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Resource Analysis
Goal of resource analysis
Infer a worst-case bound of the cost of a program as a function of inputs
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Program

Resource metric

Worst-case 
cost bound

fun quicksort x 
= <body>

Time Memory Energy

resource 
analysis

𝑥 𝑥 − 1 /2



Applications of Resource Analysis
1. Prevent algorithmic complexity attacks by inferring
worst-case resource usage / inputs

2. Estimate job size for job scheduling in 
cloud computing

3. Infer tool used at Meta/Facebook

4. Worst-case execution time (WCET)
for safety-critical embedded systems
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https://github.com/facebook/infer

https://github.com/facebook/infer


Existing Approaches to Resource Analysis
(Automatic) static analysis of the source code
+ Sound: any result is a valid bound
- Incomplete: cannot handle all programs
Data-driven analysis of runtime cost data
+ Always returns a result
- Only sound with respect to runtime cost data 
Interactive analysis with proof assistants (e.g., Coq and Agda)
+ Sound and expressive cost bounds
- Not fully automatic
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Proposal: Hybrid Resource Analysis
Idea Integrate complementary analysis techniques to overcome their 
respective limitations
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fun f x =
  let y = g z 
  in
  ... 

Analysis B

Analysis A

combine overall cost bound



Proposal: Hybrid Resource Analysis
Hybrid resource analysis covers a spectrum ranging from Analysis A to 
Analysis B
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Analysis A Analysis B
fun f x =
  let y = g z 
  in
  ... 

fun f x =
  let y = g z 
  in
  ... 

Hybrid Resource Analysis

fun f x =
  let y = g z 
  in
  ... 

Cannot be 
analyzed by 
Analysis A

Best approach 
in evaluation



Proposal: Hybrid Resource Analysis
Benefit of hybrid analysis
Retains the strengths of analysis techniques while mitigating their 
respective weaknesses
• Analyze a larger class of programs
• Infer a larger class of symbolic cost bounds

Thesis statement
Hybrid resource analysis enables the analysis of programs and inference of 
cost bounds that are beyond the reach of individual analysis techniques
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Structure of the Thesis

[1] Long Pham, Jan Hoffmann. Typable Fragments of Polynomial Automatic 
Amortized Resource Analysis. Published at CSL 2021
[2] Long Pham, Feras Saad, Jan Hoffmann. Robust Resource Bounds with Static 
Analysis and Bayesian Inference. Published at PLDI 2024
[3] Long Pham, Yue Niu, Nathan Glover, Feras Saad, Jan Hoffmann. Integrating 
Resource Analyses via Resource Decomposition. Under submission
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Static analysis
• Background on AARA (§2.1)
• Polynomial-time completeness 

of AARA (§2.2) [1]

Data-driven analysis
• Bayesian data-driven analysis (§2.3) [2]
• Program-input generator inference 

(§2.7)

Hybrid analysis
• Hybrid AARA (§2.4) [2]
• Resource decomposition (§2.5, 2.6) [3]



Outline
❑Motivation and overview
❑Background on AARA
❑Contribution: Bayesian data-driven analysis
❑Contribution: Hybrid AARA
❑Contribution: resource decomposition
❑Proposed work: inference of program-input generator
❑Timeline and conclusion
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State of the Art in Static Analysis
Static analysis examines the source code, constructs constraints defining the 
worst-case behavior, and solves them
• Type systems (e.g., AARA by Hoffmann, Hofmann, Jost et al.)
• Recurrence relations (e.g., COSTA by Albert et al.)
• Ranking functions (e.g., AProVE and KoAT by Giesl et al.)

Advantage
+ Soundness guarantee
Disadvantages
- Incomplete due to the undecidability of resource analysis
- Rewriting a program is difficult for non-expert users
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Static Analysis: AARA
Automatic Amortized Resource Analysis (AARA)
Type-based resource analysis that automates the potential method of 
amortized analysis

Example partition function Cost one unit per comparison

Input  [1, 2, 3, 4]   Output  ([ , ], [ , ])
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Cost is indicated 
by tick 𝑞 for 𝑞 ∈ ℚ



One unit of 
potential has 

been consumed

Static Analysis: AARA
Automatic Amortized Resource Analysis (AARA)
Type-based resource analysis that automates the potential method of 
amortized analysis

