
Thesis Proposal: Hybrid Resource-Bound

Analyses of Programs

Long Pham

November 2024

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
Thesis Committee:

Jan Hoffmann, Chair
Feras Saad

Matt Fredrikson
Nadia Polikarpova (UC San Diego)

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright © 2024 Long Pham

Abstract

Resource-bound analysis aims to infer symbolic bounds of worst-case resource usage
(e.g., running time, memory, and energy) of programs as functions of program inputs. Re-
source analysis has numerous applications, including job scheduling in cloud computing
and prevention of side-channel attacks. Various resource analysis technique have been
developed, and they have unique strengths and weaknesses that complement each other.
(Automatic) static resource analysis, which analyzes the source code of programs, is sound:
if it successfully infers a cost bound, it is guaranteed to be a valid bound. However, due to
undecidability of resource analysis in general, every static analysis technique is incomplete:
there exists a program that the analysis technique cannot handle. Meanwhile, data-driven
analysis, which statistically analyzes cost measurements obtained by running programs
on many inputs, can infer a candidate cost bound for any program. However, it does not
guarantee soundness of inference results.

To overcome limitations of individual analysis techniques, I propose hybrid resource

analysis, which integrates two complementary analysis techniques to retain their strengths
while mitigating their respective weaknesses. The user first specifies which analysis tech-
niques are used to analyze which code fragments and quantities. Hybrid analysis then per-
forms its constituent analysis techniques on their respective code fragments and quantities.
Finally, their inference results are combined into an overall cost bound.

The development of hybrid resource analysis has been driven by the desire to go be-
yond Automatic Amortized Resource Analysis (AARA), a state-of-the-art type-based static
resource analysis technique. I start by proving polynomial-time completeness of AARA. I
next introduce Bayesian data-driven analysis, which conducts Bayesian inference on cost
measurements to infer a posterior distribution of symbolic cost bounds. I then present
the first hybrid resource analysis, Hybrid AARA, followed by a discussion of its limitations.
To overcome these limitations, I introduce the second hybrid resource analysis, resource de-
composition. I additionally describe Swiftlet, which instantiates the resource-decomposition
framework with AARA and Bayesian resource analysis.

For proposed work, my collaborators and I plan to develop data-driven-analysis for
statistically inferring not only a worst-case symbolic cost bound but also a worst-case input
generator, which is a program generating worst-case program inputs of various sizes. In
existing data-driven analyses, program inputs used for recording cost measurements are
usually either generated randomly or assumed to be representative of real-world workload.
Consequently, it is challenging to statistically infer worst-case bounds of those programs
(e.g. quicksort) whose average-case complexity is significantly lower than the worst-case
complexity. By testing programs with various input generators and inferring worst-case
input generators, we can improve the inference quality of data-driven resource analysis.

ii

Contents

1 Introduction 1

1.1 Resource Analysis . 1
1.2 Hybrid Resource Analysis . 2
1.3 Roadmap of the Thesis . 3
1.4 Publications . 5

2 Overview 7

2.1 Background . 7
2.2 Polytime Completeness of AARA (Completed) 10
2.3 Bayesian Data-Driven Resource Analyses (Completed) 11

2.3.1 Optimization-Based Data-Driven Analysis 13
2.3.2 Bayesian Inference on Worst-Case Costs 14
2.3.3 Bayesian Inference on Polynomial Coefficients 15
2.3.4 Extension to Non-Monotone Resource Metrics 16

2.4 Hybrid AARA (Completed) . 16
2.4.1 Hybrid BayesWC and Opt . 17
2.4.2 Hybrid BayesPC . 17

2.5 Resource Decomposition (Completed) . 19
2.5.1 Limitations of Hybrid AARA . 19
2.5.2 Overview . 21
2.5.3 Formalization . 23

2.6 Swiftlet: Instantiation of Resource Decomposition (Completed) 25
2.6.1 Data Collection . 25
2.6.2 Bayesian Inference for Recursion Depths 25

2.7 Inference of Program-Input Generators (Proposed Work) 27
2.7.1 Motivation . 27
2.7.2 Domain-Specific Language of Input Generators 28
2.7.3 Statistical Inference of Worst-Case Input Generators 29

3 Timeline 30

iii

1 Introduction

In this section, I first introduce resource-bound analysis of programs and review resource anal-
ysis techniques studied in the literature. I then propose hybrid resource analysis, which inte-
grates two complementary resource analysis techniques to retain their strengths while mitigat-
ing their respective weaknesses. Lastly, I outline three completed works and a proposed work
for the thesis.

1.1 Resource Analysis

Given a program 𝑃 , resource-bound analysis aims to infer a symbolic bound 𝑓 (𝑥) on the worst-
case resource usage (e.g., running time, memory, and energy) of the program 𝑃 as a function of
a program input 𝑥 . The symbolic bound 𝑓 (𝑥) must be a valid upper bound on the computational
cost of executing 𝑃 (𝑥) for any input 𝑥 . Hence, the bound 𝑓 (𝑥) inferred by resource analysis is
more precise than the result of asymptotic complexity analysis, which only concerns sufficiently
large inputs and disregards constant factors.

Resource analysis of programs has a number of applications. For example, in cloud com-
puting [49, 75, 78], a cloud-service provider seeks to avoid over-provisioning resources, which
would waste resources and hence reduce profits, and under-provisioning resources, which
could violate service-level agreements. To this end, the cloud-service provider can perform
resource analysis to infer cost bounds of the clients’ programs. Other applications of resource
analysis include worst-case input generation to identify potential algorithmic complexity at-
tacks [13, 56, 59, 69, 83, 87], ensuring constant resource usage to prevent side-channel at-
tacks [9, 14, 67], and detecting performance bugs for programmers [21, 27].

Three approaches to resource analysis exist in the literature: (automatic) static analysis,
data-driven analysis, and interactive analysis. Static resource analysis examines the source code
of a program and reasons about all possible behaviors of the program, including its worst-case
behaviors, to automatically infer a cost bound. Since the pioneering work of Wegbreit [85],
numerous static resource analysis techniques have been developed: type systems [6, 20, 23, 25,
36, 55, 82], recurrence relations [1–3, 10, 24, 31, 37, 51, 52, 58, 76, 77], term rewriting [7, 8, 46, 66],
ranking functions [11, 12, 19, 28, 29, 79], and invariant generation [34, 35, 89].

Data-driven resource analysis first runs a program on many inputs of varying sizes and
records execution costs. It then analyzes the dataset of cost measurements to statistically infer
a cost bound. To collect cost measurements, most existing works [22, 26, 30, 48, 50, 73, 74, 88]
use randomly generated program inputs or representative workloads, which do not necessarily
reveal worst-case behaviors of the program. Also, to statistically infer bounds from cost mea-
surements, these works perform optimization (e.g., polynomial regression) without quantifying
statistical uncertainty or incorporating the user’s domain knowledge into the statistical model.

In interactive resource analysis, the user manually writes formal proofs of cost bounds, and
the proofs are machine-checked for correctness. Existing works include those based on sepa-
ration logic [4, 18, 33, 63, 65] and dependent types [5, 25, 32, 68].

Static and data-driven analyses have their own strengths and weaknesses that complement
each other. Static resource analysis is sound: whenever it successfully returns an inference
result, it is guaranteed to be a valid worst-case cost bound of the program. However, static

1

analysis is incomplete: for any technique, there exists a program whose cost bound cannot be
automatically inferred even if the bound is expressible in the language of symbolic bounds sup-
ported by the technique. The incompleteness is due to the undecidability of resource analysis
for a Turing-complete programming language.

In contrast to static analysis, data-driven analysis can infer a candidate cost bound for any
program. Another advantage is that data-driven analysis only needs a black-box access to the
source code, making the analysis applicable to third-party programs whose source code is not
publicly available. However, data-driven analysis does not guarantee soundness of inferred
cost bounds, because the analysis does not rigorously reason about worst-case behaviors of
the program. Also, a finite dataset of cost measurements used in data-driven analysis may not
contain worst-case inputs, making it challenging to infer the true worst-case costs.

1.2 Hybrid Resource Analysis

In this thesis, to overcome the limitations of individual analysis techniques, I propose and de-
velop hybrid resource analysis, which integrates two (ormore) resource analysis techniqueswith
complementary strengths and weaknesses. In hybrid resource analysis, the user first specifies
which techniques should analyze which code fragments and quantities in the source code. Next,
hybrid analysis performs the two constituent techniques on their designated code fragments
and quantities. Finally, the two inference results are combined into an overall cost bound of
the entire program. By integrating two complementary analysis techniques, hybrid resource
analysis retains their strengths while mitigating their respective weaknesses.

The primary technical challenge of hybrid analysis lies in the design of the interface be-
tween the two constituent analysis techniques. The interface specifies (i) representations of
cost bounds inferred by the two analyses and (ii) what information (if any) is exchanged be-
tween the two analyses during their inference of cost bounds. Firstly, the cost bounds inferred
by the two analyses must have compatible representations such that they can be composed
together to yield an overall cost bound. Secondly, some resource analysis techniques impose
numerical constraints on cost bounds to define a set of accepted bounds. Consequently, to suc-
cessfully compose such a cost bound with another cost bound inferred by a different analysis,
the latter bound must satisfy the numeric constraints imposed by the former bound. Therefore,
the two analyses must take into account each other’s numeric constraints on bounds.

To illustrate the benefit of hybrid resource analysis in a real-world use case, let us consider a
cloud-service provider who wishes to estimate resource usage of a client’s program to optimize
resource allocation on the cloud. One reasonable choice of resource analysis techniques is static
resource analysis as it offers soundness guarantees. The soundness guarantees are beneficial
to the service provider because they can rest assured that they will never accidentally under-
provision resources. Without the soundness guarantees, it is possible that the client’s program
consumes more resources than anticipated. In such a case, the provider may need to rerun
the program from scratch with more resources, violating service-level agreements on timely
execution of the program. However, any single static analysis technique cannot be used to
automatically infer cost bounds of all programs due to the incompleteness of static resource
analysis. If a static analysis technique of the provider’s choice fails to infer a cost bound for a
program, the cloud-service provider is left with no clues to guide the resource allocation and

2

scheduling for the program.
Data-driven resource analysis, on the other hand, can always infer a candidate cost bound

for any program from its finitelymany cost measurements. Thesemeasurements are often read-
ily available, especially when the same program is repeatedly executed onmany inputs (e.g., the
serverless cloud service AWS Lambda). However, data-driven analysis provides no soundness
guarantees of inferred cost bounds. Even if the statistical model adds an extra buffer on top of
maximum observed costs in the dataset, it may still fail to yield a sufficiently conservative cost
bound desired by the cloud-service provider.

Hybrid resource analysis lets the cloud-service provider integrate static and data-driven
analyses, thereby striking a desirable balance between soundness (achieved by static analy-
sis) and completeness (achieved by data-driven analysis). For example, the provider can apply
static analysis to all code fragments that are amenable to static analysis, and data-driven anal-
ysis to the rest of the source code. The two cost bounds by static and data-driven analyses are
then combined into an overall bound. Oftentimes, even if static analysis fails to analyze the
entire program, it is still capable of analyzing a non-trivial amount of code fragments. So it
makes sense to apply static analysis wherever possible in the source code, retaining its sound-
ness guarantees as much as possible. Meanwhile, data-driven analysis yields reasonable (but
not necessarily sound) cost bounds for those code fragments that cannot be handled by static
analysis. Even though cost bounds inferred by data-driven analysis are not guaranteed to be
sound, they are sensible inference results derived using mathematically principled methods
(e.g., Bayesian statistics) from observed cost measurements and a statistical model incorporat-
ing the user’s domain knowledge. Thus, data-driven resource analysis is no less useful than, for
example, weather forecasting from observed data and a scientific model, where forecasts never
come with guarantees but are nonetheless helpful in our lives. As I empirically demonstrate in
this thesis, hybrid resource analysis returns more accurate cost bounds (i.e., the inferred cost
bounds are closer to the ground-truth bound) than purely data-driven analysis, thanks to the
integration of static analysis. In summary, hybrid resource analysis can infer cost bounds for
program that purely static analysis cannot handle, while obtaining more accurate bounds than
purely data-driven analysis.

The thesis statement is therefore:

Thesis Statement Hybrid resource analysis, which integrates two resource analysis tech-

niques with complementary strengths and weaknesses, enables the analysis of programs and infer-

ence of cost bounds that are beyond the reach of individual analysis techniques.

1.3 Roadmap of the Thesis

AARA For the static-analysis part of hybrid resource analysis, I focus on Automatic Amor-
tized Resource Analysis (AARA) [39, 41, 43, 45], which is a type-based static resource analysis
technique that automatically infers polynomial cost bounds of functional programs. The thesis
starts by introducing background information on AARA (§2.1).

AARA is sound: whenever it returns a polynomial cost bound, the bound is guaranteed to
be sound. However, AARA is incomplete: there exists a (terminating) polynomial-cost program

3

for which AARA cannot infer any polynomial cost bound. The incompleteness is not unique
to AARA. Every static analysis technique suffers incompleteness because resource analysis is
undecidable for a Turing-complete programming language in general.

Polynomial-time completeness of AARA In the first completed work (§2.2), I prove that
the typable fragment of AARA is polynomial-time complete [70]: for every polynomial-time
function 𝑓 , there exists a polynomial-cost program 𝑃 that (i) simulates the function 𝑓 with the
same computational cost and (ii) is typable in AARA (i.e., a polynomial cost bound of the pro-
gram 𝑃 can be inferred by AARA). The proof creates a functional program with a (polynomial-
length) list, where an element is removed from the list whenever the polynomial-time Turing
machine of the function 𝑓 consumes one unit of time. This idea of adding an extra program
variable to represent a certain symbolic bound will later be exploited in the development of the
second hybrid resource analysis.

Hybrid AARA I describe the first hybrid resource analysis, Hybrid AARA [72], which inte-
grates AARA and data-driven analysis. For the data-driven-analysis part of Hybrid AARA, my
collaborators and I have developed two Bayesian data-driven analyses (§2.3). They perform
Bayesian inference to infer posterior distributions of cost bounds from observed cost measure-
ments according to a user-customizable probabilistic model. Hybrid AARA (§2.4) integrates
AARA with data-driven analyses, including the two newly developed Bayesian resource anal-
yses as well as an optimization-based baseline from the literature. The primary technical chal-
lenge is the design of an interface between AARA, which runs an optimization algorithm (i.e.,
linear-program solver) to infer cost bounds, and data-driven analysis, which runs a sampling-
based probabilistic inference algorithm to infer cost bounds. I propose novel interface designs
to overcome the challenge.

Because Hybrid AARA reuses types from AARA to capture polynomial potential functions
assigned to program variables, Hybrid AARA inherits two limitations from AARA. Firstly, Hy-
brid AARA cannot apply two constituent resource analyses to infer quantities of different re-
source metrics. For instance, given a recursive function, its total cost is given by the product
of (i) the cost (e.g., running time and memory) of a single recursive call and (ii) the number of
recursive calls. However, because these two quantities have different units (i.e., resource met-
rics), Hybrid AARA cannot perform resource analyses on the two quantities separately and then
combine their inferred bounds. Secondly, due to the use of polynomial potential functions in
Hybrid AARA, it cannot express non-polynomial cost bounds (e.g., 𝑂 (𝑛 log𝑛) for merge sort).

Resource decomposition To address the limitations of Hybrid AARA, my collaborators and
I have designed the second hybrid-resource analysis, resource decomposition [71] (§2.5), which
integrates two complementary analyses using a different interface fromHybrid AARA. The key
idea of the resource-decomposition framework is to extend an input programwith an additional
numeric input variable called a resource guard 𝑟 . The resource guard 𝑟 captures a user-specified
quantity, such as the cost and recursion depth of a code fragment. We perform some resource
analysis technique (e.g., data-driven analysis) to infer a symbolic bound 𝑔(𝑥) of the resource
guard 𝑟 parametric in a program input 𝑥 . Next, we run a different resource analysis technique

4

(e.g., AARA) to infer an overall cost bound 𝑓 (𝑥, 𝑟) of the entire program parametric in both
the original program input 𝑥 and the newly inserted program input 𝑟 . Finally, we substitute
the symbolic bound 𝑔(𝑥) for the resource guard 𝑟 in the overall cost bound 𝑓 (𝑥, 𝑟), obtaining
a bound 𝑓 (𝑥, 𝑔(𝑥)) parametric only in the original input 𝑥 . In addition to formalizing resource
decomposition and proving its soundness theorem, the thesis presents a concrete instantiation
of the resource-decomposition framework, called Swiftlet (§2.6), integrates AARA and Bayesian
data-driven analysis.

