
Thesis Proposal:
Hybrid Resource-Bound Analysis

of Programs
Long Pham1

Committee: Jan Hoffmann1, Feras Saad1, Matt Fredrikson1, François Pottier2

1Carnegie Mellon University
2Inria Paris

January 17th, 2025

1

Resource Analysis
Goal of resource analysis
Infer a worst-case bound of the cost of a program as a function of inputs

2

Program

Resource metric

Worst-case
cost bound

fun quicksort x
= <body>

Time Memory Energy

resource
analysis

𝑥 𝑥 − 1 /2

Applications of Resource Analysis
1. Prevent algorithmic complexity attacks by inferring
worst-case resource usage / inputs

2. Estimate job size for job scheduling in
cloud computing

3. Infer tool used at Meta/Facebook

4. Worst-case execution time (WCET)
for safety-critical embedded systems

3

https://github.com/facebook/infer

https://github.com/facebook/infer

Existing Approaches to Resource Analysis
(Automatic) static analysis of the source code
+ Sound: any result is a valid bound
- Incomplete: cannot handle all programs
Data-driven analysis of runtime cost data
+ Always returns a result
- Only sound with respect to runtime cost data
Interactive analysis with proof assistants (e.g., Coq and Agda)
+ Sound and expressive cost bounds
- Not fully automatic

4

Proposal: Hybrid Resource Analysis
Idea Integrate complementary analysis techniques to overcome their
respective limitations

5

fun f x =
 let y = g z
 in
 ...

Analysis B

Analysis A

combine overall cost bound

Proposal: Hybrid Resource Analysis
Hybrid resource analysis covers a spectrum ranging from Analysis A to
Analysis B

6

Analysis A Analysis B
fun f x =
 let y = g z
 in
 ...

fun f x =
 let y = g z
 in
 ...

Hybrid Resource Analysis

fun f x =
 let y = g z
 in
 ...

Cannot be
analyzed by
Analysis A

Best approach
in evaluation

Proposal: Hybrid Resource Analysis
Benefit of hybrid analysis
Retains the strengths of analysis techniques while mitigating their
respective weaknesses
• Analyze a larger class of programs
• Infer a larger class of symbolic cost bounds

Thesis statement
Hybrid resource analysis enables the analysis of programs and inference of
cost bounds that are beyond the reach of individual analysis techniques

7

Structure of the Thesis

[1] Long Pham, Jan Hoffmann. Typable Fragments of Polynomial Automatic
Amortized Resource Analysis. Published at CSL 2021
[2] Long Pham, Feras Saad, Jan Hoffmann. Robust Resource Bounds with Static
Analysis and Bayesian Inference. Published at PLDI 2024
[3] Long Pham, Yue Niu, Nathan Glover, Feras Saad, Jan Hoffmann. Integrating
Resource Analyses via Resource Decomposition. Under submission

8

Static analysis
• Background on AARA (§2.1)
• Polynomial-time completeness

of AARA (§2.2) [1]

Data-driven analysis
• Bayesian data-driven analysis (§2.3) [2]
• Program-input generator inference

(§2.7)

Hybrid analysis
• Hybrid AARA (§2.4) [2]
• Resource decomposition (§2.5, 2.6) [3]

Outline
❑Motivation and overview
❑Background on AARA
❑Contribution: Bayesian data-driven analysis
❑Contribution: Hybrid AARA
❑Contribution: resource decomposition
❑Proposed work: inference of program-input generator
❑Timeline and conclusion

9

State of the Art in Static Analysis
Static analysis examines the source code, constructs constraints defining the
worst-case behavior, and solves them
• Type systems (e.g., AARA by Hoffmann, Hofmann, Jost et al.)
• Recurrence relations (e.g., COSTA by Albert et al.)
• Ranking functions (e.g., AProVE and KoAT by Giesl et al.)