Example partition function Cost one unit per comparison

Input  [1, 2, 3, 4]   Output  ([ , ], [ , ])
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Cost is indicated 
by tick 𝑞 for 𝑞 ∈ ℚ



Static Analysis: AARA
Automatic Amortized Resource Analysis (AARA)
Type-based resource analysis that automates the potential method of 
amortized analysis

Example partition function Cost one unit per comparison

Input  [1, 2, 3, 4]   Output  ([1, ], [ , ])
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Cost is indicated 
by tick 𝑞 for 𝑞 ∈ ℚ

The input list element 
is added to the output 



Static Analysis: AARA
Automatic Amortized Resource Analysis (AARA)
Type-based resource analysis that automates the potential method of 
amortized analysis

Example partition function Cost one unit per comparison

Input  [1, 2, 3, 4]   Output  ([1, 2], [3, 4])

Resource-annotated typing judgment
partition: int × 𝐿2(int) → (𝐿1 int × 𝐿1 int )
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Input potential: 2 ⋅ 𝑛 Output potential: 1 ⋅ 𝑛1 +1 ⋅ 𝑛2

Cost is indicated 
by tick 𝑞 for 𝑞 ∈ ℚ



Static Analysis: AARA
1. Assign variables

partition: int × 𝐿𝑝(int) → (𝐿𝑞1 int × 𝐿𝑞2 int )

2. Collect linear constraints
   𝑝 ≥ 1 + 𝑞1

   𝑝 ≥ 1 + 𝑞2

Sound: any cost bound inferred by AARA is a valid worst-case cost bound
Incomplete: there exists a polynomial-cost program that AARA cannot analyze 
because resource analysis is undecidable in general
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Input 
potential

Output 
potential

Cost

Why AARA for static analysis
+ Compositionality offered by types
+ Automatic bound inference by LP solving
+ Precise cost bounds by amortized analysis
+ Soundness guarantee

AARA can express 
polynomial cost 

bounds in general
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State of the Art in Data-Driven Analysis (Opt.)
Examples Input-sensitive profiling (Coppa et al.), 
Algorithmic profiling (Zaparanuks et al.), Dynaplex (Ishimwe et al.)
1. Collect cost measurements of inputs 𝑣1, … , 𝑣𝑁

2. Optimize cost bound (red line)
 Minimize red line − black dots
 Subject to red line ≥ black dots
Disadvantages of optimization
- Does not incorporate the user’s domain knowledge
- No quantitative measure of statistical uncertainty
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𝑣1 , 𝑐1

𝑣𝑁 , 𝑐𝑁

𝑣1

𝑣𝑁

...

...𝑃

True worst-
case cost?



Contribution: Bayesian Data-Driven Analysis
Bayesian data-driven resource analysis
1. Define a probabilistic model 𝜋(𝜃, 𝐷)
  𝜃 : latent parameter (cost bound)
  𝐷: observed data (cost measurements)
2. Collect observed data 𝐷obs

3. Compute the posterior distribution
 Bayes’ rule:   𝜋 𝜃 𝐷 = 𝐷obs =

𝜋(𝜃, 𝐷=𝐷obs)

 𝜋(𝜃, 𝐷=𝐷obs) ⅆ𝜃

 Draw posterior samples: 𝜃1, … , 𝜃𝑀 ∼ 𝜋(𝜃 ∣ 𝐷 = 𝐷obs) 

Advantages over optimization
+ Can incorporate the domain knowledge in the probabilistic model
+ Posterior distribution captures statistical uncertainty
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Bayesian Data-Driven Analysis: Overview
Previous: Optimization (Opt)

New: Bayesian inference of 
worst-case costs (BayesWC)

New: Bayesian inference of 
polynomial coefficients (BayesPC)
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Bayesian Data-Driven Analysis: BayesWC
Bayesian inference of worst-case costs (BayesWC)
1. Define a probabilistic model 𝜋(θ, 𝒄max, 𝒄)

  𝒄max: hidden worst-case cost (blue dots)
  𝒄: observed cost (black dots)