Inference of Program Input Generators In existing data-driven analyses, program inputs
used for recording cost measurements are either generated randomly or assumed to be rep-
resentative of real-world workload. Either case, the user has no control over the process of
generating program inputs (and their associated cost measurements)—the dataset of program
inputs and cost measurements is fixed before data-driven analysis. It is challenging to statisti-
cally infer worst-case cost bounds from a fixed dataset of cost measurements, especially when
the dataset rarely contains worst-case inputs. For example, if we use a random input generator
in data-driven resource analysis of QuickSort, it is difficult to correctly infer a worst-case𝑂 (𝑛2)
cost bound from a dataset where cost measurements highly concentrate around the average-
case 𝑂 (𝑛 log𝑛) complexity.

For proposed work, my collaborators and I plan to develop a data-driven-resource-analysis
methodology that statistically infers not only a worst-case symbolic cost bound but also a worst-
case program input generator (§2.7). A program input generator is a (domain-specific) program
that generates program inputs of various sizes conforming to a certain pattern (e.g., sorted lists
and balanced trees). In the proposed methodology, the user has control over the data-collection
process: they are enabled to run an input program with various input generators, instead of
working with a fixed input generator. By testing various input generators, we are more likely
able to find a more desirable input generator that yields worse program inputs than a random
input generator, hence inferring a more accurate worst-case cost bound.

1.4 Publications

This thesis proposal is based on the following three publications:
1. Long Pham and Jan Hoffmann. Typable Fragments of Polynomial Automatic Amortized

Resource Analysis [70]. Published at CSL 2021.
2. Long Pham, Feras A. Saad, and Jan Hoffmann. Robust Resource Bounds with Static Anal-

ysis and Bayesian Inference [72]. Published at PLDI 2024.
3. Long Pham, Yue Niu, Nathan Glover, Feras A. Saad, and Jan Hoffmann. Integrating Re-

source Analyses via Resource Decomposition [71]. Under submission.
The first paper proves polynomial-time completeness of AARA. The second paper presents

Bayesian data-driven analysis and the first hybrid resource analysis, Hybrid AARA. The third
paper (under submission) presents the second hybrid resource analysis, resource decomposi-
tion, and its instantiation, Swiftlet, which integrates AARA and Bayesian data-driven analysis.

Yue Niu and I collaborated on the theoretical foundation of resource decomposition. I first
formulated resource decomposition and proved its soundness in an operational semantics of a

5

first-order language. Yue Niu then recast the formulation in a domain-theoretic denotational
semantics of a higher-order language, proving the soundness using a logical relation.

6

2 Overview

This section first introduces the static resource analysis that I focus on throughout the thesis.
It then describes three completed works and a proposed work for the thesis.

2.1 Background

Resource analysis Given a program 𝑃 , the goal of resource analysis is to infer a symbolic
bound 𝑓 (𝑥) on the worst-case resource usage of the program 𝑃 as a function of a program input
𝑥 . For every input 𝑥 , the predicted cost 𝑓 (𝑥) must be a valid upper bound of the computational
cost of executing 𝑃 (𝑥).

Resource analysis generally supports a wide range of resource metrics, such as running
time, memory, and energy. To specify a resource metric of interest, the user (manually or
automatically) inserts a program construct tick 𝑞 for 𝑞 ∈ Q throughout the source code. The
construct tick 𝑞 increments a cost counter by 𝑞 ∈ Q and returns the unit element ⟨ ⟩. If 𝑞 ≥ 0,
it means 𝑞 units of resources are consumed. Otherwise, if 𝑞 < 0, it means |𝑞 | units of resources
are freed up (and become available to be reused later).

If all tick 𝑞 satisfy 𝑞 ≥ 0, the resource metric is said to be monotone. Running time of
programs is a monotone resource metrics because we cannot reuse time. By contrast, memory
usage is a non-monotone resource metric because memory can be freed up as well as consumed.
In non-monotone resource metrics, we have two notions of costs: net costs and high-water-mark

costs. The net cost refers to the net amount of resources consumed after program execution,
while the high-water-mark cost refers to the maximum cost at any point during program exe-
cution. In monotone resource metrics, these two notions of costs coincide.

Programming language Throughout this thesis, I consider a call-by-value functional pro-
gramming language. A program P is a finite set of (mutually recursive) function definitions of
the form 𝑃 (𝑥) = 𝑒 , where 𝑃 is a function name, 𝑥 is the function input, and 𝑒 is the function
body that is allowed to mention function names (including 𝑃 itself) defined in the program
P. For resource analysis, the user specifies which function (𝑃 (𝑥) = 𝑒) ∈ P is to be analyzed.
Given a program P (i.e., a finite set of function definitions), the cost semantics of an expression
𝑒 under an environment 𝑉 (i.e., a mapping from variables to values) is given by a judgment

𝑉 ⊢P 𝑒 ⇓ℎ,𝑟 𝑣, (2.1)

where 𝑣 is the output value, ℎ is the high-water-mark cost, and 𝑟 is the remaining potential.
The net cost is given by ℎ − 𝑟 .

AARA For the static-analysis part of hybrid resource analysis, I focus on a state-of-the-art
static analysis technique, Automatic Amortized Resource Analysis (AARA) [39, 41, 43, 45] and
its implementation Resource-Aware ML (RaML) [42, 44] for OCaml programs. AARA is a type-
based technique that automatically infers polynomial cost bounds. AARA automates the po-
tential method from amortized analysis of algorithms and data structures by Sleator and Tarjan
[80, 81]. Given a functional program, all variables in the program are assigned polynomial po-

tential function parametric in the input size such that (i) the potential is always non-negative

7

throughout the program execution and (ii) for every step of computation, the pre-state poten-
tial is larger than or equal to the the post-state potential plus the cost of computation. These
two conditions ensure that the initial total potential of the programs is a valid upper bound on
the total computational cost.

To encode polynomial potential functions, AARA augments standard datatypes from func-
tional programming with polynomial coefficients of potential functions, resulting in resource-

annotated types. To illustrate the types, consider the partition function that partitions an
integer list around a pivot. Our goal is to derive a worst-case bound on the number of compar-
isons during an evaluation of partition, namely 𝑛, where 𝑛 is the input list length. In AARA,
we type an expression partition (𝑝, 𝑥), where 𝑝 is a pivot and 𝑥 is an input list, as follows:

{𝑝 : int, 𝑥 : 𝐿1(int)}; 0 ⊢ partition (𝑝, 𝑥) : ⟨𝐿0(int) × 𝐿0(int), 0⟩. (2.2)

The resource-annotated type 𝐿1(int) assigns the potential functionΦ(𝑣 : 𝐿1(int)) = 1· |𝑣 | to an
input list 𝑣 . Also, the annotation 0 in the typing context (i.e., the left-hand side of the turnstile ⊢)
indicates that 0 additional constant potential is stored in the context. The typing judgment (2.2)
states that, if we start with the linear input potential 1 · |𝑥 |, the expression partition (𝑝, 𝑥) can
be successfully evaluated without running out of potential, with zero leftover potential stored
in the output of the expression.

AARA is naturally compositional because resource annotated types not only capture com-
putational costs but also implicitly track size changes of data structures. This is achieved by
assigning potential functions to the output as well as the input of an expression, where the
potential functions are parametric in the output and input sizes, respectively. Assume we have
two nested calls to partition as in the following function f:

f(x) = let (x1,x2) = partition (42,x) in partition (1,x1)

In the second function call partition (1, 𝑥1), we can use the previous type for partition. How-
ever, for the first function call partition (42, 𝑥), we use the typing judgment

{𝑝 : int, 𝑥 : 𝐿2(int)}; 0 ⊢ partition (𝑝, 𝑥) : ⟨𝐿1(int) × 𝐿1(int), 0⟩. (2.3)

It assigns a resource-annotated type 𝐿1(int) to the two output lists such that the they have
enough potential to pay for the subsequent computation. Let 𝑣 , 𝑣1, 𝑣2 be values of variables
𝑥 , 𝑥1, 𝑥2, respectively. The intuition is that the input potential Φ(𝑣 : 𝐿2(int)) = 2 · |𝑣 | of the
typing judgment (2.3) is used to cover both the cost (i.e., 1 · |𝑣 |) and the potential of the result
(i.e., 1 · |𝑣1 | + 1 · |𝑣2 |). It relies on the fact |𝑣1 | + |𝑣2 | = |𝑣 |, which AARA’s type system implicitly
figures out. The potential Φ(𝑣1 : 𝐿1(int)) = 1 · |𝑣1 | stored in the first output list covers the
cost of the second function call partition (1, 𝑥1). In general, the resource-annotated type of
partition (𝑝, 𝑥) can be expressed with linear constraints:

{𝑝 : int, 𝑥 : 𝐿𝑞1 (int)};𝑞0 ⊢ partition (𝑝, 𝑥) : ⟨𝐿𝑟1 (int) × 𝐿𝑟2 (int), 𝑟0⟩ (2.4)
subject to 𝑞1 ≥ 1 + 𝑞′, 𝑞′ ≥ 𝑟1, 𝑞′ ≥ 𝑟2, 𝑞0 ≥ 𝑟0. (2.5)

Similar constraints are emitted by the type system of AARA during the type inference. The
constraints, which are all linear, are then solvedwith an off-the-shelf linear-program (LP) solver.

8

If the linear constraints are solvable, the solution translates to a polynomial potential function,
which in turn serves as a polynomial cost bound.

Although the resource-annotated type of the partition function only stores linear po-
tential, AARA can also encode polynomial potential functions and therefore polynomial cost
bounds while retaining compositionality and type inference with linear constraint solving [40,
43]. In (polynomial) AARA, resource annotations inside resource-annotated types record poly-
nomial coefficients of potential functions. Since it is not necessary to understand the details of
how polynomial potential functions are encoded in AARA, I omit the details.

A typing judgment of an expression 𝑒 in (polynomial) AARA has the form

Γ;𝑝 ⊢ 𝑒 : ⟨𝑎, 𝑞⟩, (2.6)

where Γ is a resource-annotated typing context (i.e., a mapping from variables to resource-
annotated types), 𝑝 ∈ Q≥0 is constant potential of the context, and 𝑎 is a resource-annotated
type of the output with constant potential 𝑞 ∈ Q≥0. Let Φ(𝑉 : Γ) denote the amount of po-
tential stored in an environment 𝑉 with a resource-annotated typing context Γ, and likewise
Φ(𝑣 : 𝑎) denote the amount of potential stored in a value 𝑣 of resource-annotated type 𝑎. The
typing judgment (2.6) means, given an environment𝑉 that carries potential 𝑝 +Φ(𝑉 : Γ), if the
expression 𝑒 evaluates to a value 𝑣 , then 𝑣 carries 𝑞 + Φ(𝑣 : 𝑎) much potential.

The soundness of cost bounds inferred by AARA is formally stated in Thm. 2.1 [40].
Theorem 2.1 (Soundness of AARA). Given a program P, consider an expression 𝑒 such that

𝑉 ⊢P 𝑒 ⇓ℎ,𝑟 𝑣 . If we have a resource-annotated typing judgment Γ;𝑝 ⊢ 𝑒 : ⟨𝑎, 𝑞⟩, then we

have Φ(𝑉 : Γ) + 𝑝 ≥ ℎ (i.e., the initial potential is a bound of the high-water mark cost) and

Φ(𝑉 : Γ) + 𝑝 −Φ(𝑣 : 𝑎) −𝑞 ≥ ℎ − 𝑟 (i.e., the net potential consumption is a bound on the net cost).

However, AARA is incomplete: there exists a polynomial-cost program for which AARA
cannot infer a polynomial cost bound. This incompleteness, which every static analysis tech-
nique suffers, stems from not only the unsupported language features of AARA but also its
inadequate reasoning power for complicated recursion patterns.

Bayesian inference Bayesian inference is a paradigm of statistical analysis where a proba-
bilistic model is conditioned on observed data (by Bayes’ rule) to derive an inference result. Let
𝜃 be a latent variable (i.e., a random variable that we wish to infer) and𝑦 be an observed variable

(i.e., a random variable whose values can be observed). The user provides a probabilistic gen-
erative model that specifies the joint probability distribution 𝜋 (𝜃,𝑦). The probabilistic model
encodes the user’s domain knowledge. It follows from Bayes’ rule that the posterior distribution
of the latent variable 𝜃 given observed data D is

𝜋 (𝜃 | 𝑦 =D) = 𝜋 (𝜃,𝑦 =D)
𝜋 (𝑦 =D) =

𝜋 (𝜃,𝑦 =D)∫
𝜃
𝜋 (𝜃,𝑦 =D) d𝜃

. (2.7)

The denominator
∫
𝜃
𝜋 (𝜃,𝑦 =D) d𝜃 is an integral over the space of the latent variable 𝜃 , which

is usually a high-dimensional space. Hence, it is computationally intractable to compute the
exact integral. Instead, in practice, a sampling-based probabilistic inference algorithm (e.g.,
Hamiltonian Monte Carlo (HMC)) is employed to draw a large number of samples 𝜃 ′1, . . . , 𝜃

′
𝑀

from a Markov chain that is carefully crafted to converge to the target posterior distribution.
The posterior samples 𝜃 ′1, . . . , 𝜃

′
𝑀
then serve as an approximation of the posterior distribution.

9

2.2 Polytime Completeness of AARA (Completed)

Despite the incompleteness of AARA, the typable fragments of AARA is polynomial-time com-

plete [70]. That is, for any function 𝑓 : N → N, if it is polynomial-time (i.e., there exists a
polynomial-time Turing machine that computes the function 𝑓), there is a program that (i) com-
putes the same function 𝑓 and (ii) is typable in AARA.

Thm. 2.2 formally states the polynomial-time completeness of the typable fragment of AARA.
Theorem 2.2 (Polynomial-time completeness of AARA). Given a finite alphabet Σ, let 𝑀 be a

polynomial-time one-tape Turing machine that take in and returns bit strings from Σ∗. Then there
exists a functional program 𝑃 : Σ∗ → Σ∗ such that

• For every input𝑤 ∈ Σ∗, we have𝑀 (𝑤) = 𝑃 (𝑤);
• The computational cost of the functional program 𝑃 (according to the tick resource metrics)

is larger than or equal to the running time of the Turing machine𝑀 ;

• AARA can infer a resource-annotated type of the functional program 𝑃 .

That is, the set of functional programs typable in AARA is complete with respect to polynomial-

time functions.

To prove Thm. 2.2, given a polynomial-time one-tape Turing machine𝑀 , we assume that a
polynomial time bound 𝑝 (𝑛) of the Turing machine 𝑀 is known, where 𝑛 is the input size of
𝑀 (i.e., the length of an input bit string). We translate the Turing machine 𝑀 to a functional
program 𝑃 that first creates a list ℓpotential whose length is equal to the known time bound
𝑝 (𝑛). The list ℓpotential acts as a reservoir of potential, storing one unit of potential in each list
element. The program 𝑃 then simulates the Turing machine𝑀 , consuming one element of the
list every time the simulated Turing machine 𝑀 moves its tape head. In every consumption of
the list elements of ℓpotential, the program 𝑃 runs the expression tick 1, which can be paid by the
potential stored in the list. Thus, the program 𝑃 has the same cost (and also the output) as the
Turing machine𝑀 . Furthermore, the program 𝑃 constructs the list ℓpotential of size 𝑝 (𝑛) in such
a way AARA’s type system can infer a polynomial potential function for the list. Hence, the
program 𝑃 is typable in AARA. The idea of adding a list to a program that explicitly encodes a
known cost bound will later be exploited in the development of hybrid resource analysis (§2.5).

Turing machines Consider a one-tape Turing machine 𝑀 = (𝑄, Σ, Γ, ⊢,⊔, 𝛿, 𝑞0, 𝑞final). Here,
𝑄 is a finite set of states, Σ is a finite alphabet of input symbols, and Γ ⊃ Σ is a finite alphabet
of tape symbols (including input symbols). The tape symbol ⊢ ∈ Γ \ Σ is the left end marker,
and ⊔ ∈ Γ \ Σ is the blank symbol on the tape. Finally, 𝛿 : 𝑄 × Γ → 𝑄 × Γ × {left, right} is the
transition function, 𝑞0 is the initial state, and 𝑞final is the final state.

