained
neural neural network with the parameters θ.

C.3 Comparison of FWDRO and WRM

In this section, I compare FWDRO, a DRO algorithm developed by Staib and Jegelka
[2017] and based on the Frank-Wolfe method, and WRM, a DRO algorithm developed
by Sinha et al. [2018] and based on Lagrangian relaxation.

C.3.1 Theoretical formulations

One similarity between FWDRO and WRM is that both of them solve the inner maxi-
mization problem (i.e. finding adversarial examples) and the outer minimization problem
(i.e. optimizing model parameters) alternately. As for the outer optimization problem,
both of the two approaches use stochastic (projected) gradient descent.

Thus, they differ in the way the inner optimization problem is approximately solved.
In FWDRO, the empirical approximation to DRO is directly solved by means of the
Frank-Wolfe method. Hence, this approach retains the constraint of the inner problem.
By contrast, in WRM, Lagrangian relaxation is applied in order to remove the constraint
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of the inner optimization problem As a result, the inner optimization problem becomes
unconstrained. The empirical formulation of DRO that this approach induces is equiva-
lent to the Lagrangian relaxation of RO. Hence, in a sense, WRM loses some flavour of
distributional robustness.

C.3.2 Empirical performance

Staib and Jegelka [2017] conduct experiments to compare the performance of different
approaches to adversarial training. Specifically, they empirically study the following
methods:

• Empirical risk minimization (ERM)

• Fast DRO (FDRO) and Frank-Wolfe DRO (FWDRO): these are the empirical
approximations to DRO developed by Staib and Jegelka [2017]. FDRO only makes
one step in the Frank-Wolfe method (see line 5 of Algorithm 1), whereas FWDRO
makes multiples steps as in the standard Frank-Wolfe method.

• WRM

• Fast gradient sign method (FGSM) and iterative FGSM (IFGSM): they first gener-
ate adversarial examples using FGSM and IFGSM (See Section 2.4.1), respectively,
and then train neural networks using the newly generated adversarial examples in
addition to original training data. For convenience, when there is no risk of am-
biguity, I will refer to the corresponding adversarial training procedures as FGSM
and IFGSM, although they technically refer to adversarial attacks rather than
defenses.

Staib and Jegelka [2017] compare these methods in terms of their defenses against
an IFGSM adversary on MNIST, and the above methods are ranked as follows in the
descending order of defense success rates:

1. IFGSM

2. FGSM and FWDRO (roughly tied)

3. WRM and FDRO. They are tied in one experiment, but in a different experiment
that is more favorable to WRM, WRM performs better than FDRO.

4. ERM.

Staib and Jegelka [2017] remark that IFGSM performs better than FWDRO possibly
because FWDRO does not reach optimality or because DRO “tolerates more pointwise
loss to counteract the stronger adversary”.

Sinha et al. [2018] also conduct experiments to assess the performance of different
adversarial training procedures. Since they use c((x, y), (x′, y′)) = ‖x− x′‖22 +∞·1y 6=y′ ,
their formulation of empirical DRO is equivalent to the formulation by Staib and Jegelka
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[2017] using the W2 and L2 distances. In fact, in this case, since projection on an L2,2-
ball can be computed efficiently, we can directly solve (3.2.2) rather than using FWDRO
or WRM. Although Sinha et al. [2018] use the W2 with L2 norms for the defense, they
consider both the L2 and L∞ norms when launching adversarial attacks.

Their experiment results confirm that WRM only works well for large λ, which
corresponds to the robustness guarantee with small ε. WRM empirically outperforms
other approaches when they only defend against adversarial examples that are nearly
imperceptible to the human eye. However, when ε is sufficiently large (and hence the
corresponding λ becomes small), the superiority of WRM diminishes.

Comparing WRM with other methods, Sinha et al. [2018] report that WRM performs
better than FGSM-based and IFGSM-based adversarial training procedures, provided
that the adversary’s budged is small. This contradicts the experiment result by Staib and
Jegelka [2017], who report that IFGSM performs better than WRM under the adversary
of IFGSM. It could be the case that Staib and Jegelka [2017] and Sinha et al. [2018] use
different robustness levels for other adversarial training methods when comparing them
with WRM. In addition, in [Sinha et al., 2018], in many test cases (including the cases
where IFGSM is an adversary), FGSM performs better than IFGSM, which contradicts
the report of Staib and Jegelka [2017].
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Appendix D

Supplementary experiment results

This chapter contains supplementary experiment results for Section 5.2.

D.1 Distributional PGD attacks

Overview

In Section 5.2.2, we use FGSM and PGD attacks to evaluate ten values of γ for WRM.
However, although it is a common practice in the literature to evaluate the robustness
of a neural networks using pointwise attacks (e.g. FGSM and PGD), DRO algorithms,
including WRM, are meant to defend against “distributional” adversarial perturbations
instead of pointwise attacks. To launch distributional adversarial attacks, we are required
to solve (3.2.1). It can be approximated by (3.2.2), which can in turn be approximately
solved by PGD. This is precisely what is done in distributional PGD to solve the inner
maximization problem of DRO in (3.1.1).

Regarding hyper-parameters, the distributional distance is the 2-Wasserstein dis-
tance, and the pointwise distance function is L2. Forty-one evenly separated values of ε
are sampled from the range [0, 10.0]. The size of each batch used to create distributional
perturbations is 512, and 40 iterations are executed for each batch. As indicated in Sec-
tion 5.1, 15 iterations are used when training neural networks by means of distributional
PGD; however, when distributional PGD is used for attacks, the number of iterations is
increased from 15 to 40.

Results

The experiment results are presented in Figure D.1.
The adversarial attack success rate sometimes slightly drops even when the adver-

sarial budget ε increases. This is probably due to the stochastic nature of distributional
PGD: the dataset is randomly divided into batches.

It is worth observing that the adversarial attack success rates are noticeably low. For
instance, when ε = 4.0, the attack success rate is less than 0.05 whether we use ReLU or
ELU. On the other hand, if we use PGD instead of distributional PGD to attack neural
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Figure D.1: Robustness of WRM-trained models to distributional PGD attacks

networks, as shown by Figure D.3, the attack success rate at ε = 4.0 is more than 0.1.
Hence, distributional PGD is deficient as a (distributional) adversarial attack algorithm.

The poor performance of distributional PGD as an adversarial attack ties in with its
performance as a training algorithm compared to FWDRO and WRM (See Section 5.2.3).

D.2 Comparison of DRO models using PGD attacks

The robustness results of WRM-trained neural networks with various values of γ to PGD
attacks are presented in Figure D.2 and Figure D.3.

Figure D.2: Robustness of WRM-trained models to PGD with the L∞ norm
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Figure D.3: Robustness of WRM-trained models to PGD with the L2 norm
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