2. Draw posterior samples of 𝒄max

3. Optimize cost bound (red line) 
 Minimize red line − blue dots
 Subject to red line ≥ blue dots
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Bayesian Data-Driven Analysis: BayesPC
Bayesian inference of polynomial coefficients (BayesPC)
1. Define a probabilistic model π(𝑝, 𝒄)

 𝑝: cost bond (blue line)
  𝒄: observed cost (black dots)

2. Draw posterior samples of cost bound 𝑝 (blue line)
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Hybrid Analysis: Goal and Challenge
Goal

Key challenge
Hybrid analysis needs an interface between:
1. Bayesian data-driven analysis draws samples
2. Static analysis solves constraints
How do we coherently combine constraints and posterior samples?
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fun f x =
  let y = g z 
  in
  ... 

data-driven analysis

static analysis

combine overall cost boundposterior 
samples

constraints

Design questions
1. What is the format of 
inference results?
2. What information needs 
to be exchanged during 
inference?



Hybrid Analysis: Interface Design Attempt 1
Unsuccessful interface Symbolic cost bound (e.g., 1.1𝑛 + 1.2)
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fun f x =
  let y = partition z 
  in
  ... 

data-driven analysis

static analysis

combine overall cost boundposterior 
samples

constraints

⋅⊢ 𝑓: 𝜏1 → 𝜏2

𝑥: 𝜏1 ⊢ let y = … ∶ 𝜏2

Γ ⊢ partition 𝑧: ?

⋮
Missing info

Partition 
preserves the list 
size in the output

𝑐1,𝑖𝑛 + 𝑐0,𝑖 (𝑖 = 1, … , 𝑀)



Hybrid Analysis: Interface Design Attempt 2
Interface Potential functions in the input and output
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fun f x =
  let y = g z 
  in
  ... 

data-driven analysis

static analysis

combine overall cost boundposterior 
samples

constraints

⋅⊢ 𝑓: 𝜏1 → 𝜏2

𝑥: 𝜏1 ⊢ let y = … ∶ 𝜏2

Γ ⊢ g z ∶ 𝜏

⋮

Challenge
(Γi, 𝜏𝑖) cannot be 

arbitrary samples, 
which may violate linear 

constraints

Γi ⊢ g z ∶ 𝜏𝑖 (𝑖 = 1, … , 𝑀)

AARA’s typing 
judgment is a 
perfect match



Hybrid AARA: Contribution
Hybrid AARA It integrates
• Bayesian data-driven analysis (BayesWC and BayesPC) and
• Automatic Amortized Resource Analysis (AARA)
by a novel interface between sampling algorithms and linear programming
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AARA BayesWC and BayesPC
fun f x =
  let y = g z 
  in
  ... 

fun f x =
  let y = g z 
  in
  ... 

Hybrid AARA

fun f x =
  let y = g z 
  in
  ... 



Hybrid AARA: AARA + BayesPC
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Key idea Draw samples from a probability distribution restricted to a convex 
polytope defined by linear constraints 
Reflective Hamiltonian Monte Carlo (Chalkis et al., 2023)

Substitution is safe because 
BayesPC respects linear 

constraints 𝐶0

Annotate 
code 
fragment

f x = 
  let y =
  stat(g z)
  in …

1. Collect linear constraints 𝐶0 from AARA

𝐶0
⋅⊢ 𝑓: 𝜏1 → 𝜏2

𝑥: 𝜏1 ⊢ let y = … ∶ 𝜏2

Γ ⊢ g z ∶ 𝜏⋮

2. Collect 
runtime data 𝐷

𝐷

4. Plug type judgments from 
BayesPC into AARA

⋅⊢ 𝑓: 𝜏1 → 𝜏2

𝑥: 𝜏1 ⊢ let y = … ∶ 𝜏2

Γi ⊢ g z ∶ 𝜏𝑖
⋮

3. Run reflective HMC for 
BayesPC restricted to 𝐶0

Γi ⊢ g z ∶ 𝜏𝑖  
(𝑖 = 1, … , 𝑀)



Example Evaluation: Quicksort
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Opt BayesPC

Data-driven

Hybrid

Resource metric: comparisons, each of which varies between 0.5 and 1.0

1. Bayesian analysis is more accurate than opt.

2. Hybrid analysis is 
more accurate than 
data-driven analysis

Static analysis is 
inapplicable to the 
partition function
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Limitations of Hybrid AARA
Two limitations Analysis techniques combined by Hybrid AARA must infer
• Polynomial bounds
• Quantities of the same resource metric
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4 3 12