Advantage
+ Soundness guarantee
Disadvantages
- Incomplete due to the undecidability of resource analysis
- Rewriting a program is difficult for non-expert users

10

Static Analysis: AARA
Automatic Amortized Resource Analysis (AARA)
Type-based resource analysis that automates the potential method of
amortized analysis

Example partition function Cost one unit per comparison

Input [1, 2, 3, 4] Output ([,], [,])

11

Cost is indicated
by tick 𝑞 for 𝑞 ∈ ℚ

One unit of
potential has

been consumed

Static Analysis: AARA
Automatic Amortized Resource Analysis (AARA)
Type-based resource analysis that automates the potential method of
amortized analysis

Example partition function Cost one unit per comparison

Input [1, 2, 3, 4] Output ([,], [,])

12

Cost is indicated
by tick 𝑞 for 𝑞 ∈ ℚ

Static Analysis: AARA
Automatic Amortized Resource Analysis (AARA)
Type-based resource analysis that automates the potential method of
amortized analysis

Example partition function Cost one unit per comparison

Input [1, 2, 3, 4] Output ([1,], [,])

13

Cost is indicated
by tick 𝑞 for 𝑞 ∈ ℚ

The input list element
is added to the output

Static Analysis: AARA
Automatic Amortized Resource Analysis (AARA)
Type-based resource analysis that automates the potential method of
amortized analysis

Example partition function Cost one unit per comparison

Input [1, 2, 3, 4] Output ([1, 2], [3, 4])

Resource-annotated typing judgment
partition: int × 𝐿2(int) → (𝐿1 int × 𝐿1 int)

14

Input potential: 2 ⋅ 𝑛 Output potential: 1 ⋅ 𝑛1 +1 ⋅ 𝑛2

Cost is indicated
by tick 𝑞 for 𝑞 ∈ ℚ

Static Analysis: AARA
1. Assign variables

partition: int × 𝐿𝑝(int) → (𝐿𝑞1 int × 𝐿𝑞2 int)

2. Collect linear constraints
 𝑝 ≥ 1 + 𝑞1

 𝑝 ≥ 1 + 𝑞2

Sound: any cost bound inferred by AARA is a valid worst-case cost bound
Incomplete: there exists a polynomial-cost program that AARA cannot analyze
because resource analysis is undecidable in general

15

Input
potential

Output
potential

Cost

Why AARA for static analysis
+ Compositionality offered by types
+ Automatic bound inference by LP solving
+ Precise cost bounds by amortized analysis
+ Soundness guarantee

AARA can express
polynomial cost

bounds in general

Outline
❑Motivation and overview
❑Background on AARA
❑Contribution: Bayesian data-driven analysis
❑Contribution: Hybrid AARA
❑Contribution: resource decomposition
❑Proposed work: inference of program-input generator
❑Timeline and conclusion

16

State of the Art in Data-Driven Analysis (Opt.)
Examples Input-sensitive profiling (Coppa et al.),
Algorithmic profiling (Zaparanuks et al.), Dynaplex (Ishimwe et al.)
1. Collect cost measurements of inputs 𝑣1, … , 𝑣𝑁

2. Optimize cost bound (red line)
 Minimize red line − black dots
 Subject to red line ≥ black dots
Disadvantages of optimization
- Does not incorporate the user’s domain knowledge
- No quantitative measure of statistical uncertainty

17

𝑣1 , 𝑐1

𝑣𝑁 , 𝑐𝑁

𝑣1

𝑣𝑁

...

...𝑃

True worst-
case cost?

Contribution: Bayesian Data-Driven Analysis
Bayesian data-driven resource analysis
1. Define a probabilistic model 𝜋(𝜃, 𝐷)
 𝜃 : latent parameter (cost bound)
 𝐷: observed data (cost measurements)
2. Collect observed data 𝐷obs

3. Compute the posterior distribution
 Bayes’ rule: 𝜋 𝜃 𝐷 = 𝐷obs =

𝜋(𝜃, 𝐷=𝐷obs)

 𝜋(𝜃, 𝐷=𝐷obs) ⅆ𝜃

 Draw posterior samples: 𝜃1, … , 𝜃𝑀 ∼ 𝜋(𝜃 ∣ 𝐷 = 𝐷obs)

Advantages over optimization
+ Can incorporate the domain knowledge in the probabilistic model
+ Posterior distribution captures statistical uncertainty

18

Bayesian Data-Driven Analysis: Overview
Previous: Optimization (Opt)