In the initial configuration of a Turing machine, an input string 𝑤 ∈ Σ∗ is placed immedi-
ately after the left end marker ⊢ on the tape. The state of the machine is initially 𝑞0, and the
read/write head is positioned on the first symbol of the input string 𝑤 . The rest of the tape is
filled with the blank symbol ⊔.

The Turing machine first (i) reads the content of the cell currently under the tape head and
(ii) identifies the current state of the machine. The machine then overwrites the current cell (if
necessary), updates the machine’s state, and moves the head to the left or right according to
the transition function 𝛿 . The machine terminates when it enters 𝑞final. Upon termination, the

10

Algorithm 1 Operational working of the target functional program 𝑃

Require: Input string𝑤 ∈ Σ∗
1: procedure 𝑃 (𝑤)
2: Create a singleton list ℓleft ≔ [⊢] and a list ℓright ≔ [⊔, . . . ,⊔] of length 𝑝 (|𝑤 |)
3: Prepend the list ℓright with the input string𝑤
4: Create a list ℓpotential of size 𝑝 (|𝑤 |) ⊲ Reservoir of potential
5: 𝑠 ← 𝑞0 ⊲ Initialize the current state
6: while 𝑠 ≠ 𝑞final ∧ ℓpotential ≠ [] do
7: ℓpotential ← tail ℓpotential ⊲ Potential is released
8: Run tick 1 to consume one unit of resources
9: Compute 𝛿 (𝑠, ℓright [0])
10: Update 𝑠 and ℓright [0] appropriately
11: Update the tape head’s position by moving the head of ℓleft or ℓright to the other
12: return append(reverse ℓleft, ℓright)

content of the tape before the first blank symbol ⊔ is considered as the machine’s output. The
running time is defined as the number of steps the Turing machine makes before termination.

Simualtion of polynomial-time Turing machines I show how to translate a polynomial-
time Turing machine to a functional program while preserving the semantics and cost. Fix
a polynomial-time one-tape Turing machine 𝑀 = (𝑄, Σ, Γ, ⊢,⊔, 𝛿, 𝑞0, 𝑞final). Assume that the
running time of𝑀 is bounded above by 𝑝 (𝑛) for some polynomial 𝑝 : N→ N. Let 𝑃 denote the
functional program obtained by translating the Turing machine𝑀 .

Alg. 1 describes how the program 𝑃 simulates the Turing machine𝑀 given an input string
𝑤 ∈ Σ∗. In line 2, the list ℓleft represents the region on the Turing machine 𝑀’s tape to the left
of the tape head (in the reverse order and excluding the cell where the tape head is currently
on), and ℓright represents the region to the right of the head (including the current cell). Since
it is assumed that 𝑝 (|𝑤 |), where |𝑤 | denotes the length of the input string𝑤 , is a bound on the
running time of the Turing machine 𝑀 , we are assured that the machine 𝑀 requires at most
𝑝 (|𝑤 |) many cells on the tape. Hence, we safely initialize ℓleft to a list of length 𝑝 (|𝑤 |) without
running out of the space later. In line 4, the list ℓpotential acts as a reservoir of potential, storing
one unit of potential in each element. As the head of ℓpotential is removed in line 7, the potential
stored in this element is released and is used to pay for tick 1 in line 8.

2.3 Bayesian Data-Driven Resource Analyses (Completed)

This section presents Bayesian data-driven analysis [72], which infers a cost bound by Bayesian
inference on a dataset of cost measurements obtained by running a program on many inputs.
Bayesian data-driven analysis offers two advantages over existing data-driven resource analy-
ses, which are mostly optimization-based:

1. Bayesian inference lets the user express their domain knowledge (e.g., how conserva-
tive inferred cost bounds should be with respect to the observed costs) in the form of

11

probabilistic models. By contrast, most data-driven analyses in the literature, which are
optimization-based, do not let the user customize statistical models for data analysis.

2. Bayesian inference returns a distribution of inferred cost bounds, providing richer infor-
mation about statistical uncertainty of inferred bounds than optimization-basedmethods.

Throughout this section, I consider monotone resource metrics (e.g., running time) for sim-
plicity. Because high-water-mark costs coincide with net costs in monotone resource metrics,
I simplify the cost-semantic judgment by only indicating one cost:

𝑉 ⊢P 𝑒 ⇓𝑐 𝑣 . (2.8)

I later discuss how to adapt data-driven analysis to non-monotone resource metrics.

Code annotations for data-driven analysis To specify which code fragments are to be
analyzed by data-driven analysis, the user annotates them. Let L be a countable set of labels.
To indicate that an expression 𝑒 inside the source code is subject to data-driven analysis, the
user annotates the expression as statℓ 𝑒 , where ℓ ∈ L is a label that uniquely identifies a site of
data-driven analysis. In fully data-driven analysis, which is a special case of hybrid analysis, if
a function 𝑃 (𝑥) = 𝑒 is to be analyzed, the entire function body 𝑒 is annotated as statℓ 𝑒 .

Runtime cost datasets Consider a program P where code fragments subject to data-driven
analysis are annotated with with statℓ for ℓ ∈ L. Let 𝑃 (𝑥) be the main function of of the
program. We first prepare 𝑁 > 0 many environments 𝑈𝑖 = {𝑥 : 𝑢𝑖} (𝑖 = 1, . . . , 𝑁) and run the
main function 𝑃 (𝑥) each environment𝑈𝑖 as input. Let 𝐿′ ⊂ L denote the finite set of labels of all
statℓ subexpressions in the program P. During the execution of 𝑃 (𝑢𝑖), suppose we encounter
an annotated code fragment statℓ 𝑒ℓ for 𝑁 ℓ

𝑖 ≥ 0 times. Let the evaluation judgments of the
expression 𝑒ℓ while evaluating 𝑃 (𝑢𝑖) be

𝑉 ℓ
𝑖, 𝑗 ⊢P 𝑒ℓ ⇓𝑐

ℓ
𝑖, 𝑗 𝑣 ℓ𝑖, 𝑗 (𝑖 = 1, . . . , 𝑁 , 𝑗 = 1, . . . , 𝑁 ℓ

𝑖). (2.9)

In (2.9), the input𝑢𝑖 to the main function 𝑃 , all values in the environment𝑉 ℓ
𝑖, 𝑗 for the expression

𝑒ℓ , and the output value 𝑣 ℓ𝑖, 𝑗 are all required to have non-arrow types. Otherwise, higher-order
functions would raise technical challenges in program-input generation and data collection.

A datasetDℓ of cost measurements for the code fragment statℓ 𝑒ℓ is constructed by record-
ing three components: inputs𝑉 ℓ

𝑖, 𝑗 , outputs 𝑣
ℓ
𝑖, 𝑗 , and costs 𝑐

ℓ
𝑖, 𝑗 . An overall datasetD is then given

by aggregating all Dℓ for ℓ ∈ 𝐿′. Formally, datasets Dℓ and D are defined as

Dℓ ≔ {(ℓ,𝑉 ℓ
𝑖, 𝑗 , 𝑣

ℓ
𝑖, 𝑗 , 𝑐

ℓ
𝑖, 𝑗) | 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑁 ℓ

𝑖 } (ℓ ∈ 𝐿′) D ≔
⋃
ℓ∈𝐿′
Dℓ . (2.10)

Setting the stage To set the stage for fully data-driven analysis, consider a program P where
a function (𝑃 (𝑥) = 𝑒) ∈ P is the target of resource analysis. Let the dataset of cost measure-
ments of 𝑒 beD = {(𝑉𝑖, 𝑣𝑖, 𝑐𝑖)}𝑁𝑖=1. To simplify the presentation, we assume that 𝑃 takes as input
a length-𝑛 integer list, returns a length 𝜉 (𝑛)-integer list, and contains no free variables. Since

12

input size

co
st

Observed Data
Linear Programming

(a) Opt
input size

co
st

Observed Data
Linear Programming
Bayesian Survival
Analysis

(b) BayesWC
input size

co
st

Observed Data
Linear Programming
Bayesian Polynomial
Regression

(c) BayesPC

Figure 1: Three approaches to data-driven resource analysis. (a) Opt uses linear programming
to fit a polynomial curve that lies above the runtime data while minimizing the distance to
the observed worst-case cost at each input size. (b) BayesWC uses a two-step approach: first,
Bayesian survival analysis is used to infer a posterior distribution over the worst-case cost at
each input size; second, linear programming is used to fit polynomial curves with respect to
samples from the inferred distribution of worst-case costs. (c) BayesPC uses Bayesian poly-
nomial regression to infer the coefficients of polynomial curves that lie above the observed
runtime data.

𝑉𝑖 ≡ {𝑥 : 𝑣𝑖} holds for each 𝑖, . . . , 𝑁 , I denote the measurements more concisely as (𝑣𝑖, 𝑣𝑖, 𝑐𝑖). A
cost bound of 𝑃 is described by a resource-annotated typing judgment

{𝑥 : 𝐿 ®𝑝 (int)}, 𝑝0 ⊢ 𝑃 𝑥 : ⟨𝐿®𝑞 (int), 𝑞0⟩, (2.11)

where ®𝑝 adn ®𝑞 are vector of polynomial coefficients (except for degree-zero coefficients) of input
and output potential functions, respectively, and 𝑝0 and 𝑞0 are constant potential in the input
and output, respectively. This typing judgment is sound if, for all lists 𝑣 : 𝐿(int) such that
{𝑥 : 𝑣} ⊢P 𝑃 𝑥 ⇓𝑐 𝑣 , the input potential is enough to pay for the cost and output potential:

[Φ(𝑣 : 𝐿 ®𝑝 (int)) + 𝑝0] − [Φ(𝑣 : 𝐿®𝑞 (int)) + 𝑞0] ≡
[
Ψ(|𝑣 |;𝑝0, ®𝑝) − Ψ(|𝑣 |;𝑞0, ®𝑞)

]
≥ 𝑐, (2.12)

where I have introduced the function Ψ(𝑛;𝑝0, ®𝑝) ≔
∑| ®𝑝 |

𝑖=1 𝑝𝑖
(𝑛
𝑖

)
+ 𝑝0(𝑛 ∈ N) to evaluate the

amount of potential for input size 𝑛 with coefficients 𝑝0 and ®𝑝 of polynomial potential func-
tions. Unlike Conventional AARA, which derives (2.11) by static analysis of 𝑒 and linear pro-
gramming, in data-driven resource analysis, we will infer the parameters (𝑝0, ®𝑝) and (𝑞0, ®𝑞)
using the dataset D.

2.3.1 Optimization-Based Data-Driven Analysis

Before presenting Bayesian inference, I consider a simple optimization-based baseline (adapted
from the literature [22, 30, 88]) to ensure that (2.12) is satisfied with respect to the runtime data
D, i.e.,

∀𝑖 = 1, . . . , 𝑁 .Ψ(|𝑣𝑖 |;𝑝0, ®𝑝) ≥ 𝑐𝑖 + Ψ(|𝑣𝑖 |;𝑞0, ®𝑞). (2.13)
We seek the tightest bound among all 𝑝0, ®𝑝, 𝑞0, ®𝑞 that minimizes the nonnegative cost gaps be-
tween the predicted and observed costs in the dataset D. Letting

𝑁D ≔ {|𝑣𝑖 |; 𝑖 = 1, . . . , 𝑁 } set of unique input sizes appearing in D (2.14)
𝑐max
𝑛 ≔ max{𝑐𝑖 | 𝑖 = 1, . . . , 𝑁 ; |𝑣𝑖 | = 𝑛} max. observed cost for input size 𝑛 ∈ 𝑁D (2.15)
𝑐max
𝑛 ≔ max{cost(𝑓 𝑣) | 𝑣 : 𝐿(int), |𝑣 | = 𝑛} true worst-case cost for input size 𝑛 ∈ 𝑁D,

(2.16)

13

I define the following linear program:

minimize
∑𝑁

𝑖=1
[
Ψ(|𝑣𝑖 |;𝑝0, ®𝑝) − Ψ(|𝑣𝑖 |;𝑞0, ®𝑞)

]
− 𝑐max
|𝑣𝑖 | (Opt-LP)

subject to Ψ(|𝑣𝑖 |;𝑝0, ®𝑝) ≥ Ψ(|𝑣𝑖 |;𝑞0, ®𝑞) + 𝑐max
|𝑣𝑖 | (𝑖 = 1, . . . , 𝑁); 𝑝0, 𝑝1, . . . , 𝑝 | ®𝑝 |, 𝑞0, 𝑞1, . . . , 𝑞 | ®𝑞 | ≥ 0.

An example of this approach, which I call Opt, is shown in Fig. 1a. While any solution 𝑝0, ®̂𝑝, 𝑟0, ®̂𝑞
to (Opt-LP) is guaranteed to satisfy (2.13), even a conservative estimate Ψ(𝑛;𝑝0, ®̂𝑝) of the worst-
case cost may lie below the true value 𝑐max

𝑛 in Eq. (2.16) (which I assume is finite). This short-
coming occurs because Opt uses the point estimate 𝑐max

𝑛 given in Eq. (2.15) as a proxy for 𝑐max
𝑛 ,

which is not robust in cases where the data D is such that 𝑐max
𝑛 < 𝑐max

𝑛 for some 𝑛 ∈ 𝑁D .

2.3.2 Bayesian Inference on Worst-Case Costs

Overview The first approach to addressing the aforementioned limitation of Opt is Bayesian
inference on worst-case costs (BayesWC). Whereas Opt uses the dataD to form a point estimate
𝑐max
𝑛 of the worst-case cost 𝑐max

𝑛 for each input size 𝑛 ∈ 𝑁D in the linear program, BayesWC
instead leverages D to learn an entire probability distribution 𝜇𝑛 that characterizes our uncer-
tainty about 𝑐max

𝑛 . I identify two requirements that the inferred worst-case cost distributions 𝜇𝑛
must satisfy:

𝜇𝑛 ([𝑐max
𝑛 ,∞)) = 1, ∀𝜖 > 0,𝑤 > 𝑐max

𝑛 . 𝜇𝑛 ([𝑤 − 𝜖,𝑤 + 𝜖]) > 0. (2.17)

The left expression guarantees soundness (2.13) with respect to D and the right expression
ensures robustness with respect to the true worst-case cost 𝑐max

𝑛 . The latter property is not
satisfied by Opt.

If we have access to probability distributions 𝜇𝑛 (𝑛 ∈ 𝑁D) over worst-case costs, we can use
them to robustly estimate bounds by generating |𝑁D | batches of𝑀 > 0 i.i.d. samples

(𝑐′𝑛,1, . . . 𝑐′𝑛,𝑀) ∼ 𝜇𝑛 (𝑛 ∈ 𝑁D). (2.18)

Reorganizing these |𝑁D | × 𝑀 samples into 𝑀 lists c′𝑗 ≔ (𝑐′𝑛,𝑗 ;𝑛 ∈ 𝑁D) (𝑗 = 1, . . . , 𝑀) each of
length 𝑁D , we obtain posterior samples of coefficients 𝑝0, ®𝑝, 𝑞0, ®𝑞 by solving𝑀 linear programs
parametrized by the random samples c′𝑗 :

minimize
∑𝑁

𝑖=1
[
Ψ(|𝑣𝑖 |;𝑝0, ®𝑝) − Ψ(|𝑣𝑖 |;𝑞0, ®𝑞)

]
− 𝑐′|𝑣𝑖 |, 𝑗 (BayesWC-LP)

subject to Ψ(|𝑣𝑖 |;𝑝0, ®𝑝) ≥ Ψ(|𝑣𝑖 |;𝑞0, ®𝑞) + 𝑐′|𝑣𝑖 |, 𝑗 (𝑖 = 1, . . . , 𝑁); 𝑝0, 𝑝1, . . . , 𝑝 | ®𝑝 |, 𝑞0, 𝑞1, . . . , 𝑞 | ®𝑞 | ≥ 0.

Fig. 1b shows an example of BayesWC,where the blue dots above a given input size𝑛 represents
the samples 𝑐′𝑛,𝑗 from the worst-case cost distribution 𝜇𝑛 . The solutions of the corresponding
linear programs (BayesWC-LP) are shown in red. Whereas Opt delivers a single bound us-
ing from one LP, BayesWC delivers a posterior samples of bounds using multiple randomly
generated LPs.