4 3 12

4 3 2 1

3 4 21

1 2 43

Merge sort Bubble sort
4 3 12

3 2 41

2 1 43

1 2 43

Recursion depth
log(𝑛) Recursion depth

𝑛

Non-
polynomial

Cannot be 
statically 
derived

Combined cost at 
recursion depth

𝑛

Per-iteration cost
𝑛



Contribution: Resource Decomposition
Key idea Extend a program with an extra numeric non-negative variable to 
represent user-defined quantities (e.g., recursion depths and costs)
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4 3 12

4 3 12

4 3 2 1

3 4 21

1 2 43

Instrumented merge sort
Original input

Resource guard
r ≥ 0 

r - 1

r - 2

r - 1

r

Raise an exception if 
it gets negative

Overall cost bound 𝑛 ⋅ 𝑟

Recursion-depth bound log(𝑛)

Overall cost bound
𝑛 ⋅ log(𝑛)

Decrement before a 
recursive call

Increment after a 
recursive call



Resource Decomposition: Workflow

1. Manual code annotation: indicate what quantities should be represented by 
resource guards (e.g., recursion depth, cost of a code fragment, etc.)

2. Automatic transformation: instrument the code with resource guards
3. Conduct  Analysis A on the resource-guarded program to infer 𝑓(𝑥, 𝑟)

   Analysis B on the resource-guard to infer 𝑟 = 𝑔(𝑥)

4. Substitution: obtain an overall bound 𝑓(𝑥, 𝑔(𝑥))
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fun f x =
  …
  let y = g z in
  …

Original
fun f x =
  mark 1 …
  let y = g z in
  … mark (-1)

Resource 
decomposed fun f x r =

  r := r-1 …
  let y = g z in
  … r := r +1

Resource guarded

Dataset
𝐷 = {(𝑥𝑖 , 𝑟𝑖)}𝑖=1

𝑁

Overall cost bound
𝑓(𝑥, 𝑟)

Resource-guard bound
𝑟 = 𝑔(𝑥)

Inferred bound
𝑓(𝑥, 𝑔(𝑥))



Resource Decomposition: AARA + Bayesian
Swiftlet Instantiates the resource-decomposition framework with

AARA and Bayesian inference
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To infer 𝑓(𝑥, 𝑟) To infer 
• 𝑟 = 𝑐0 + 𝑐1𝑛 or
• 𝑟 = 𝑐0 + 𝑐1 log(1 + 𝑐2 + 𝑐3𝑛) 
for recursion depths

Correctly infer 
logarithmic 

recursion depths

More accurate 
cost bounds 
than purely 
data-driven 

analysis



Comparison between Hybrid Analyses
Hybrid AARA
Interface: potential functions in the 
input and output

+ Precise cost bounds parametric in 
the input and output sizes
- Inflexible: only polynomial bounds 
of the same resource metric
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Resource decomposition
Interface: numeric non-negative 
variable

+ Flexible: r can represent any 
quantity with any symbolic bound
- Resource-guard bounds are only 
parametric in input sizes

let rec f x = 
  let y = g z in
  …

Γi ⊢ g z ∶ 𝜏𝑖

Typing tree

𝑓(𝑥, 𝑟)

let rec f x r = 
  let y = g z in
  … r := r – 1 …

𝑟 = 𝑔(𝑥)
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Proposed Work: Program-Input Generator Inference
Issue Existing Bayesian data-driven analysis uses randomly generated 
program inputs and their cost measurements
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3. Statistical analysis
Analyze 𝐷 to infer bounds

Quicksort Inputs are generated randomly

Challenge
Huge gap between 

worst-case complexity and 
average-case complexity

1. Program-input generation
𝑣1, … , 𝑣𝑁

2. Cost measurement
𝐷 = {(𝑣𝑖 , 𝑃 𝑣𝑖 , 𝑐𝑖)}𝑖=1

𝑁

Statistical analysis has no control



Proposed Work: Program-Input Generator Inference
Proposal Statistically infer worst-case input generators as well as worst-
case cost bounds
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1. Statistical analysis
Infer an input generator 𝑔