New: Bayesian inference of
worst-case costs (BayesWC)

New: Bayesian inference of
polynomial coefficients (BayesPC)

19

Bayesian Data-Driven Analysis: BayesWC
Bayesian inference of worst-case costs (BayesWC)
1. Define a probabilistic model 𝜋(θ, 𝒄max, 𝒄)

 𝒄max: hidden worst-case cost (blue dots)
 𝒄: observed cost (black dots)

2. Draw posterior samples of 𝒄max

3. Optimize cost bound (red line)
 Minimize red line − blue dots
 Subject to red line ≥ blue dots

20

Bayesian Data-Driven Analysis: BayesPC
Bayesian inference of polynomial coefficients (BayesPC)
1. Define a probabilistic model π(𝑝, 𝒄)

 𝑝: cost bond (blue line)
 𝒄: observed cost (black dots)

2. Draw posterior samples of cost bound 𝑝 (blue line)

21

Outline
❑Motivation and overview
❑Background on AARA
❑Contribution: Bayesian data-driven analysis
❑Contribution: Hybrid AARA
❑Contribution: resource decomposition
❑Proposed work: inference of program-input generator
❑Timeline and conclusion

22

Hybrid Analysis: Goal and Challenge
Goal

Key challenge
Hybrid analysis needs an interface between:
1. Bayesian data-driven analysis draws samples
2. Static analysis solves constraints
How do we coherently combine constraints and posterior samples?

23

fun f x =
 let y = g z
 in
 ...

data-driven analysis

static analysis

combine overall cost boundposterior
samples

constraints

Design questions
1. What is the format of
inference results?
2. What information needs
to be exchanged during
inference?

Hybrid Analysis: Interface Design Attempt 1
Unsuccessful interface Symbolic cost bound (e.g., 1.1𝑛 + 1.2)

24

fun f x =
 let y = partition z
 in
 ...

data-driven analysis

static analysis

combine overall cost boundposterior
samples

constraints

⋅⊢ 𝑓: 𝜏1 → 𝜏2

𝑥: 𝜏1 ⊢ let y = … ∶ 𝜏2

Γ ⊢ partition 𝑧: ?

⋮
Missing info

Partition
preserves the list
size in the output

𝑐1,𝑖𝑛 + 𝑐0,𝑖 (𝑖 = 1, … , 𝑀)

Hybrid Analysis: Interface Design Attempt 2
Interface Potential functions in the input and output

25

fun f x =
 let y = g z
 in
 ...

data-driven analysis

static analysis

combine overall cost boundposterior
samples

constraints

⋅⊢ 𝑓: 𝜏1 → 𝜏2

𝑥: 𝜏1 ⊢ let y = … ∶ 𝜏2

Γ ⊢ g z ∶ 𝜏

⋮

Challenge
(Γi, 𝜏𝑖) cannot be

arbitrary samples,
which may violate linear

constraints

Γi ⊢ g z ∶ 𝜏𝑖 (𝑖 = 1, … , 𝑀)

AARA’s typing
judgment is a
perfect match

Hybrid AARA: Contribution
Hybrid AARA It integrates
• Bayesian data-driven analysis (BayesWC and BayesPC) and
• Automatic Amortized Resource Analysis (AARA)
by a novel interface between sampling algorithms and linear programming

26

AARA BayesWC and BayesPC
fun f x =
 let y = g z
 in
 ...

fun f x =
 let y = g z
 in
 ...

Hybrid AARA

fun f x =
 let y = g z
 in
 ...

Hybrid AARA: AARA + BayesPC

27

Key idea Draw samples from a probability distribution restricted to a convex
polytope defined by linear constraints
Reflective Hamiltonian Monte Carlo (Chalkis et al., 2023)