14

Sampling worst-case costs via Bayesian inference To obtain distributions 𝜇𝑛 over worst-
case costs that satisfy Eq. (2.17), we perform Bayesian inference as follows. Let v ≔ (𝑣1, . . . , 𝑣𝑁)
denote the observed inputs in D and c ≔ (𝑐1, . . . , 𝑐𝑁) the corresponding costs. Let 𝐶𝑛 be a
random variable representing the cost of 𝑃 applied to a size-𝑛 input 𝑣 (the randomness is taken
over the (unknown) distribution of 𝑣). Define C ≔ (𝐶 |𝑣1 |, . . . ,𝐶 |𝑣𝑁 |) as a vector of random
variables representing the costs of running 𝑃 on inputs of sizes |𝑣𝑖 | (𝑖 = 1, . . . , 𝑁). We design a
Bayesian model indexed by v:

𝜋v(𝜃,C) ≔ ℎ(𝜃)
𝑁∏
𝑖=1

𝑔(𝑐𝑖 ;𝜃, |𝑣𝑖 |), (2.19)

where ℎ(𝜃) is a prior distribution of latent parameters 𝜃 and 𝑔(𝑐𝑖 ;𝜃, |𝑣𝑖 |) is the likelihood of 𝑐𝑖
given the latent parameters 𝜃 and the input size |𝑣𝑖 |. The Bayesian model encodes the user’s
domain knowledge about how conservative inferred cost bounds should be relative tomaximum
observed costs in the dataset D.

To infer worst-case costs 𝑐max
𝑛 (𝑛 ∈ 𝑁D), we approximate the posterior distribution 𝜋v(𝜃 | c)

by running a sampling-based probabilistic inference algorithm and drawing posterior samples
𝜃1, . . . , 𝜃𝑀 . Next, for each posterior sample 𝜃 𝑗 (𝑗 = 1, . . . , 𝑀), we sample inferred worst-case cost
𝑐′𝑛,𝑗 (𝑛 ∈ 𝑁D) from the distribution 𝑔(·;𝜃 𝑗 , 𝑛) truncated to the interval [𝑐max

𝑛 ,∞), where 𝑐max
𝑛 is

the maximum observed cost of size 𝑛 present in the datasetD (Eq. (2.15)). Finally, we insert the
posterior samples of worst-case costs into the linear programs (BayesWC-LP) and solve them.

2.3.3 Bayesian Inference on Polynomial Coefficients

Whereas BayesWC performs Bayesian inference on worst-case costs and composes the results
with (BayesWC-LP) to deliver bounds, my collaborators and I develop another approach that
bypasses LP solving and directly performs inference over the unknown coefficients 𝑝0, ®𝑝, 𝑞0, ®𝑞
in the resource-annotated typing judgment (2.11).

In this approach, which I call Bayesian inference on polynomial coefficients (BayesPC), a
Bayesian model is again indexed by the input instances v and defines a probability distribution
𝜋v(𝜃, 𝑝0, ®𝑝, 𝑞0, ®𝑞, c) over a set of auxiliary latent parameters 𝜃 , resource coefficients 𝑝0, ®𝑝, 𝑞0, ®𝑞,
and observable costs c. Conditioned on c, we sample

𝑝′0, ®𝑝′, 𝑞′0, ®𝑞′ ∼ 𝜋v(𝑝0, ®𝑝, 𝑞0, ®𝑞 |c), (2.20)

which define the posterior bound 𝜆𝑛. Ψ(𝑛;𝑝′0, ®𝑝′) − Ψ(𝜉 (𝑛);𝑞′0, ®𝑞′). Fig. 1c illustrates this idea:
the blue curves represent posterior samples of cost bounds and the blue dots show samples 𝑐′𝑛
of inferred worst-case costs that estimate the true value 𝑐max

𝑛 at each input size 𝑛 ∈ 𝑁D . As
in BayesWC, BayesPC delivers posterior samples of both worst-case costs and cost bounds,
but it rests on a different modeling and inference approach that bypasses linear programming
entirely.
Remark 2.3. The main challenge to posterior inference in BayesPC is the fact that the polynomial

coefficients 𝑝0, ®𝑝, 𝑞0, ®𝑞 are constrained to the linear regions 𝑐𝑖 ⊑ Ψ(|𝑣𝑖 |;𝑝0, ®𝑝) − Ψ(𝜉 (|𝑣𝑖 |);𝑞0, ®𝑞) for
𝑖 = 1, . . . , 𝑁 . That is, the coefficients must be sound at least with respect to the cost measure-

ments in the dataset D. Coefficients outside this region have zero posterior probability density.

15

Whereas traditional Markov chain Monte Carlo algorithms struggle in this setting, we leverage

“reflective” Hamiltonian Monte Carlo (reflective HMC) sampling [15, 17, 53, 64] for posterior infer-

ence in BayesPC, where simulated trajectories reflect at the boundaries of the convex polytopes. A

high-quality implementation is available in the C++ library Volesti [16]. «

2.3.4 Extension to Non-Monotone Resource Metrics

I discuss how to extend data-driven resource analysis to non-monotone resource metrics where
resources can be freed up aswell as consumed (e.g., memory). To ensure the soundness of AARA
(Thm. 2.1) with respect to a runtime cost dataset D, we record not only net costs 𝑐ℓ𝑖, 𝑗 but also
high-water-mark costs ℎℓ𝑖, 𝑗 during data collection (2.9). In Opt, we then incorporate into the
linear program (Opt-LP) the linear constraints that the input potential Ψ(|𝑣𝑖 |;𝑝0, ®𝑝) must be
larger than or equal to the observed high-water marks ℎℓ𝑖, 𝑗 . The objective function of the linear
program (Opt-LP) can remain unchanged, but the user is allowed to adjust it.

For BayesWC to handle non-monotone resource metrics, we infer worst-case high-water-
mark costs ℎ′𝑛 ≥ 0 (𝑛 ∈ 𝑁D) by Bayesian inference, in addition to worst-case net costs 𝑐′𝑛 .
Furthermore, ℎ′𝑛 ≥ 𝑐′𝑛 must hold for all 𝑛 ∈ 𝑁D , and the net costs 𝑐′𝑛 are now allowed to be
negative because resources can be freed up. The linear program (BayesWC-LP) is thenmodified
by incorporating the inferred worst-case high-water-mark costs ℎ′𝑛 into linear constraints.

Finally, for BayesPC, the Bayesian model is modified by incorporating the observed high-
water-mark costs ℎℓ𝑖, 𝑗 into (i) the joint probability distribution and (ii) the linear constraints
defining the region of positive density to draw posterior samples from.

2.4 Hybrid AARA (Completed)

This section presents Hybrid AARA [72], the first hybrid resource analysis technique that inte-
grates static and data-driven analyses. Specifically, Hybrid AARA integrates AARAwith one of
the three data-driven analysis methods: Opt, BayesWC, and BayesPC. To run Hybrid AARA,
the user first annotates the source code to specify which code fragments are to be analyzed by
data-driven analysis. The rest of the program is analyzed by static analysis.

Hybrid AARA is based on a formal typing system that extends AARA with a new type
judgment:

Γ;𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩. (2.21)

The judgment (2.21) extends the judgment (2.6) of Conventional AARA by including a dataset
D of runtime cost measurements. A key technical challenge is the design of the interface
between (i) data-driven resource analysis using sampling-based Bayesian inference algorithms
and (ii) Conventional AARA using static inference and linear programming.

16

2.4.1 Hybrid BayesWC and Opt

Typing rules Opt and BayesWC are integrated into the AARA type system by adding the
following rules for statℓ subexpressions:

H:Opt
𝑝0 + Φ(𝑉 ℓ

𝑖 : Γ) ≥ 𝑞0 + Φ(𝑣 ℓ𝑖 : 𝑎) + 𝑐ℓ𝑖
(𝑖 = 1, . . . , |Dℓ |)

Γ;𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩

H:BayesWC
𝑝0 + Φ(𝑉 ℓ

𝑖 : Γ) ≥ 𝑞0 + Φ(𝑣 ℓ𝑖 : 𝑎) + 𝑐′ℓ|𝑉 ℓ
𝑖
|

𝑐′ℓ𝑛 ∼ 𝜋 ℓ
vℓ (·|c

ℓ) (𝑖 = 1, . . . , |Dℓ |;𝑛 ∈ 𝑁Dℓ
)

Γ;𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩
. (2.22)

H:Opt states that the consequent holds whenever the input potential 𝑝0 + Φ(𝑉 : Γ) is large
enough to cover both cost 𝑐 and leftover potential𝑞0+Φ(𝑣 : 𝑎) for everymeasurement (ℓ,𝑉 , 𝑣, 𝑐) ∈
Dℓ . For H:BayesWC, given a dataset Dℓ = {(𝑉 ℓ

𝑖 , 𝑣
ℓ
𝑖 , 𝑐

ℓ
𝑖) | 𝑖 = 1, . . . , 𝑀ℓ }, I define

vℓ ≔ ((𝑉 ℓ
𝑖 , 𝑣

ℓ
𝑖), 𝑖 = 1, . . . , 𝑀ℓ) cℓ ≔ (𝑐ℓ𝑖 , 𝑖 = 1, . . . , 𝑀ℓ). (2.23)

The corresponding probabilistic model used within statℓ is denoted 𝜋 ℓ . H:BayesWC is similar
to H:Opt, except that each observed cost 𝑐 within a measurement (ℓ,𝑉 , 𝑣, 𝑐) is replaced with a
posterior sample 𝑐′ℓ|𝑉 | for worst-case costs drawn from BayesWC (2.18).

Type inference Because the premises of H:Opt and H:BayesWC are linear constraints over
the resource coefficients in 𝑒 , type inference operates similarly to conventional AARA. The
type inference for Hybrid BayesWC operates as follows. Given the runtime data D, we first
perform data-driven BayesWC inference to produce 𝑀 batches of posterior samples of c′ℓ𝑗 ≔

(𝑐′ℓ𝑛, 𝑗 , 𝑛 ∈ 𝑁Dℓ
) for 𝑗 = 1, . . . , 𝑀 and each label ℓ , which define 𝑀 versions of H:BayesWC for

each statℓ subexpression. Next, for each 𝑗 = 1, . . . , 𝑀 , we perform a static pass that constructs
a template typing tree according to Conventional AARA’s type system augmented with the
inference rule H:BayesWC. This process produces 𝑀 systems of linear constraints 𝐶 𝑗 (𝑗 =

1, . . . , 𝑀), where the linear constraints within each𝐶 𝑗 are derived from two provenances: those
from the Conventional AARA type system (applied to non-annotated code fragments) and those
from the H:BayesWC type rule (applied to code fragments annotated with stat). Each 𝐶 𝑗 is
provided to an LP solver to provide a typing judgment 𝐽 𝑗 for the root node’s typing context,
which translates to an inferred cost bound.

2.4.2 Hybrid BayesPC

Key challenge The integration of BayesPC and Conventional AARA pose a challenge in the
design of their interface. Resource annotations in the typing judgment Γ;𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩
are sampled using Bayesian inference in BayesPC, while they are optimized using LP solvers
in Conventional AARA. Thus, their integration requires an interface between sampling-based
probabilistic inference and linear programming. We cannot simply perform BayesPC to infer
potential functions of the input and output of statℓ 𝑒 and plug them into a linear program
produced by AARA’s type system, because we do not know in advance how much potential
should be stored in the output. Unlike in fully data-driven resource analysis, in hybrid resource
analysis, the output of statℓ 𝑒 may be used in a subsequent computation that also consumes
potential. Thus, the input potential (i.e., Γ and 𝑝0) of an annotated expression statℓ 𝑒 should be
sufficient to pay for not only its own cost but also the cost of subsequent computation.

17

D
en

sity

−1.0

−0.5

0.0

0.5

1.0

1.5

Feasible Region

π`v`

(a) BayesPC

D
en

sity

−1.0

−0.5

0.0

0.5

1.0

1.5

Feasible
Region

C0

AARA

π`v`|C0

(b) Hybrid BayesPC

Figure 2: Posterior distributions over resource coefficients restricted to convex polytopes using
BayesPC. (a) In pure BayesPC, the feasible region of the distribution 𝜋 ℓ

vℓ (and its posterior dis-
tribution) is defined by the linear constraints from a dataset Dℓ of cost measurements. (b) In
Hybrid BayesPC, the feasible region of the distribution 𝜋 ℓ

vℓ |𝐶0
(and its posterior distribution) is

defined by the linear constraints𝐶0 produced by Conventional AARA’s type system, as well as
the linear constraints induced by the dataset Dℓ .

Type inference I address this challenge by adding linear constraints to the BayesPC prob-
abilistic models that encode feasible regions of linear programs computed by Conventional
AARA. This approach guarantees that judgments fromBayesPC cannot impose new constraints
that cause the linear programs to fail to have a solution.

Hybrid BayesPC operates as follows. Suppose we have an annotated code fragment with a
resource-annotated typing judgment

Γ;𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩. (2.24)

We start by performing a static-analysis pass through the program using the conventional
AARA type system to obtain a set of linear constraints 𝐶0, treating any statℓ using the rule
H:Opt to ensure consistency with runtime dataDℓ . Next, for each subexpression statℓ encoun-
tered in the first pass, we apply a variant of BayesPC where a Bayesian model 𝜋 ℓ

vℓ (2.20) is
extended by including all LP variables appearing in the constraints 𝐶0, as well as the original
LP variables in the typing judgment (2.24). The additional LP variables added to the Bayesian
model are assigned with uninformative priors (e.g., uniform if 𝐶0 is bounded).

We then run reflective Hamiltonian Monte Carlo (reflective HMC), which is a recently de-
veloped sampling algorithm that allows HMC sampling to be restricted to a convex polytope
defined by linear constraints [15–17, 53, 64]. Specifically, we run reflective HMC on the ex-
tended Bayesian model, subject to (i) the linear constraints induced by the dataset Dℓ and
(ii) the linear constraints 𝐶0 imposed by AARA from the first pass. Let 𝜋 ℓ

vℓ |𝐶0
denote the ex-

tended Bayesian model restricted to the convex polytope defined by the linear constraints 𝐶0
from the first pass. The linear constraints of D are already included in the original Bayesian
model 𝜋 ℓ

vℓ (Remark 2.3), and hence are also included in the extended Bayesian model 𝜋 ℓ
vℓ |𝐶0

.
Fig. 2 illustrates the difference between the distribution 𝜋 ℓ

vℓ for pure BayesPC and the distribu-
tion 𝜋 ℓ

vℓ |𝐶0
in Hybrid BayesPC. Thanks to reflective HMC, any posterior sample drawn from the

posterior distribution of 𝜋 ℓ
vℓ |𝐶0

is guaranteed to satisfy these linear constraints.

18

1 let rec merge_sort xs =
2 let _ = Raml.tick 1.0 in
3 match xs with
4 | [] → []
5 | [x] → [x]
6 | _ →
7 let lo, hi = split xs in
8 let lo_sorted = merge_sort lo in
9 let hi_sorted = merge_sort hi in
10 merge lo_sorted hi_sorted

(a)MergeSort.

1 let rec bubble_sort xs =
2 let _ = Raml.tick 1.0 in
3 let is_xs_sorted, xs_swapped =
4 traverse_and_swap xs in
5 if is_xs_sorted then
6 xs_swapped
7 else
8 bubble_sort xs_swapped

(b) BubbleSort.

Lst. 1: MergeSort and BubbleSort in OCaml. (a) The construct Raml.tick 1.0 (line 2) indicates
the cost of 1.0 for every function call to merge_sort. This construct comes from RaML [42], an
implementation of AARA for OCaml. (b) The function traverse_and_swap (line 4) traverses
the input xs and returns two outputs: (i) whether xs is sorted; and (ii) the result of swapping
all out-of-order pairs of consecutive elements in xs.

Finally, we draw𝑀 many samples from the posterior distribution:

(Γℓ𝑗 , 𝑝ℓ0, 𝑗 , 𝑎ℓ𝑗 , 𝑞ℓ0, 𝑗) ∼ 𝜋 ℓ
vℓ |𝐶0
(Γ, 𝑝0, 𝑞0, 𝑎 |cℓ) (𝑗 = 1, . . . , 𝑀 ; ℓ ∈ 𝐿′). (2.25)

Substituting these posterior samples for the corresponding LP variables in𝐶0, we obtain𝑀 new
constraints:

𝐶 𝑗 ≔ 𝐶0 ⊕ {(Γℓ𝑗 , 𝑝ℓ0, 𝑗 , 𝑎ℓ𝑗 , 𝑞ℓ0, 𝑗) | ℓ ∈ 𝐿′} (𝑗 = 1, . . . , 𝑀) (2.26)

Each𝐶 𝑗 is then fed to an LP solver to obtain𝑀 posterior samples (𝐵1, . . . , 𝐵𝑀) of cost bounds.