2. Cost measurement
Use 𝑔 to generate cost dataset 𝐷

3. Statistical analysis
Infer a cost bound

Quicksort Inputs are generated randomly

Solution
Use sorted lists to generate 

cost measurements

Statistical analysis has control



Program-Input Generator Inference: DSL
DSL of program-input generators
1. Probabilistic generators
• The ability to generate all possible values (with some probability) is 

necessary for a statistical soundness guarantee of data-driven analysis
• More accurate characterization of a class of program inputs
2. Inductively defined by types
 𝐿 = unit + (int × 𝐿)
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let rec gL x =
  let e = gbool x in
  if e then
    gunit x
  else
    let v1 = gint x in
    let v2 = gL x in
    (v1, v2)

Generate a Boolean

Generate the unit element

Generate a head and tail



Program-Input Generator Inference: Inference
Challenge in generator inference
How do we score generators?

Optimization We can run fuzzing (e.g., based on genetic algorithms) over 
the space of generators to find a generator with the highest score

Bayesian inference We cannot have a probability distribution where 
generators with higher scores have higher densities
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Timeline
Fall 2024
• Submit the resource-decomposition paper to PLDI 2025
Spring 2025
• Thesis proposal
• Complete the design of the DSL for generators and implement a prototype
• Resubmit the resource-decomposition paper (if necessary)
• Complete the speaking-skill requirement
• Complete a thesis draft
Summer 2025
• Thesis defense
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Conclusion
1. Hybrid resource analysis integrates complementary analysis techniques 
to retain their strengths while mitigating their weaknesses

2. Two interfaces: resource-annotated types in Hybrid AARA and numeric 
program variables in resource decomposition
3. Proposed work: data-driven analysis for inferring worst-case program-
input generators as well as worst-case cost bounds
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Analysis A Analysis B
fun f x =
  let y = g z 
  in
  ... 

fun f x =
  let y = g z 
  in
  ... 

Hybrid Resource Analysis

fun f x =
  let y = g z 
  in
  ... 

Cannot be 
analyzed by 
Analysis A



Thank you
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Polynomial-time completeness of AARA
Polynomial-time completeness
Typable fragment of AARA contains all polynomial-time functions
Theorem 2.2
Given a polynomial-time Turing machine 𝑀: ℕ → ℕ, there exists a functional 
program 𝑃: ℕ → ℕ such that
• For every input 𝑛 ∈ ℕ, we have 𝑃 𝑛 = 𝑀(𝑛)

• The cost of 𝑃 is equal to the cost of 𝑀
• AARA can infer a polynomial cost bound of 𝑃
Key idea in the proof
Add an extra program variable to represent the known cost bound
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This idea will be 
exploited in the 
design of hybrid 

resource analysis



Polynomial-time completeness of AARA

Operation of 𝑃
• Create ℓpotential of length 𝑝 𝑤 , where each cell stores one unit of 

potential
• Every time 𝑀 moves its head, 𝑃 simulates the same move, removes one 

list cell from ℓpotential, and runs tick 1.0
45

Turing machine 𝑀 Tape with input 𝑤 Cost bound 𝑝( 𝑤 )

Program 𝑃 List with input 𝑤 List storing potential ℓpotential

Length 𝑝( 𝑤 )

Must know the polynomial 
bound in advance



Resource Decomposition: Soundness
Soundness (Theorem 2.4)
If 𝑓(𝑥, 𝑟) is a sound overall cost bound of the resource-guarded program 
𝑃rg(𝑥, 𝑟) and 𝑔(𝑥) is a sound bound of a resource guard 𝑟, then 𝑓(𝑥, 𝑔(𝑥)) is 
a sound overall cost bound of the original program 𝑃(𝑥).

Proof
By a logical-relation argument
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Comparison: Resource Guards and Clocks
Comparison
Usage: resource guards are for decomposing resource analysis, while 
clocks are for termination proofs. If termination checkers are strong enough, 
we may no longer need clocks.
Quantities: resource guards can be any quantity that can be defined as a 
high-water mark cost, while clocks are (at least in the calf paper) recursion 
depths.
Summary 
A clock is a special case of a resource guard for (i) a recursion depth and (ii) 
decomposing resource analysis into Agda and a termination proof.
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