Substitution is safe because
BayesPC respects linear

constraints 𝐶0

Annotate
code
fragment

f x =
 let y =
 stat(g z)
 in …

1. Collect linear constraints 𝐶0 from AARA

𝐶0
⋅⊢ 𝑓: 𝜏1 → 𝜏2

𝑥: 𝜏1 ⊢ let y = … ∶ 𝜏2

Γ ⊢ g z ∶ 𝜏⋮

2. Collect
runtime data 𝐷

𝐷

4. Plug type judgments from
BayesPC into AARA

⋅⊢ 𝑓: 𝜏1 → 𝜏2

𝑥: 𝜏1 ⊢ let y = … ∶ 𝜏2

Γi ⊢ g z ∶ 𝜏𝑖
⋮

3. Run reflective HMC for
BayesPC restricted to 𝐶0

Γi ⊢ g z ∶ 𝜏𝑖
(𝑖 = 1, … , 𝑀)

Example Evaluation: Quicksort

28

Opt BayesPC

Data-driven

Hybrid

Resource metric: comparisons, each of which varies between 0.5 and 1.0

1. Bayesian analysis is more accurate than opt.

2. Hybrid analysis is
more accurate than
data-driven analysis

Static analysis is
inapplicable to the
partition function

Outline
❑Motivation and overview
❑Background on AARA
❑Contribution: Bayesian data-driven analysis
❑Contribution: Hybrid AARA
❑Contribution: resource decomposition
❑Proposed work: inference of program-input generator
❑Timeline and conclusion

29

Limitations of Hybrid AARA
Two limitations Analysis techniques combined by Hybrid AARA must infer
• Polynomial bounds
• Quantities of the same resource metric

30

4 3 12

4 3 12

4 3 2 1

3 4 21

1 2 43

Merge sort Bubble sort
4 3 12

3 2 41

2 1 43

1 2 43

Recursion depth
log(𝑛) Recursion depth

𝑛

Non-
polynomial

Cannot be
statically
derived

Combined cost at
recursion depth

𝑛

Per-iteration cost
𝑛

Contribution: Resource Decomposition
Key idea Extend a program with an extra numeric non-negative variable to
represent user-defined quantities (e.g., recursion depths and costs)

31

4 3 12

4 3 12

4 3 2 1

3 4 21

1 2 43

Instrumented merge sort
Original input

Resource guard
r ≥ 0

r - 1

r - 2

r - 1

r

Raise an exception if
it gets negative

Overall cost bound 𝑛 ⋅ 𝑟

Recursion-depth bound log(𝑛)

Overall cost bound
𝑛 ⋅ log(𝑛)

Decrement before a
recursive call

Increment after a
recursive call

Resource Decomposition: Workflow

1. Manual code annotation: indicate what quantities should be represented by
resource guards (e.g., recursion depth, cost of a code fragment, etc.)

2. Automatic transformation: instrument the code with resource guards
3. Conduct Analysis A on the resource-guarded program to infer 𝑓(𝑥, 𝑟)

 Analysis B on the resource-guard to infer 𝑟 = 𝑔(𝑥)

4. Substitution: obtain an overall bound 𝑓(𝑥, 𝑔(𝑥))
32

fun f x =
 …
 let y = g z in
 …

Original
fun f x =
 mark 1 …
 let y = g z in
 … mark (-1)

Resource
decomposed fun f x r =

 r := r-1 …
 let y = g z in
 … r := r +1

Resource guarded

Dataset
𝐷 = {(𝑥𝑖 , 𝑟𝑖)}𝑖=1

𝑁

Overall cost bound
𝑓(𝑥, 𝑟)

Resource-guard bound
𝑟 = 𝑔(𝑥)

Inferred bound
𝑓(𝑥, 𝑔(𝑥))

Resource Decomposition: AARA + Bayesian
Swiftlet Instantiates the resource-decomposition framework with

AARA and Bayesian inference

33

To infer 𝑓(𝑥, 𝑟) To infer
• 𝑟 = 𝑐0 + 𝑐1𝑛 or
• 𝑟 = 𝑐0 + 𝑐1 log(1 + 𝑐2 + 𝑐3𝑛)
for recursion depths

Correctly infer
logarithmic

recursion depths

More accurate
cost bounds
than purely
data-driven

analysis

Comparison between Hybrid Analyses
Hybrid AARA
Interface: potential functions in the
input and output

+ Precise cost bounds parametric in
the input and output sizes
- Inflexible: only polynomial bounds
of the same resource metric