2.5 Resource Decomposition (Completed)

This section introduces the second hybrid-analysis framework, dubbed resource decomposi-

tion [71], which integrates two complementary analysis techniques using a different interface
design from Hybrid AARA. I first describe two limitations of AARA using concrete examples.
I then motivate vertical integration of resource analyses, which cannot be achieved by Hybrid
AARA. Finally, I illustrate resource decomposition on the examples.

2.5.1 Limitations of Hybrid AARA

Running examples I useMergeSort (Listing 1a) and BubbleSort (Listing 1b) as running ex-
amples. In BubbleSort, the input list xs is iteratively traversed, and every out-of-order pair of
consecutive list elements is swapped until the list is ordered. As a concrete resource metric,
I consider the number of function calls performed during evaluation, including all recursive
calls and helper functions, as an illustrative metric. This metric is represented with func-
tions Raml.tick in the code. With this metric, MergeSort and BubbleSort have cost bounds
𝑓 (𝑥) = 1 + 3.5|𝑥 | + 3.5|𝑥 | ⌈log2(|𝑥 |)⌉ and 𝑓 (𝑥) = 1 + 2|𝑥 | + |𝑥 |2, respectively, where |𝑥 | is the
length of the input list 𝑥 .

19

AARA on running examples MergeSort and BubbleSort are both challenging for tradi-
tional static resource analyses, including AARA. To infer a resource bound for MergeSort, the
static analysis must infer that the input list is always split in half. This property can then be
used to conclude that (i) the recursion depth scales logarithmically; (ii) the cost across all re-
cursive calls at the same depth scales linearly. AARA automatically infers a bound 𝑓 (𝑥) =

1 − 2.5|𝑥 | + 3.5|𝑥 |2 for MergeSort, which has incorrect asymptotics.
For BubbleSort, the analysis must infer that the number of out-of-order pairs of consecutive

list elements decreases over time. If the analysis only considers changes in the input size, it
cannot infer the termination of BubbleSort, let alone infer its quadratic resource bound. AARA
fails to infer any bound for BubbleSort altogether.

Limitations of AARA AARA, as implemented in RaML, has two major limitations. The first
limitation is that AARA can only express polynomial bounds, but not logarithmic bounds. Even
though AARA infers a sound quadratic bound forMergeSort, it cannot infer an asymptotically
tight bound of the form 𝑓 (𝑥) = 𝑐 |𝑥 | log(|𝑥 |). The second limitation of AARA is that it cannot
infer a polynomial cost bound of BubbleSort, because the size of the input list does not decrease
at each recursive step. The potential function assigned to the input list xs by AARA can only
be parametric in the size of xs, but not in its content. In BubbleSort, however, the length of the
input list xs is the same at each recursive call. Instead, what decreases over time is the number
of out-of-order pairs of elements in the list. But this is beyond the expressive and reasoning
power of AARA.

These two limitations are not unique to AARA—they are also representative for other static
analysis techniques [47, 57]. It is difficult to design an automatic analysis that can derive arbi-
trary cost functions. If we want, for instance, compositionality, then it is nontrivial to statically
infer cost bounds involving logarithm (e.g., 𝑐 |𝑥 | log(|𝑥 |) forMergeSort) because logarithm does
not compose well with other functions such as polynomials. For BubbleSort, the resource anal-
ysis requires reasoning about the input list’s content as well as its size, which goes beyond the
expressive power of all existing static analysis techniques that I am aware of.

Vertical integration of resource analyses To analyze MergeSort and BubbleSort by hy-
brid analysis (without resorting to fully data-driven analysis), we seek to vertically integrate

two analysis techniques. Vertical integration means, given a program 𝑃 , two analysis tech-
niques separately analyze two quantities of different resource metrics, and then their inferred
symbolic bounds are combined into an overall cost bound of the program 𝑃 . For instance, in
MergeSort, the logarithmic factor in the asymptotically tight bound 𝑐𝑛 log𝑛 stems from the
logarithmic recursion depth of the function merge_sort. It is this logarithmic recursion depth
that poses a challenge to AARA. So we wish to perform two analysis techniques (e.g., data-
driven analysis and AARA) to infer, respectively, the recursion depth and the combined cost of
all recursive calls at the same recursion depth, which are two quantities of different resource
metrics. Likewise, in BubbleSort, although AARA cannot reason about the linear recursion
depth, AARA is still capable of inferring a linear cost bound of each recursive call. Hence, we
would like to separately infer the linear recursion depth and the linear cost of a single recursive
call, then composing (i.e., multiplying) their inferred symbolic bounds.

20

1 let rec merge_sort xs =
2 let _ = Raml.mark0 1.0 in
3 let _ = Raml.tick 1.0 in
4 let result =
5 match xs with
6 | [] → []
7 | [x] → [x]
8 | _ →
9 let lo, hi = split xs in
10 let lo_sorted = merge_sort lo in
11 let hi_sorted = merge_sort hi in
12 merge lo_sorted hi_sorted
13 in let _ = Raml.mark0 (-1.0)
14 in result

(a) Resource-decomposed MergeSort.

1 let rec merge_sort xs r =
2 let _ = Raml.tick 1.0 in
3 let r1 = decrement_r r in
4 let result, r_final =
5 match xs with
6 | [] → ([], r1)
7 | [x] → ([x], r1)
8 | _ →
9 let (lo, hi) = split xs in
10 let lo_sorted, r2 = merge_sort lo r1 in
11 let hi_sorted, r3 = merge_sort hi r2 in
12 (merge lo_sorted hi_sorted, r3)
13 in (result, increment_r r_final)

(b) Resource-guardedMergeSort.

Lst. 2: Resource-decomposed and resource-guarded MergeSort. A resource component is the
recursion depth of the function merge_sort. (a) The annotations Raml.mark0 1.0 (line 2) and
Raml.mark0 (-1.0) (line 13) increment and decrement a resource-component counter by one,
respectively. Hence, the recursion depth of merge_sort is equal to the high-water mark of this
counter. The suffix 0 in the annotation Raml.mark0 identifies a resource component (i.e., the
first resource component). (b) The function merge_sort is extended with a resource guard r.
The function decrement_r (line 3) decrements the resource guard by one (if it is positive, else
raises an exception). The function increment_r (line 13) increments the resource guard by one.

Unfortunately, Hybrid AARA does not support vertical integration of analysis techniques.
Hybrid AARA only supports horizontal integration, where two resource analyses are performed
on quantities of the same resource metric (e.g., running time) of different code fragments.

The root cause is that Hybrid AARA uses resource-annotated types in an interface between
AARAand data-driven analysis. InHybridAARA, given an annotated code fragment statℓ 𝑒 , the
inference result of a data-driven analyses is expressed using a resource-annotated typing judg-
ment Γ;𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩, which contains polynomial potential functions assigned to the
input (i.e., Γ and 𝑝0) and output (i.e., 𝑎 and 𝑞0). These statistically inferred resource-annotated
types are then plugged into a typing tree inferred by AARA. As all resource-annotated types
for an input program 𝑃 must concern the same resource metric (e.g., running time of code frag-
ments inside 𝑃), we cannot use them to capture quantities of different resource metrics inside
the same program (e.g., recursion depth and the running time of a single recursive call).

2.5.2 Overview

I introduce a general hybrid-resource-analysis framework, resource decomposition, to enable
vertical integration of two complementary analysis techniques.

Key insight To illustrate a key insight of the new resource analysis framework, consider
a modified version of MergeSort in Listing 2b. This version is obtained by augmenting the
original program (Listing 1a) with a nonnegative numeric variable r, called a resource guard.
This variable is intended to track the recursion depth of MergeSort. At the start of the function

21

let rec
prims x =
<body>

Original Program (𝑃)
let rec
prims x r1 r2 r3 =
<body’’>

Resource-Guarded Program (𝑃rg)

Runtime
Dataset

let rec
prims x =
<body’>

Resource-Decomposed
Program (𝑃rd)

7 + 2|𝑥 |·𝑟1 + 4|𝑥 |·𝑟2·𝑟3 + 3|𝑥 |·𝑟3 + 4|𝑥 |
Inferred Cost Bound

Automated

Transformation

Resource

Decomposition

Standard

AARA

Data Collection

Inferred Symbolic Expression
𝑟1 = 𝑔1 (𝑥) = 𝑐0 + 𝑐1 log(1 + 𝑐2 + 𝑐3 |𝑥 |)

𝑐0 𝑐1 𝑐2 𝑐3
Posterior Distributions over Parameters

Bayesian Inference on 𝑟1 = 𝑔1 (𝑥)
𝑟2

𝑟3

Figure 3: Overview of resource decomposition instantiated with AARA and Bayesian data-
driven analysis.

body, r is decremented (line 3). If an attempt to decrement r is made when its value is zero,
then an exception is raised. The decremented resource guard r is then successively passed on
to the next recursive calls (lines 10 and 11), if there are any. Finally, once the last recursive call
terminates, its output value of the resource guard r is incremented (line 13) before it is returned
as the second output of the current function call, alongside the original output of MergeSort.

For this modifiedMergeSort, AARA infers a symbolic resource bound 𝑓 (𝑥, 𝑟) = 1+3.5·𝑟 · |𝑥 |,
where 𝑟 denotes the resource guard variable r (which is always a nonnegative number) and |𝑥 |
is the size of the input list xs. The modified program is related to the original version as follows:
as long as the resource guard r is initialized to at least the recursion depth of MergeSort (i.e.,
1 + ⌈log2(|𝑥 |)⌉), the modified code successfully terminates (i.e., it does not raise an exception),
returns the same output as the original code, and incurs the same cost.

Resource decomposition My collaborators and I have developed resource decomposition as
a way to systematically exploit the insight illustrated with the modified code of MergeSort. To
derive a bound for the original function, we first derive the bound 𝑓 (𝑥, 𝑟) = 1 + 3.5 · 𝑟 · |𝑥 | for
the modified function. Next, we use another analysis method to infer a cost bound (say 𝑔(𝑥))
for 𝑟 in terms of the original input 𝑥 , and substitute the result in 𝑓 to obtain an overall bound
𝑓 (𝑥) = 1 + 3.5 · 𝑔(𝑥) · |𝑥 |.

Workflow Fig. 3 shows the overall workflow of resource decomposition. Given a program
𝑃 (𝑥), the user (or an automatic tool) first decides on a set of𝑚 ≥ 1 resource components, i.e., the
quantities that the resource guards should track. Examples of resource components include the
recursion depth, the number of recursive calls, and the cost of a code fragment. The program
𝑃 (𝑥) is then (manually or automatically) instrumented with code annotationsmarkℓ 𝑞, where ℓ
is a label that uniquely identifies a resource component and𝑞 ∈ Q is a rational number, such that
their high-water marks (i.e., the highest values reached so far) are equal to the user-specified
resource components. Let 𝑃rd(x) denote the resulting resource-decomposed program. By way
of example, a resource-decomposed program of MergeSort is displayed in Listing 2a, where a
user-specified resource component is the recursion depth of the function merge_sort.

22

Next, the decomposed program 𝑃rd(𝑥) is automatically translated to a resource-guarded pro-
gram 𝑃rg(𝑥, r) by augmenting the former with resource guards r = (𝑟1, . . . , 𝑟𝑚) as extra in-
put variables, one for each user-specified resource component. In contrast to the annotations
markℓ 𝑞 for resource components, the resource guards r count down, i.e., they are decremented
whenever the corresponding resource components are incremented. If the resource-guarded
program 𝑃rg attempts to decrement a resource guard that is zero, the program raises an ex-
ception. We then conduct resource analyses (possibly using different techniques) on (i) the
resource-guarded program 𝑃rg to derive a symbolic cost bound 𝑓 (𝑥, r) for the cost of program
𝑃 ; (ii) the resource components of 𝑃rd to derive their symbolic bounds 𝑟𝑖 = 𝑔𝑖 (𝑥) (𝑖 = 1, . . . ,𝑚).
Finally, we substitute the resource components’ symbolic bounds 𝑔𝑖 (𝑥) for the resource guards
𝑟𝑖 (𝑖 = 1, . . . ,𝑚) in the bound 𝑓 (𝑥, r), obtaining an overall cost bound 𝑓 (𝑥, 𝑔1(𝑥), . . . , 𝑔𝑚 (𝑥)) for
the original program 𝑃 .

Comparison with Hybrid AARA Thanks to the use of resource guards in the interface be-
tween constituent resource analyses, resource decomposition enables vertical integration with-
out any restriction on symbolic bounds of resource components. Resource components can
represent any user-specified quantities as long as they can be expressed as high-water-mark
costs. Hence, resource components are allowed to have different resource metrics from each
other and also from the overall cost bound of the program. This enables vertical integration,
as well as horizontal integration, of resource analyses. Additionally, resource guards, which
are numeric variables tracking resource components, can be any symbolic bounds, including
non-polynomial symbolic bounds that cannot be captured by resource-annotated types.

Furthermore, resource decomposition is more general than Hybrid AARA in term of sup-
ported analysis techniques. Hybrid AARA is specific to the integration of AARA (and its vari-
ants) and data-driven analysis, where cost bounds from both analyses are expressed as resource-
annotated types. By contrast, resource decomposition can be applied to any combination of
analysis techniques: static, data-driven, and interactive resource analyses.

Although resource decomposition is better at vertical integration than Hybrid AARA, the
latter also some advantages over the former in terms of expressive power. In Hybrid AARA,
cost bounds are expressed by resource-annotated types assigned to the input and output of an
expression. Hence, Hybrid AARA can express cost bounds parametric in output sizes as well as
input sizes. By contrast, in resource decomposition, symbolic bounds of resource components
can only be parametric in input sizes, but not output sizes.

2.5.3 Formalization

This section first introduces a programming language with constructs for resource-decomposed
programs. I then describe the program transformation from resource-decomposed programs to
resource-decomposed ones. Finally, I state the soundness theorem of the program transforma-
tion, which has been proved using a logical relation in Pham et al. [71].

Code annotations Fix a countable set L of labels to identify resource components. For
resource-decomposed programs, I define a call-by-value higher-order programming language
Rpcf𝑛 , where 𝑛 ∈ N is the (statically known) number of distinct labels ℓ ∈ L that appear in

23

the source code of an input program. The parameter 𝑛 ∈ N determines the number of resource
guards that are tracked in the denotational semantics. In addition to tick 𝑞 (𝑞 ∈ Q) for resource
consumption, Rpcf𝑛 contains the following constructs for resource decomposition:
(C1) markℓ 𝑞 : unit increments a counter of the resource component ℓ ∈ L by 𝑞 ∈ Q.
(C2) resetℓ : unit records the current high-water mark of the resource component ℓ ∈ L in a

dataset Dℓ and resets the counter to zero.
These constructs have the following semantics. During program execution, each resource

component has a “current” value 𝑐ℓ and a “high-water mark” value ℎℓ (i.e., the maximum value
reached so far), which are both initialized to zero. The expression markℓ 𝑞 sets 𝑐ℓ ← 𝑐ℓ + 𝑞

and ℎℓ ← max(ℎℓ , 𝑐ℓ). The expression resetℓ first saves the measurement (ℓ, ℎℓ) in a dataset
Dℓ , then resets 𝑐ℓ ← 0 and ℎℓ ← 0. These expressions must be inserted in such a way that
the high-water mark ℎℓ of the resource component ℓ is equal to the quantity it is intended to
represent.

In many settings, it is possible to automate the insertion of expressions markℓ 𝑞 and resetℓ
to produce desirable resource-decomposed programs. For example, consider a program 𝑃 (𝑥)
that contains a subexpression𝐻 (𝑦), where𝐻 is a recursive function with available source code.
Suppose the user would like a resource component ℓ to represent the recursion depth of an
evaluation 𝐻 (𝑦). First, we insert markℓ 1 at the beginning and markℓ (−1) at the end of the
function body of 𝐻 . Next, we insert resetℓ right after the function call 𝐻 (𝑦) from 𝑃 (𝑥), so that
it records the high-water mark of the resource component ℓ while evaluating 𝐻 (𝑦).

Types and Semantics The type system of Rpcf𝑛 makes computational effects (e.g., diver-
gence and costs) explicit by distinguishing between computation types and value types. A
computation type is marked with a modality F. For example, an expression 𝑒 : F1, where 1 is
the unit (value) type, is a computation that returns the unit element (if terminates) and possibly
incurs costs.