34

Resource decomposition
Interface: numeric non-negative
variable

+ Flexible: r can represent any
quantity with any symbolic bound
- Resource-guard bounds are only
parametric in input sizes

let rec f x =
 let y = g z in
 …

Γi ⊢ g z ∶ 𝜏𝑖

Typing tree

𝑓(𝑥, 𝑟)

let rec f x r =
 let y = g z in
 … r := r – 1 …

𝑟 = 𝑔(𝑥)

Outline
❑Motivation and overview
❑Background on AARA
❑Contribution: Bayesian data-driven analysis
❑Contribution: Hybrid AARA
❑Contribution: resource decomposition
❑Proposed work: inference of program-input generator
❑Timeline and conclusion

35

Proposed Work: Program-Input Generator Inference
Issue Existing Bayesian data-driven analysis uses randomly generated
program inputs and their cost measurements

36

3. Statistical analysis
Analyze 𝐷 to infer bounds

Quicksort Inputs are generated randomly

Challenge
Huge gap between

worst-case complexity and
average-case complexity

1. Program-input generation
𝑣1, … , 𝑣𝑁

2. Cost measurement
𝐷 = {(𝑣𝑖 , 𝑃 𝑣𝑖 , 𝑐𝑖)}𝑖=1

𝑁

Statistical analysis has no control

Proposed Work: Program-Input Generator Inference
Proposal Statistically infer worst-case input generators as well as worst-
case cost bounds

37

1. Statistical analysis
Infer an input generator 𝑔

2. Cost measurement
Use 𝑔 to generate cost dataset 𝐷

3. Statistical analysis
Infer a cost bound

Quicksort Inputs are generated randomly

Solution
Use sorted lists to generate

cost measurements

Statistical analysis has control

Program-Input Generator Inference: DSL
DSL of program-input generators
1. Probabilistic generators
• The ability to generate all possible values (with some probability) is

necessary for a statistical soundness guarantee of data-driven analysis
• More accurate characterization of a class of program inputs
2. Inductively defined by types
 𝐿 = unit + (int × 𝐿)

38

let rec gL x =
 let e = gbool x in
 if e then
 gunit x
 else
 let v1 = gint x in
 let v2 = gL x in
 (v1, v2)

Generate a Boolean

Generate the unit element

Generate a head and tail

Program-Input Generator Inference: Inference
Challenge in generator inference
How do we score generators?

Optimization We can run fuzzing (e.g., based on genetic algorithms) over
the space of generators to find a generator with the highest score

Bayesian inference We cannot have a probability distribution where
generators with higher scores have higher densities

39

Outline
❑Motivation and overview
❑Background on AARA
❑Contribution: Bayesian data-driven analysis
❑Contribution: Hybrid AARA
❑Contribution: resource decomposition
❑Proposed work: inference of program-input generator
❑Timeline and conclusion

40

Timeline
Fall 2024
• Submit the resource-decomposition paper to PLDI 2025
Spring 2025
• Thesis proposal
• Complete the design of the DSL for generators and implement a prototype
• Resubmit the resource-decomposition paper (if necessary)
• Complete the speaking-skill requirement
• Complete a thesis draft
Summer 2025
• Thesis defense

41

Conclusion
1. Hybrid resource analysis integrates complementary analysis techniques
to retain their strengths while mitigating their weaknesses

2. Two interfaces: resource-annotated types in Hybrid AARA and numeric
program variables in resource decomposition
3. Proposed work: data-driven analysis for inferring worst-case program-
input generators as well as worst-case cost bounds

42

Analysis A Analysis B
fun f x =
 let y = g z
 in
 ...

fun f x =
 let y = g z
 in
 ...

Hybrid Resource Analysis

fun f x =
 let y = g z
 in
 ...