I work with domain-theoretic denotational semantics of the language Rpcf𝑛 . To track re-
source usage during program execution, I use a bicyclic monoid (N2, (0, 0), ⊕) to represent a
resource state, which is a pair (ℎ, 𝑟) of a high-water mark cost ℎ so far and the leftover resource
𝑟 [39]. A resource effect 𝜎 :

(
N2)𝑛 → (

N2)𝑛 of a computation 𝑒 : F𝐴 is a mapping from the initial
resource states (for all 𝑛 resource components) before running 𝑒 to updated resource states.

Program Transformation An expression 𝑒 : F𝐴 in a resource-annotated program is trans-
formed to an expression ⌜𝑒⌝𝑛 :

(
nat2

)𝑛 → F
((
nat2

)𝑛 × ⌜𝐴⌝𝑛) in the corresponding resource-
guarded program, where ⌜𝐴⌝𝑛 is the result of recursively translating the type𝐴. In this transfor-
mation, the expression 𝑒 is extended with 𝑛 resource guards, each of which is a pair of numeric
non-negative variables. We need two numeric variables for each resource guard to maintain
both the current counter value and its high-water mark. The latter is used when we encounter
the expression resetℓ to record and reset the counter.

Thm. 2.4 formally states the soundness of the program transformation of resource-decomposed
programs to resource-guarded ones. The theorem is proved by a logical relation, which is a
type-indexed binary relation between the source and target programs that makes the inductive
proof go through.

24

Theorem 2.4 (Soundness of program translation). Given a closed computation 𝑒 : F1 of Rpcf𝑛 ,
suppose 𝑒 terminates with resource effect 𝜎 and cost 𝑐 , where

((ℎ1, 𝑟1), . . . , (ℎ𝑛, 𝑟𝑛)) ≔ 𝜎 ((0, 0), · · · , (0, 0)︸ ︷︷ ︸
𝑛 times

). (2.27)

Then the corresponding resource-guarded expression ⌜𝑒⌝𝑛 ((ℎ1, ℎ1), · · · , (ℎ𝑛, ℎ𝑛)) terminates with

cost 𝑐 as well.

Thm. 2.4 states that, if we run a resource-decomposed expression 𝑒 and record high-water
marks ℎ𝑖 (𝑖 = 1, . . . , 𝑛) of the 𝑛 resource components, then we can safely (i.e., without raising
an exception) run the corresponding resource-guarded expression ⌜𝑒⌝𝑛 with the arguments
ℎ1, . . . , ℎ𝑛 for the 𝑛 resource guards. Furthermore, the resource-guarded expression ⌜𝑒⌝𝑛 has
the same cost as the resource-decomposed expression 𝑒 . Therefore, if we obtain a sound cost
bound for the resource-guarded program, it also constitutes a sound bound for the resource-
decomposed program (and hence the original unannotated program).

2.6 Swiftlet: Instantiation of Resource Decomposition (Completed)

This section presents Swiftlet [71], a concrete instantiation of resource decomposition that
runs (i) AARA to infer an overall cost bound of the resource-guarded program 𝑃rg(𝑥, r) and
(ii) Bayesian analysis to infer (linear or logarithmic) symbolic bounds for resource components
that are recursion depths of recursive functions.

2.6.1 Data Collection

A dataset for Bayesian inference is constructed as follows. Let 𝑃rd be a resource-decomposed
program obtained by annotating an original program with markℓ and resetℓ . For some 𝑀 > 0,
let {ℓ1, . . . , ℓ𝑀 } ⊂ L be the set of resource-component labels that appear in the source code of
𝑃rd. When executing 𝑃rd(𝑣) on a concrete input 𝑣 , we obtain, for each label ℓ𝑖 (𝑖 = 1, . . . , 𝑀),
a set {(ℓ𝑖, ℎℓ𝑖 ,1), . . . , (ℓ𝑖, ℎℓ𝑖 ,𝑘𝑖)} of 𝑘𝑖 ≥ 0 measurements of high-water marks. As our goal is
to infer worst-case cost bounds and all the high-water marks from the execution 𝑃rd(𝑣) are
associated with the same input 𝑣 , it is sufficient to save only the maximummeasurement ℎℓ𝑖 ,𝑣 ≔
max1≤ 𝑗≤𝑘𝑖 ℎℓ𝑖 , 𝑗 for each label ℓ𝑖 (whenever 𝑘𝑖 > 0). The resulting dataset associated with an
input 𝑣 is then {(ℓ𝑖, 𝑣, ℎℓ𝑖 ,𝑣) | 1 ≤ 𝑖 ≤ 𝑀,𝑘𝑖 > 0}. Repeating this pattern, we execute 𝑃rd(𝑣𝑖)
on 𝑁 ≥ 1 concrete inputs {𝑣1, . . . , 𝑣𝑁 } to obtain a collection of 𝑀 datasets D1, . . . ,D𝑀 , where
D𝑖 ≔ {(ℓ𝑖, 𝑣 𝑗 , ℎℓ𝑖 ,𝑣 𝑗) | 1 ≤ 𝑗 ≤ 𝑁,𝑘𝑖 > 0} contains the measurements of high-water marks for
resource component ℓ𝑖 across all 𝑁 inputs.

2.6.2 Bayesian Inference for Recursion Depths

Overview The goal of Bayesian inference is to infer, for each resource component ℓ in the
resource-decomposed program 𝑃rd, a cost bound 𝑝𝜏 (𝑣) that relates an input 𝑣 : 𝜏 with its max-
imum high-water mark ℎℓ,𝑣 obtained while executing 𝑃rd(𝑣). Each bound is learned from the
data D𝑖 .

25

In general, a resource component ℓ ∈ L is allowed to be any user-specified quantity, as long
as the quantity can be expressed as the high-water mark of expressions markℓ 𝑞. In Swiftlet,
however, I focus specifically on recursion depths. This motivation stems from the fact that
static resource analysis methods such as conventional AARA often fail on recursive programs:
while they succeed in finding the cost of a single recursive step, they fail to compute bounds on
the number of recursive steps or depth of recursion, which causes the overall analysis to fail.
Swiftlet lets us decompose the analysis so that static analysis using AARA computes a bound
on the cost of a single recursion and data-driven analysis using Bayesian inference computes a
bound on the recursion depth.

Symbolic recursion bounds To enable data-driven inference of cost-bounds from the dataset
D, our approach associates each program input 𝑣 : 𝜏 with a numeric value𝑚𝜏 (𝑣) ∈ N that de-
notes its “size”. My collaborators and I develop a domain-specific language (DSL) over size
measures𝑚𝜏 and corresponding cost bounds 𝑝𝜏 (𝑣) that admit linear and logarithmic cost ex-
pressions:

𝑚unit =𝑚int ::= 𝜆𝑣 .1 (2.28)
𝑚𝐿(𝜏) ::= 𝜆[𝑣1, . . . , 𝑣𝑘] .𝑘 | 𝜆[𝑣1, . . . , 𝑣𝑘] .max{𝑚𝜏 (𝑣1), . . . ,𝑚𝜏 (𝑣𝑘)} (2.29)
𝑚𝜏1×𝜏2 ::= 𝜆⟨𝑣1, 𝑣2⟩.𝑚𝜏1 (𝑣1) | 𝜆⟨𝑣1, 𝑣2⟩.𝑚𝜏2 (𝑣2) (2.30)
𝑝𝜏 (𝑣) ::= 𝑐0 + 𝑐1𝑚𝜏 (𝑣) | 𝑐0 + 𝑐1 log(1 + 𝑐2 + 𝑐3𝑚𝜏 (𝑣)); 𝑐 ∈ R≥0. (2.31)

Eqs. (2.28)–(2.30) show the language of size measures for base and composite types. The base
types Eq. (2.28) have a trivial size measure of 1. The composite types Eqs. (2.29) and (2.30) are
associated withmultiple size measures. Consider, for example, a nested list type 𝜏 ≔ 𝐿(𝐿(int)).
In theDSL, one sizemeasure𝑚𝜏 is the outer list length and another sizemeasure is themaximum
inner list length. For a graph algorithm where the input is a nested adjacency list, the first size
measure corresponds to the number of vertices and the second corresponds to the maximum
degree.

Eq. (2.31) shows the language of cost bounds that contains linear and logarithmic terms, each
with their own unknown coefficients 𝑐 ∈ R≥0. The DSL is grounded in two main assumptions.
First, each symbolic bound 𝑝𝜏 contains exactly one size measure, even if𝑚𝜏 contains multiple
nontrivial size measures. Second, only degree-one (i.e., affine) polynomials of size measures
are admitted. These assumptions are generally sufficient for expressing bounds that relate to
recursion depths in the benchmark programs in Pham et al. [71].

Bayesian model Let 𝜏 be the input datatype of a functional program under analysis and
assumemomentarily that we have already selected a sizemeasure𝑚𝜏 from theDSL (2.28)–(2.30),
with |𝑣 | ≔𝑚𝜏 (𝑣). Let v ≔ (𝑣1, . . . , 𝑣𝑁) be a vector of input values and hℓ ≔ (ℎℓ,1, . . . , ℎℓ,𝑁) the
corresponding high-water marks of the resource component ℓ . Rather than pre-specify either a
linear or logarithmic symbolic form of the cost bound 𝑝𝜏 from the DSL Eq. (2.31), I use Bayesian
model averaging [38] to infer the appropriate symbolic bound from the data.

Selecting the sizemeasure via mutual information Recall from Eqs. (2.29) and (2.30) that
a composite type 𝜏 may be associated with many size measures𝑚𝜏 . To select the size measure

26

𝑚𝜏 to appear in symbolic bounds 𝑝𝜏 of resource components in the Bayesian model, we select
the one with the highest statistical dependence with the observed high-water marks hℓ . The
quantitative measure of dependence we use ismutual information, which characterizes all types
of possible dependencies (e.g., linear, nonlinear, etc.) between a pair of random variables. The
method of Kraskov et al. [54] is used to estimate mutual information from finitely many samples
{(ℎℓ,𝑖,𝑚𝜏 (𝑣𝑖)) | 1 ≤ 𝑖 ≤ 𝑁 }.

2.7 Inference of Program-Input Generators (Proposed Work)

To improve the accuracy of data-driven resource analysis, my collaborators and I will develop
a data-driven analysis method that statistically infers not only worst-case cost bounds but also
worst-case input generators. An input generator is a program that can generate program inputs
of varying sizes that all conform to a certain pattern. For instance, consider a program 𝑃 :
𝐿(int) → 𝐿(int) takes integer lists as input. A trivial input generator for the program 𝑃

is a random generator that fills in the content of an input list by sampling integers from a
distribution (e.g., uniform distribution over some interval of integers). The goal is to infer a
worst-case input generator, which, for each input size, generates a worst-case input (with a
high probability).

2.7.1 Motivation

In the evaluation of data-driven and hybrid resource analyses in Hybrid AARA [72], I run ran-
dom input generators to generate program inputs, which are then fed to the programs to record
cost measurements. However, when the average-case complexity of a program is significantly
lower than its worst-case complexity, statistical analysis struggles to infer correct worst-case
bounds from cost measurements of randomly generated inputs. For example, inQuickSort, the
worst-case complexity is 𝑂 (𝑛2), while the average-case complexity over randomly generated
inputs is 𝑂 (𝑛 log𝑛). Furthermore, the complexity of QuickSort concentrates tightly around
𝑂 (𝑛 log𝑛) [60–62, 84]. Unless the user explicitly embeds this knowledge into a statistical model,
it is difficult for statistical analysis to correctly infer the 𝑂 (𝑛2) worst-case complexity from a
dataset that highly concentrates around 𝑂 (𝑛 log𝑛).

To outperform data-driven analysis that uses randomly generated inputs, I enable data-
driven analysis to test an input program 𝑃 with different input generators, instead of using a
fixed dataset of cost measurements. The data-driven analysis then infers a worst-case input
generator in addition to a worst-case symbolic bound, where the worst-case generator serves
as a witness of the worst-case bound. Thanks to the ability to run the input program 𝑃 , the new
data-driven analysis is capable of inferring more accurate worst-case bounds than a random
input generator. For instance, for QuickSort, if the data-driven analysis successfully notices
that sorted lists accrue higher costs than randomly generated lists, we use sorted lists, instead
of randomly generated lists, to record cost measurements. We then perform statistical analysis
on these cost measurements, correctly inferring a 𝑂 (𝑛2) worst-case bound.

27

2.7.2 Domain-Specific Language of Input Generators

I will first develop a domain-specific language (DSL) for program input generators. Generators
in the DSL can generate program inputs of inductive types. Fix a set T of type names. Inductive
types are formed by this grammar:

𝜏 F 𝑇 ∈ T | unit | bool | int | 𝜏1 + 𝜏2 | 𝜏1 × 𝜏2. (2.32)

Inductive types are defined by definitions of the form 𝑇 ≔ 𝜏𝑇 , where 𝑇 ∈ T is a type name
being defined and 𝜏𝑋 is the type definition that may mention the type name 𝑇 .

Probabilistic generators Unlike in existing works (e.g., Singularity [86]), I would like in-
put generators to be probabilistic: they generate program inputs probabilistically. Probabilistic
generators offer two benefits. The first benefit is that probabilistic generators always have a pos-
itive probability/density of generating any input. Consequently, as we generate more program
inputs using a probabilistic generator, we will eventually find a worst-case input (for various
input sizes). This property is essential for statistical soundness guarantees of data-driven and
hybrid resource analyses, including Hybrid AARA. The second benefit of probabilistic genera-
tors is that they offer a more accurate characterization of worst-case inputs than deterministic
generators. For instance, in QuickSort, its set of worst-case inputs contains all sorted lists.
However, this diversity of worst-case inputs is never captured by deterministic generators (e.g.,
Singularity [86]), because they can only generate a single program input of a specific size.

Generators indexed by types For primitive types, the DSL admits the following probabilis-
tic generators 𝑔 taking 𝑑 ≥ 0 arguments:

𝑔(𝑥1, · · · , 𝑥𝑑) ≔ () if 𝜏 = unit (2.33)
𝑔(𝑥1, · · · , 𝑥𝑑) ≔ Bern(𝜎 (𝑒)) if 𝜏 = bool (2.34)
𝑔(𝑥1, · · · , 𝑥𝑑) ≔ Norm(𝑒𝜇, 𝑒𝜎 , 𝑒ℓ , 𝑒𝑢, 𝑒BlackList) if 𝜏 = int. (2.35)

In Eq. (2.34), Bern denotes a Bernoulli distribution, and 𝜎 : R→ [0, 1] is the sigmoid function
whose output is in the unit interval [0, 1]. In Eq. (2.35), Norm denotes a normal distribution.
The expressions 𝑒𝜇 , 𝑒𝜎 , 𝑒ℓ , and 𝑒𝑢 specify the mean, standard deviation, lower bound, and upper
bound, respectively, of a normal distribution to draw samples from. The expression 𝑒BlacList is
a list of numbers that should be excluded from sampling. It is useful when we would like to
generate, for instance, an integer list containing distinct elements, which is a worst-case input
to some functional programs.

For compound types (i.e., sum and product types), the corresponding generators are defined
inductively, having code structures similar to the type structures. For a sum type 𝜏1 + 𝜏2, a
probabilistic generator 𝑔 has the form

𝑔(𝑥1, · · · , 𝑥𝑑) ≔ let 𝑏 = 𝑔bool(𝑥1, · · · , 𝑥𝑑) in
if 𝑏 then left · 𝑔1(𝑥1, · · · , 𝑥𝑑)
else right · 𝑔2(𝑥1, · · · , 𝑥𝑑),

(2.36)

28

where 𝑔bool is generator of the boolean type and 𝑔𝑖 (𝑖 = 1, 2) is a generator of type 𝜏𝑖 . For a
product types 𝜏1 × 𝜏2, a probabilistic generator 𝑔 has the form

𝑔(𝑥1, · · · , 𝑥𝑑) ≔ let 𝑣1 = 𝑔1(𝑥1, · · · , 𝑥𝑑) in
let 𝑣2 = 𝑔2(𝑥1, · · · , 𝑥𝑑 , 𝑣1) in
⟨𝑣1, 𝑣2⟩,

(2.37)

where 𝑔𝑖 (𝑖 = 1, 2) is a generator of type 𝜏𝑖 .

Challenges The design of a DSL for probabilistic generators poses two challenges:
1. The trade-off between expressiveness and ease of generator inference. The expressions

𝑒 inside normal distributions Norm contain operators such as succ (for incrementing
integers) and hd (for returning the head element of a non-empty list). The more operators
the DSL supports, the more expressive it becomes. However, it also grows the state space
of input generators, making the inference of worst-case generators more challenging.

2. Probabilistic generation of varying input sizes. In lists, for instance, if we probabilistically
choose between two constructors (i.e., nil and cons) using the same Bernoulli distribu-
tion in all list cells, then the lengths of generated lists follow a geometric distribution.
However, the user may want a different distribution for list lengths. To support such
distributions, we need to select the size and shape of a data structure globally, instead of
locally deciding what data constructor to use.

2.7.3 Statistical Inference of Worst-Case Input Generators

Once I design a DSL of probabilistic generators, the next step is to develop a methodology for
statistically inferring a worst-case input generator (or a distribution thereof), in addition to a
worst-case cost bound. Ideally, I would like to conduct Bayesian inference to infer a posterior
distribution of worst-case generators, rather than a single generator. However, it is challenging
to design a fully Bayesian methodology such that generators with worse program inputs (i.e.,
program inputs incurring higher computational costs) are more preferable.

In an optimization-based approach to generator inference (e.g., Singularity [86]), a generator
𝑔 is assigned a numeric score based on the computational costs of program inputs generated by
𝑔. The goal is then to find an optimal generator with the highest score. A Bayesian approach
to generator inference, however, cannot adopt the same scoring scheme as optimization. This
is because, in Bayesian inference, the density of a prior distribution for generators, which is
analogous to a score in optimization, cannot increase monotonically forever.

Example To illustrate this challenge, consider QuickSort that uses the head element of an
input list as a pivot. Under a resource metric of running time, a worst-case input to QuickSort
is a sorted list. Let 𝑔random be a random input generator and 𝑔sorted be a generator that generates
sorted integer lists (with a sufficiently high probability). The generator𝑔sorted incurs an (asymp-
totically) higher cost on average than the random generator𝑔random: the former has a𝑂 (𝑛2) cost
bound, while the latter has a 𝑂 (𝑛 log𝑛) cost bond. Additionally, let 𝑓random be a symbolic cost

29

bound that fits well with a dataset Drandom generated by the random generator 𝑔random. Like-
wise, let 𝑓sorted be a symbolic cost bound that fits well with a dataset Dsorted generated by the
generator 𝑔sorted.

Our goal is to correctly infer that the pair (𝑔sorted, 𝑓sorted) is a worst-case choice of a generator
and a cost bound forQuickSort.

Consider a probabilisticmodel 𝜋 (𝑔, 𝑓 ,D), where a latent variable𝑔 is aworst-case generator,
a latent variable 𝑓 is a worst-case cost bound, and an observed variableD is a dataset of program
inputs and their associated cost measurements. Typically, a probabilistic model assigns a higher
density to a cost bound 𝑓 if it is closer to a dataset D of cost measurements. This means the
following two conditional densities are close to each other:

𝜋 (Drandom | 𝑔random, 𝑓random) ≈ 𝜋 (Dsorted | 𝑔sorted, 𝑓sorted). (2.38)

This is because the cost bounds 𝑓random and 𝑓sorted are both assumed to fit well with their re-
spective datasets. Consequently, if we only concern how well cost bounds fit datasets, then the
two pairs (𝑔random, 𝑓random) and (𝑔sorted, 𝑓sorted) are equally preferable by Eq. (2.38), even though
the latter should be chosen over the former as the inference result of resource analysis.

To prefer the latter pair (𝑔sorted, 𝑓sorted), one may attempt to design a prior distribution 𝜋 (𝑓)
such that

𝜋 (𝑓sorted) > 𝜋 (𝑓random) > 0.

However, such a prior distribution 𝜋 (𝑓) does not exist. The density of a probability distribution
cannot strictly increase forever; otherwise, the integral

∫
𝑓
𝜋 (𝑓) d𝑓 would be infinite.

To overcome this challenge, one idea is to incorporate optimization into the Bayesianmethod-
ology of generator inference. Wei et al. [86], for instance, frame generator inference as an opti-
mization problem. They develop a fuzzer for (deterministic) program-input generators, called
Singularity [86], where the fuzzer runs a genetic algorithm on abstract syntax trees of genera-
tors to find a worst-case generator.

3 Timeline

Table 1: Thesis timeline.

Semester Plan

Fall 2024 Submit the resource-decomposition paper to PLDI 2025
Thesis proposal

Spring 2025 Complete the design of the DSL for input generators and implement a prototype
Resubmit the resource-decomposition paper to ICFP or OOPSLA 2025 (if necessary)
Complete the speaking-skill requirement
Complete a thesis draft

Summer 2025 Thesis defense

30

References

[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of Java Byte-
code. In Rocco De Nicola, editor, Programming Languages and Systems, Lecture Notes in
Computer Science, pages 157–172, Berlin, Heidelberg, 2007. Springer. ISBN 978-3-540-
71316-6. doi: 10.1007/978-3-540-71316-6_12. 1.1

[2] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Automatic Inference of
Upper Bounds for Recurrence Relations in Cost Analysis. In María Alpuente and Germán
Vidal, editors, Static Analysis, Lecture Notes in Computer Science, pages 221–237, Berlin,
Heidelberg, 2008. Springer. ISBN 978-3-540-69166-2. doi: 10.1007/978-3-540-69166-2_15.

[3] Elvira Albert, Puri Arenas, Samir Genaim, German Puebla, and Damiano Zanardini.
COSTA: Design and Implementation of a Cost and Termination Analyzer for Java Byte-
code. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de
Roever, editors, Formal Methods for Components and Objects, Lecture Notes in Computer
Science, pages 113–132, Berlin, Heidelberg, 2008. Springer. ISBN 978-3-540-92188-2. doi:
10.1007/978-3-540-92188-2_5. 1.1

[4] Robert Atkey. Amortised resource analysis with separation logic. In Andrew D. Gor-
don, editor, Programming Languages and Systems, pages 85–103, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg. ISBN 978-3-642-11957-6. 1.1

[5] Robert Atkey. Polynomial Time and Dependent Types. Agda formalisation of Polynomial

Time and Dependent Types, 8(POPL):76:2288–76:2317, January 2024. doi: 10.1145/3632918.
1.1

[6] Martin Avanzini and Ugo Dal Lago. Automating sized-type inference for complexity anal-
ysis. Proc. ACM Program. Lang., 1(ICFP), August 2017. doi: 10.1145/3110287. 1.1

[7] Martin Avanzini and Georg Moser. A combination framework for complexity. In 24th

International Conference on Rewriting Techniques and Applications (RTA’13), 2013. 1.1
[8] Martin Avanzini, Ugo Dal Lago, and Georg Moser. Analysing the complexity of functional

programs: Higher-order meets first-order. In Proceedings of the 20th ACM SIGPLAN In-

ternational Conference on Functional Programming, ICFP 2015, pages 152–164, New York,
NY, USA, 2015. Association for Computing Machinery. ISBN 978-1-4503-3669-7. doi:
10.1145/2784731.2784753. 1.1

[9] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David
Pichardie, and Alix Trieu. Formal verification of a constant-time preserving C compiler.
Proceedings of the ACM on Programming Languages, 4(POPL):7:1–7:30, December 2019.
doi: 10.1145/3371075. 1.1

[10] Jason Breck, John Cyphert, Zachary Kincaid, and Thomas Reps. Templates and recur-
rences: Better together. In Proceedings of the 41st ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI 2020, pages 688–702, New York, NY,
USA, June 2020. Association for Computing Machinery. ISBN 978-1-4503-7613-6. doi:
10.1145/3385412.3386035. 1.1

[11] Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen Giesl. Al-

31

ternating runtime and size complexity analysis of integer programs. In 20th Int. Conf. on

Tools and Alg. for the Constr. and Anal. of Systems (TACAS’14), 2014. 1.1
[12] Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen Giesl. An-

alyzing Runtime and Size Complexity of Integer Programs. ACM Trans. Program. Lang.

Syst., 38(4):13:1–13:50, August 2016. ISSN 0164-0925. doi: 10.1145/2866575. 1.1
[13] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. WISE: Automated test generation for

worst-case complexity. In 2009 IEEE 31st International Conference on Software Engineering,
pages 463–473, May 2009. doi: 10.1109/ICSE.2009.5070545. 1.1

[14] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S. Wahby, John
Renner, Benjamin Grégoire, Gilles Barthe, Ranjit Jhala, and Deian Stefan. FaCT: A DSL
for timing-sensitive computation. In Proceedings of the 40th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI 2019, pages 174–189, New York,
NY, USA, June 2019. Association for Computing Machinery. ISBN 978-1-4503-6712-7. doi:
10.1145/3314221.3314605. 1.1

[15] Frederic Cazals, Augustin Chevallier, and Sylvain Pion. Improved polytope volume cal-
culations based on Hamiltonian Monte Carlo with boundary reflections and sweet arith-
metics. Journal of Computational Geometry, 13(1):52–88, April 2022. ISSN 1920-180X. doi:
10.20382/jocg.v13i1a3. 2.3, 2.4.2

[16] Apostolos Chalkis and Vissarion Fisikopoulos. Volesti: Volume Approximation and Sam-
pling for Convex Polytopes in R. The R Journal, 13(2):642–660, 2021. ISSN 2073-4859.
2.3

[17] Apostolos Chalkis, Vissarion Fisikopoulos, Marios Papachristou, and Elias Tsigaridas.
Truncated Log-concave Sampling for Convex Bodies with Reflective Hamiltonian Monte
Carlo. ACM Transactions on Mathematical Software, 49(2):16:1–16:25, June 2023. ISSN
0098-3500. doi: 10.1145/3589505. 2.3, 2.4.2

[18] Arthur Charguéraud and François Pottier. Verifying the Correctness and Amortized Com-
plexity of a Union-Find Implementation in Separation Logic with Time Credits. Jour-

nal of Automated Reasoning, 62(3):331–365, March 2019. ISSN 1573-0670. doi: 10.1007/
s10817-017-9431-7. 1.1

[19] Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. Non-polynomial
Worst-Case Analysis of Recursive Programs. ACM Transactions on Programming Lan-

guages and Systems, 41(4):20:1–20:52, October 2019. ISSN 0164-0925. doi: 10.1145/3339984.
1.1

[20] Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. Relational
cost analysis. In Proceedings of the 44th ACMSIGPLAN Symposium on Principles of Program-

ming Languages, POPL ’17, pages 316–329, New York, NY, USA, January 2017. Association
for Computing Machinery. ISBN 978-1-4503-4660-3. doi: 10.1145/3009837.3009858. 1.1

[21] Ezgi Çiçek, Mehdi Bouaziz, Sungkeun Cho, and Dino Distefano. Static Resource Analysis
at Scale (Extended Abstract). In David Pichardie and Mihaela Sighireanu, editors, Static
Analysis, Lecture Notes in Computer Science, pages 3–6, Cham, 2020. Springer Interna-
tional Publishing. ISBN 978-3-030-65474-0. doi: 10.1007/978-3-030-65474-0_1. 1.1

32

[22] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. Input-sensitive profiling. In Proceed-
ings of the 33rd ACMSIGPLANConference on Programming Language Design and Implemen-

tation, PLDI ’12, pages 89–98, New York, NY, USA, June 2012. Association for Computing
Machinery. ISBN 978-1-4503-1205-9. doi: 10.1145/2254064.2254076. 1.1, 2.3.1

[23] Karl Crary and Stephnie Weirich. Resource bound certification. In Proceedings of the 27th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’00,
pages 184–198, New York, NY, USA, 2000. Association for Computing Machinery. ISBN
1-58113-125-9. doi: 10.1145/325694.325716. 1.1

[24] Joseph W. Cutler, Daniel R. Licata, and Norman Danner. Denotational recurrence extrac-
tion for amortized analysis. Proceedings of the ACM on Programming Languages, 4(ICFP):
97:1–97:29, August 2020. doi: 10.1145/3408979. 1.1

[25] Nils Anders Danielsson. Lightweight semiformal time complexity analysis for purely func-
tional data structures. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, POPL ’08, pages 133–144, New York,
NY, USA, 2008. Association for Computing Machinery. ISBN 978-1-59593-689-9. doi:
10.1145/1328438.1328457. 1.1

[26] Francisco Demontiê, Junio Cezar, Mariza Bigonha, Frederico Campos, and Fernando
Magno Quintão Pereira. Automatic Inference of Loop Complexity Through Polynomial
Interpolation. In Alberto Pardo and S. Doaitse Swierstra, editors, Programming Languages,
Lecture Notes in Computer Science, pages 1–15, Cham, 2015. Springer International Pub-
lishing. ISBN 978-3-319-24012-1. doi: 10.1007/978-3-319-24012-1_1. 1.1

[27] Inc. Facebook. Infer website - cost: Runtime complexity analysis, 2024. 1.1
[28] Antonio Flores-Montoya and Reiner Hähnle. Resource Analysis of Complex Programs

with Cost Equations. In Jacques Garrigue, editor, Programming Languages and Systems,
pages 275–295, Cham, 2014. Springer International Publishing. ISBN 978-3-319-12736-1.
doi: 10.1007/978-3-319-12736-1_15. 1.1

[29] Jürgen Giesl, Nils Lommen, Marcel Hark, and Fabian Meyer. Improving Automatic Com-
plexity Analysis of Integer Programs. In Wolfgang Ahrendt, Bernhard Beckert, Richard
Bubel, and Einar Broch Johnsen, editors, The Logic of Software. A Tasting Menu of For-

mal Methods: Essays Dedicated to Reiner Hähnle on the Occasion of His 60th Birthday, Lec-
ture Notes in Computer Science, pages 193–228. Springer International Publishing, Cham,
2022. ISBN 978-3-031-08166-8. doi: 10.1007/978-3-031-08166-8_10. 1.1

[30] Simon F. Goldsmith, Alex S. Aiken, and Daniel S. Wilkerson. Measuring empirical com-
putational complexity. In Proceedings of the the 6th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software

Engineering, ESEC-FSE ’07, pages 395–404, New York, NY, USA, September 2007. Associ-
ation for Computing Machinery. ISBN 978-1-59593-811-4. doi: 10.1145/1287624.1287681.
1.1, 2.3.1

[31] Bernd Grobauer. Cost recurrences for DML programs. In Proceedings of the Sixth ACM

SIGPLAN International Conference on Functional Programming, ICFP ’01, pages 253–264,
New York, NY, USA, 2001. Association for Computing Machinery. ISBN 1-58113-415-0.