Cannot be
analyzed by
Analysis A

Thank you

43

Polynomial-time completeness of AARA
Polynomial-time completeness
Typable fragment of AARA contains all polynomial-time functions
Theorem 2.2
Given a polynomial-time Turing machine 𝑀: ℕ → ℕ, there exists a functional
program 𝑃: ℕ → ℕ such that
• For every input 𝑛 ∈ ℕ, we have 𝑃 𝑛 = 𝑀(𝑛)

• The cost of 𝑃 is equal to the cost of 𝑀
• AARA can infer a polynomial cost bound of 𝑃
Key idea in the proof
Add an extra program variable to represent the known cost bound

44

This idea will be
exploited in the
design of hybrid

resource analysis

Polynomial-time completeness of AARA

Operation of 𝑃
• Create ℓpotential of length 𝑝 𝑤 , where each cell stores one unit of

potential
• Every time 𝑀 moves its head, 𝑃 simulates the same move, removes one

list cell from ℓpotential, and runs tick 1.0
45

Turing machine 𝑀 Tape with input 𝑤 Cost bound 𝑝(𝑤)

Program 𝑃 List with input 𝑤 List storing potential ℓpotential

Length 𝑝(𝑤)

Must know the polynomial
bound in advance

Resource Decomposition: Soundness
Soundness (Theorem 2.4)
If 𝑓(𝑥, 𝑟) is a sound overall cost bound of the resource-guarded program
𝑃rg(𝑥, 𝑟) and 𝑔(𝑥) is a sound bound of a resource guard 𝑟, then 𝑓(𝑥, 𝑔(𝑥)) is
a sound overall cost bound of the original program 𝑃(𝑥).

Proof
By a logical-relation argument

46

Comparison: Resource Guards and Clocks
Comparison
Usage: resource guards are for decomposing resource analysis, while
clocks are for termination proofs. If termination checkers are strong enough,
we may no longer need clocks.
Quantities: resource guards can be any quantity that can be defined as a
high-water mark cost, while clocks are (at least in the calf paper) recursion
depths.
Summary
A clock is a special case of a resource guard for (i) a recursion depth and (ii)
decomposing resource analysis into Agda and a termination proof.

47

	Slide 1: Thesis Proposal: Hybrid Resource-Bound Analysis of Programs
	Slide 2: Resource Analysis
	Slide 3: Applications of Resource Analysis
	Slide 4: Existing Approaches to Resource Analysis
	Slide 5: Proposal: Hybrid Resource Analysis
	Slide 6: Proposal: Hybrid Resource Analysis
	Slide 7: Proposal: Hybrid Resource Analysis
	Slide 8: Structure of the Thesis
	Slide 9: Outline
	Slide 10: State of the Art in Static Analysis
	Slide 11: Static Analysis: AARA
	Slide 12: Static Analysis: AARA
	Slide 13: Static Analysis: AARA
	Slide 14: Static Analysis: AARA
	Slide 15: Static Analysis: AARA
	Slide 16: Outline
	Slide 17: State of the Art in Data-Driven Analysis (Opt.)
	Slide 18: Contribution: Bayesian Data-Driven Analysis
	Slide 19: Bayesian Data-Driven Analysis: Overview
	Slide 20: Bayesian Data-Driven Analysis: BayesWC
	Slide 21: Bayesian Data-Driven Analysis: BayesPC
	Slide 22: Outline
	Slide 23: Hybrid Analysis: Goal and Challenge
	Slide 24: Hybrid Analysis: Interface Design Attempt 1
	Slide 25: Hybrid Analysis: Interface Design Attempt 2
	Slide 26: Hybrid AARA: Contribution
	Slide 27: Hybrid AARA: AARA + BayesPC
	Slide 28: Example Evaluation: Quicksort
	Slide 29: Outline
	Slide 30: Limitations of Hybrid AARA
	Slide 31: Contribution: Resource Decomposition
	Slide 32: Resource Decomposition: Workflow
	Slide 33: Resource Decomposition: AARA + Bayesian
	Slide 34: Comparison between Hybrid Analyses
	Slide 35: Outline
	Slide 36: Proposed Work: Program-Input Generator Inference
	Slide 37: Proposed Work: Program-Input Generator Inference
	Slide 38: Program-Input Generator Inference: DSL
	Slide 39: Program-Input Generator Inference: Inference
	Slide 40: Outline
	Slide 41: Timeline
	Slide 42: Conclusion
	Slide 43: Thank you
	Slide 44: Polynomial-time completeness of AARA
	Slide 45: Polynomial-time completeness of AARA
	Slide 46: Resource Decomposition: Soundness
	Slide 47: Comparison: Resource Guards and Clocks