33

doi: 10.1145/507635.507666. 1.1
[32] Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper. Decalf: A Directed,

Effectful Cost-Aware Logical Framework. **calf**: A Cost-Aware Logical Framework, 8
(POPL):10:273–10:301, January 2024. doi: 10.1145/3632852. 1.1

[33] Armaël Guéneau, Arthur Charguéraud, and François Pottier. A Fistful of Dollars: For-
malizing Asymptotic Complexity Claims via Deductive Program Verification. In Amal
Ahmed, editor, Programming Languages and Systems, Lecture Notes in Computer Science,
pages 533–560, Cham, 2018. Springer International Publishing. ISBN 978-3-319-89884-1.
doi: 10.1007/978-3-319-89884-1_19. 1.1

[34] Bhargav S. Gulavani and Sumit Gulwani. A Numerical Abstract Domain Based on Expres-
sion Abstraction and Max Operator with Application in Timing Analysis. In Aarti Gupta
and Sharad Malik, editors, Computer Aided Verification, pages 370–384, Berlin, Heidelberg,
2008. Springer. ISBN 978-3-540-70545-1. doi: 10.1007/978-3-540-70545-1_35. 1.1

[35] Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi. SPEED: Precise and efficient
static estimation of program computational complexity. In Proceedings of the 36th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’09,
pages 127–139, New York, NY, USA, 2009. Association for Computing Machinery. ISBN
978-1-60558-379-2. doi: 10.1145/1480881.1480898. 1.1

[36] Martin A. T. Handley, Niki Vazou, and Graham Hutton. Liquidate your assets: Reasoning
about resource usage in liquid Haskell. Proceedings of the ACM on Programming Languages,
4(POPL):24:1–24:27, December 2019. doi: 10.1145/3371092. 1.1

[37] Manuel V. Hermenegildo, Germán Puebla, Francisco Bueno, and Pedro López-García. In-
tegrated program debugging, verification, and optimization using abstract interpretation
(and the Ciao system preprocessor). Science of Computer Programming, 58(1):115–140,
October 2005. ISSN 0167-6423. doi: 10.1016/j.scico.2005.02.006. 1.1

[38] Jennifer A. Hoeting, David Madigan, Adrian E. Raftery, and Chris T. Volinsky. Bayesian
model averaging: A tutorial. Statistical Science, 14(4):382–401, 1999. ISSN 08834237. 2.6.2

[39] Jan Hoffmann. Types with potential: polynomial resource bounds via automatic amortized

analysis. Text.PhDThesis, Ludwig-Maximilians-Universität München, October 2011. 1.3,
2.1, 2.5.3

[40] Jan Hoffmann and Martin Hofmann. Amortized Resource Analysis with Polynomial Po-
tential. In Andrew D. Gordon, editor, Programming Languages and Systems, Lecture Notes
in Computer Science, pages 287–306, Berlin, Heidelberg, 2010. Springer. ISBN 978-3-642-
11957-6. doi: 10.1007/978-3-642-11957-6_16. 2.1, 2.1

[41] Jan Hoffmann and Steffen Jost. Two decades of automatic amortized resource analysis.
Mathematical Structures in Computer Science, 32(6):729–759, June 2022. ISSN 0960-1295,
1469-8072. doi: 10.1017/S0960129521000487. 1.3, 2.1

[42] Jan Hoffmann, Ankush Das, Martin Hofmann, David Kahn, Prachi Laud, Benjamin Licht-
man, Stefan Muller, Chan Ngo, Yue Nue, Zhong Shao, Di Wang, and Shu-Chun Weng.
Resource Aware ML. 2.1, 1

34

[43] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amortized resource anal-
ysis. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, Popl ’11, pages 357–370, New York, NY, USA, 2011. Association
for Computing Machinery. ISBN 978-1-4503-0490-0. doi: 10.1145/1926385.1926427. 1.3,
2.1, 2.1

[44] Jan Hoffmann, Ankush Das, and Shu-Chun Weng. Towards automatic resource bound
analysis for OCaml. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles

of Programming Languages, POPL ’17, pages 359–373, New York, NY, USA, January 2017.
Association for Computing Machinery. ISBN 978-1-4503-4660-3. doi: 10.1145/3009837.
3009842. 2.1

[45] Martin Hofmann and Steffen Jost. Static prediction of heap space usage for first-order
functional programs. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, Popl ’03, pages 185–197, New York, NY, USA, 2003.
Association for Computing Machinery. ISBN 1-58113-628-5. doi: 10.1145/604131.604148.
1.3, 2.1

[46] Martin Hofmann and Georg Moser. Amortised resource analysis and typed polynomial
interpretations. In Rewriting and Typed Lambda Calculi (RTA-TLCA;14), 2014. 1.1

[47] Martin Hofmann, Lorenz Leutgeb, David Obwaller, Georg Moser, and Florian Zuleger.
Type-based analysis of logarithmic amortised complexity. Mathematical Structures in

Computer Science, 32(6):794–826, June 2022. ISSN 0960-1295, 1469-8072. doi: 10.1017/
S0960129521000232. 2.5.1

[48] Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon Chun, Petros Maniatis, and Mayur Naik. Pre-
dicting execution time of computer programs using sparse polynomial regression. In Pro-

ceedings of the 23rd International Conference on Neural Information Processing Systems -

Volume 1, NIPS’10, pages 883–891, Red Hook, NY, USA, 2010. Curran Associates Inc. 1.1
[49] Xiuqi Huang, Shiyi Cao, Yuanning Gao, Xiaofeng Gao, and Guihai Chen. LightPro:

Lightweight Probabilistic Workload Prediction Framework for Database-as-a-Service. In
2022 IEEE International Conference on Web Services (ICWS), pages 160–169, July 2022. doi:
10.1109/ICWS55610.2022.00036. 1.1

[50] Didier Ishimwe, KimHao Nguyen, and ThanhVu Nguyen. Dynaplex: Analyzing program
complexity using dynamically inferred recurrence relations. Proc. ACM Program. Lang., 5
(OOPSLA), October 2021. doi: 10.1145/3485515. 1.1

[51] G. A. Kavvos, Edward Morehouse, Daniel R. Licata, and Norman Danner. Recurrence
extraction for functional programs through call-by-push-value. Proc. ACM Program. Lang.,
4(POPL), December 2019. doi: 10.1145/3371083. 1.1

[52] Zachary Kincaid, John Cyphert, Jason Breck, and Thomas Reps. Non-linear reasoning for
invariant synthesis. Proc. ACM Program. Lang., 2(POPL), December 2017. doi: 10.1145/
3158142. 1.1

[53] Yunbum Kook, YinTat Lee, Ruoqi Shen, and Santosh Vempala. Sampling with Rieman-
nian Hamiltonian Monte Carlo in a Constrained Space. In Advances in Neural Information

Processing Systems, October 2022. 2.3, 2.4.2

35

[54] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual infor-
mation. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary

Topics, 69(6):066138, June 2004. doi: 10.1103/PhysRevE.69.066138. 2.6.2
[55] Ugo Dal Lago and Marco Gaboardi. Linear dependent types and relative completeness. In

26th IEEE Symp. on Logic in Computer Science (LICS’11), 2011. 1.1
[56] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. PerfFuzz: Automatically

generating pathological inputs. In Proceedings of the 27th ACM SIGSOFT International

Symposium on Software Testing and Analysis, ISSTA 2018, pages 254–265, New York, NY,
USA, July 2018. Association for Computing Machinery. ISBN 978-1-4503-5699-2. doi:
10.1145/3213846.3213874. 1.1

[57] Lorenz Leutgeb, Georg Moser, and Florian Zuleger. ATLAS: Automated Amortised Com-
plexity Analysis of Self-adjusting Data Structures. In Computer Aided Verification: 33rd

International Conference, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings, Part II,
pages 99–122, Berlin, Heidelberg, July 2021. Springer-Verlag. ISBN 978-3-030-81687-2.
doi: 10.1007/978-3-030-81688-9_5. 2.5.1

[58] P. Lopez-Garcia, L. Darmawan, M. Klemen, U. Liqat, F. Bueno, and M. V. Hermenegildo.
Interval-based resource usage verification by translation into Horn clauses and an appli-
cation to energy consumption. Theory and Practice of Logic Programming, 18(2):167–223,
March 2018. ISSN 1471-0684, 1475-3081. doi: 10.1017/S1471068418000042. 1.1

[59] Kasper Luckow, Rody Kersten, and Corina Păsăreanu. Symbolic Complexity Analysis
Using Context-Preserving Histories. In 2017 IEEE International Conference on Software

Testing, Verification and Validation (ICST), pages 58–68, March 2017. doi: 10.1109/ICST.
2017.13. 1.1

[60] C.J.H. McDiarmid and R.B. Hayward. Large Deviations for Quicksort. J. Algorithms, 21
(3):476–507, November 1996. ISSN 0196-6774. doi: 10.1006/jagm.1996.0055. 2.7.1

[61] Colin McDiarmid. Quicksort and Large Deviations. In Antonín Kučera, Thomas A. Hen-
zinger, Jaroslav Nešetřil, Tomáš Vojnar, and David Antoš, editors, Mathematical and En-

gineering Methods in Computer Science, pages 43–52, Berlin, Heidelberg, 2013. Springer.
ISBN 978-3-642-36046-6. doi: 10.1007/978-3-642-36046-6_5.

[62] Colin McDiarmid and Ryan Hayward. Strong concentration for Quicksort. In Proceedings

of the Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’92, pages 414–
421, USA, September 1992. Society for Industrial and Applied Mathematics. ISBN 978-0-
89791-466-6. 2.7.1

[63] Glen Mével, Jacques-Henri Jourdan, and François Pottier. Time Credits and Time Re-
ceipts in Iris. In Luís Caires, editor, Programming Languages and Systems, Lecture Notes
in Computer Science, pages 3–29, Cham, 2019. Springer International Publishing. ISBN
978-3-030-17184-1. doi: 10.1007/978-3-030-17184-1_1. 1.1

[64] Hadi Mohasel Afshar and Justin Domke. Reflection, Refraction, and Hamiltonian Monte
Carlo. InAdvances in Neural Information Processing Systems, volume 28. CurranAssociates,
Inc., 2015. 2.3, 2.4.2

36

[65] Alexandre Moine, Arthur Charguéraud, and François Pottier. A High-Level Separation
Logic for Heap Space under Garbage Collection. Proceedings of the ACM on Programming

Languages, 7(POPL):25:718–25:747, January 2023. doi: 10.1145/3571218. 1.1
[66] Georg Moser and Manuel Schneckenreither. Automated amortised resource analysis for

term rewrite systems. Science of Computer Programming, 185:102306, January 2020. ISSN
0167-6423. doi: 10.1016/j.scico.2019.102306. 1.1

[67] Van Chan Ngo, Mario Dehesa-Azuara, Matthew Fredrikson, and Jan Hoffmann. Verifying
and Synthesizing Constant-Resource Implementations with Types. In 2017 IEEE Sympo-

sium on Security and Privacy (SP), pages 710–728, May 2017. doi: 10.1109/SP.2017.53. 1.1
[68] Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper. A cost-aware logical

framework. Proceedings of the ACM on Programming Languages, 6(POPL):9:1–9:31, January
2022. doi: 10.1145/3498670. 1.1

[69] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. SlowFuzz: Auto-
mated Domain-Independent Detection of Algorithmic Complexity Vulnerabilities. In Pro-

ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’17, pages 2155–2168, New York, NY, USA, October 2017. Association for Computing
Machinery. ISBN 978-1-4503-4946-8. doi: 10.1145/3133956.3134073. 1.1

[70] Long Pham and Jan Hoffmann. Typable Fragments of Polynomial Automatic Amor-
tized Resource Analysis. In DROPS-IDN/v2/Document/10.4230/LIPIcs.CSL.2021.34. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi: 10.4230/LIPIcs.CSL.2021.34. 1.3, 1,
2.2

[71] Long Pham, Yue Niu, Nathan Glover, Feras A. Saad, and Jan Hoffmann. Integrating Re-
source Analyses via Resource Decomposition, November 2024. 1.3, 3, 2.5, 2.5.3, 2.6, 2.6.2

[72] Long Pham, Feras A. Saad, and Jan Hoffmann. Robust resource bounds with static analysis
and bayesian inference. Proc. ACM Program. Lang., 8(PLDI), June 2024. doi: 10.1145/
3656380. 1.3, 2, 2.3, 2.4, 2.7.1

[73] Boqin Qin, Tengfei Tu, Ziheng Liu, Tingting Yu, and Linhai Song. Algorithmic Profiling
for Real-World Complexity Problems. IEEE Transactions on Software Engineering, 48(7):
2680–2694, July 2022. ISSN 1939-3520. doi: 10.1109/TSE.2021.3067652. 1.1

[74] Daniele Rogora, Antonio Carzaniga, Amer Diwan, Matthias Hauswirth, and Robert Soulé.
Analyzing systemperformancewith probabilistic performance annotations. In Proceedings
of the Fifteenth European Conference on Computer Systems, EuroSys ’20, pages 1–14, New
York, NY, USA, April 2020. Association for Computing Machinery. ISBN 978-1-4503-6882-
7. doi: 10.1145/3342195.3387554. 1.1

[75] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient Autoscaling in the Cloud
Using Predictive Models for Workload Forecasting. In 2011 IEEE 4th International Confer-

ence on Cloud Computing, pages 500–507, July 2011. doi: 10.1109/CLOUD.2011.42. 1.1
[76] A. Serrano, P. Lopez-Garcia, and M. V. Hermenegildo. Resource Usage Analysis of

Logic Programs via Abstract Interpretation Using Sized Types. Theory and Practice

of Logic Programming, 14(4-5):739–754, July 2014. ISSN 1471-0684, 1475-3081. doi:

37

10.1017/S147106841400057X. 1.1
[77] Alejandro Serrano Mena, Pedro López García, Francisco Bueno Carrillo, and Manuel V.

Hermenegildo. Sized type analysis for logic programs (technical communication). July
2013. 1.1

[78] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. CloudScale: Elastic
resource scaling for multi-tenant cloud systems. In Proceedings of the 2nd ACM Symposium

on Cloud Computing, SOCC ’11, pages 1–14, NewYork, NY, USA, October 2011. Association
for Computing Machinery. ISBN 978-1-4503-0976-9. doi: 10.1145/2038916.2038921. 1.1

[79] Moritz Sinn, Florian Zuleger, and Helmut Veith. A Simple and Scalable Static Analysis
for Bound Analysis and Amortized Complexity Analysis. In Armin Biere and Roderick
Bloem, editors, Computer Aided Verification, Lecture Notes in Computer Science, pages
745–761, Cham, 2014. Springer International Publishing. ISBN 978-3-319-08867-9. doi:
10.1007/978-3-319-08867-9_50. 1.1

[80] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2):202–208, February 1985. ISSN 0001-0782. doi:
10.1145/2786.2793. 2.1

[81] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary trees. In Proceed-

ings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, pages
235–245, New York, NY, USA, December 1983. Association for Computing Machinery.
ISBN 978-0-89791-099-6. doi: 10.1145/800061.808752. 2.1

[82] Pedro B. Vasconcelos. Space Cost Analysis Using Sized Types. PhD thesis, University of St
Andrews, UK, 2008. 1.1

[83] Di Wang and Jan Hoffmann. Type-guided worst-case input generation. Proceedings of the
ACM on Programming Languages, 3(POPL):13:1–13:30, January 2019. doi: 10.1145/3290326.
1.1

[84] Jinyi Wang, Yican Sun, Hongfei Fu, Mingzhang Huang, Amir Kafshdar Goharshady, and
Krishnendu Chatterjee. Concentration-Bound Analysis for Probabilistic Programs and
Probabilistic Recurrence Relations, August 2020. 2.7.1

[85] Ben Wegbreit. Mechanical program analysis. Communications of the ACM, 18(9):528–539,
September 1975. ISSN 0001-0782. doi: 10.1145/361002.361016. 1.1

[86] Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil Dillig. Singularity: Pattern fuzzing for
worst case complexity. In Proceedings of the 2018 26th ACM Joint Meeting on European Soft-

ware Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2018, pages 213–223, New York, NY, USA, October 2018. Association for Com-
puting Machinery. ISBN 978-1-4503-5573-5. doi: 10.1145/3236024.3236039. 2.7.2, 2.7.3,
2.7.3

[87] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao Qin, Yang Liu, Zhiwu Xu, Hongxu
Chen, Xiaofei Xie, Geguang Pu, and Ting Liu. MEMLOCK:MemoryUsage Guided Fuzzing.
In 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE), pages 765–
777, October 2020. doi: 10.1145/3377811.3380396. 1.1

38

[88] Dmitrijs Zaparanuks and Matthias Hauswirth. Algorithmic profiling. In Proceedings of

the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, pages 67–76, New York, NY, USA, June 2012. Association for Computing Ma-
chinery. ISBN 978-1-4503-1205-9. doi: 10.1145/2254064.2254074. 1.1, 2.3.1

[89] Florian Zuleger, Sumit Gulwani, Moritz Sinn, and Helmut Veith. Bound Analysis of Imper-
ative Programs with the Size-Change Abstraction. In Eran Yahav, editor, Static Analysis,
Lecture Notes in Computer Science, pages 280–297, Berlin, Heidelberg, 2011. Springer.
ISBN 978-3-642-23702-7. doi: 10.1007/978-3-642-23702-7_22. 1.1

39

	1 Introduction
	1.1 Resource Analysis
	1.2 Hybrid Resource Analysis
	1.3 Roadmap of the Thesis
	1.4 Publications

	2 Overview
	2.1 Background
	2.2 Polytime Completeness of AARA (Completed)
	2.3 Bayesian Data-Driven Resource Analyses (Completed)
	2.3.1 Optimization-Based Data-Driven Analysis
	2.3.2 Bayesian Inference on Worst-Case Costs
	2.3.3 Bayesian Inference on Polynomial Coefficients
	2.3.4 Extension to Non-Monotone Resource Metrics

	2.4 Hybrid AARA (Completed)
	2.4.1 Hybrid BayesWC and Opt
	2.4.2 Hybrid BayesPC

	2.5 Resource Decomposition (Completed)
	2.5.1 Limitations of Hybrid AARA
	2.5.2 Overview
	2.5.3 Formalization

	2.6 Swiftlet: Instantiation of Resource Decomposition (Completed)
	2.6.1 Data Collection
	2.6.2 Bayesian Inference for Recursion Depths

	2.7 Inference of Program-Input Generators (Proposed Work)
	2.7.1 Motivation
	2.7.2 Domain-Specific Language of Input Generators
	2.7.3 Statistical Inference of Worst-Case Input Generators

	3 Timeline

