
Programmable MCMC with Soundly Composed Guide
Programs

LONG PHAM, Carnegie Mellon University, USA
DI WANG

∗
, Peking University, China

FERAS A. SAAD, Carnegie Mellon University, USA
JAN HOFFMANN, Carnegie Mellon University, USA

Probabilistic programming languages (PPLs) provide language support for expressing flexible probabilistic
models and solving Bayesian inference problems. PPLs with programmable inference make it possible for
users to obtain improved results by customizing inference engines using guide programs that are tailored to a
corresponding model program. However, errors in guide programs can compromise the statistical soundness
of the inference. This article introduces a novel coroutine-based framework for verifying the correctness of
user-written guide programs for a broad class of Markov chain Monte Carlo (MCMC) inference algorithms.
Our approach rests on a novel type system for describing communication protocols between a model program
and a sequence of guides that each update only a subset of random variables. We prove that, by translating
guide types to context-free processes with finite norms, it is possible to check structural type equality between
models and guides in polynomial time. This connection gives rise to an efficient type-inference algorithm for
probabilistic programs with flexible constructs such as general recursion and branching. We also contribute a
coverage-checking algorithm that verifies the support of sequentially composed guide programs agrees with
that of the model program, which is a key soundness condition for MCMC inference with multiple guides.
Evaluations on diverse benchmarks show that our type-inference and coverage-checking algorithms efficiently
infer types and detect sound and unsound guides for programs that existing static analyses cannot handle.

CCS Concepts: • Theory of computation→ Probabilistic computation; Type theory; Grammars and
context-free languages; • Mathematics of computing→ Bayesian computation.

Additional Key Words and Phrases: probabilistic programming, Bayesian inference, type systems, coroutines,
context-free types

ACM Reference Format:
Long Pham, Di Wang, Feras A. Saad, and Jan Hoffmann. 2024. Programmable MCMC with Soundly Composed
Guide Programs. Proc. ACM Program. Lang. 8, OOPSLA2, Article 308 (October 2024), 38 pages. https://doi.org/
10.1145/3689748

1 Introduction
Probabilistic programming languages (PPLs) enable users to write probabilistic models as programs
and solve Bayesian-inference problems. PPLs have been successfully used in numerous applications,
ranging from robotics [38] and computer vision [28] to cognition [7] and data science [42].

∗Corresponding author.

Authors’ Contact Information: Long Pham, Carnegie Mellon University, Pittsburgh, USA, longp@andrew.cmu.edu; Di Wang,
Peking University, Beijing, China, wangdi95@pku.edu.cn; Feras A. Saad, Carnegie Mellon University, Pittsburgh, USA,
fsaad@cmu.edu; Jan Hoffmann, Carnegie Mellon University, Pittsburgh, USA, jhoffmann@cmu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/10-ART308
https://doi.org/10.1145/3689748

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

HTTPS://ORCID.ORG/0000-0001-5153-8140
HTTPS://ORCID.ORG/0000-0002-2418-7987
HTTPS://ORCID.ORG/0000-0002-0505-795X
HTTPS://ORCID.ORG/0000-0001-8326-0788
https://doi.org/10.1145/3689748
https://doi.org/10.1145/3689748
https://orcid.org/0000-0001-5153-8140
https://orcid.org/0000-0002-2418-7987
https://orcid.org/0000-0002-0505-795X
https://orcid.org/0000-0001-8326-0788
https://doi.org/10.1145/3689748

308:2 Pham et al.

Programmable inference. Traditional PPLs provide generic inference algorithms that apply to
almost any model that can be expressed in the languages [6, 18, 53]. However, these inference
algorithms may fail to return accurate results within a reasonable time frame. To circumvent
this problem, modern PPLs support programmable inference, which lets users develop custom
guide programs that are customized to the model programs [3, 12, 33]. Custom guide programs are
supported by both variational and Monte-Carlo-based inference algorithms, enabling substantial
improvements in accuracy and runtime performance as compared to generic algorithms [11].
However, they also create room for users to introduce bugs that invalidate the statistical soundness
of the inference, causing the inference algorithms to crash or even silently return invalid results.

Verifying guide programs. A number of static-analysis methods have been recently developed to
verify the correctness of user-implemented guide programs. At a high level, guide programs have
to satisfy certain compatibility conditions with respect to model programs. Lee et al. [30] propose a
static analysis that checks if a model-guide pair is compatible for variational inference in Pyro [3].
Lew et al. [31] develop a type system for traces of probabilistic programs to ensure that well-typed
model-guide pairs are compatible for both Monte Carlo and variational inference. A limitation of
these approaches is their lack of support for general conditional statements and recursive procedure
calls. Li et al. [32] overcome the limitation for variational inference by extending trace types.
Another approach is using coroutine-based programmable-inference [52], where model and guide
programs are treated as coroutines that communicate by exchanging messages about branching
and recursion. Communication protocols are automatically inferred and imposed via guide types.
In this article, we consider the problem of statically verifying the soundness of Markov-Chain

Monte Carlo (MCMC) inference algorithms, and in particular the multiple-block Metropolis-Hastings
[BMH; 8, §4.4] algorithm. The well-known Gibbs sampling and Metropolis-within-Gibbs algorithms
are special cases of BMH [17]. MCMC, including BMH, simulates a Markov chain whose transition
kernel is specified by one or more guide programs. MCMC repeatedly draws samples from these
guide programs, which form successively better approximations of the posterior distribution of a
model program. As the number of iterations becomes large, the samples from the Markov chain
resemble samples from the target distribution.

Model-guide compatibility. A BMH sampler is said to be sound if the limiting distribution of
the Markov chain is the target posterior distribution. Informally, a sufficient condition for the
soundness of BMH is that a sequential composition of guide programs should be able to propose any
sample in the support of a model program. If this condition does not hold, the Markov chain has a
risk of never proposing a sample in the support of a model program. For example, suppose a model
program draws a sample from a Normal distribution Normal(0, 1), which has full support over
R. If a guide program draws a sample from a Gamma distribution Gamma(1, 1), whose support is
R>0, then the Markov chain induced by this guide program cannot propose negative values. Hence,
the Markov chain cannot faithfully converge to the target distribution. Checking the compatibility
of model and guide programs in BMH is especially challenging because it requires reasoning
about the sequential composition of multiple guide programs, where each guide may propose a
different subset of random variables and may use random control flow, recursion, and other flexible
programming constructs.

This work. To verify the soundness of BMH algorithms, this article extends the coroutine-based
programmable inference of Wang et al. [52] from handling only a single-guide program to handling
the sequential composition of multiple guide programs. We build our framework on trace-based
probabilistic inference programming [33], where a probabilistic program defines a distribution over
execution traces that record samples for random variables. A guide program can also access (and

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:3

reuse) the execution trace of the previous guide program, and the BMH algorithm sequentially
executes the guides to propose a new trace from the current one. We reduce the model-guide
compatibility check to the following verification task: given any initial trace, can the sequential
composition of guides propose every possible new trace with a non-zero probability? Amajor challenge
is to augment the model-guide communication with a third party: a guide program now can
communicate with both the model and the previous guide. We formulate a novel operational
semantics for sequentially composed guides that is capable of monitoring and aligning the control
flows of previous and current guides. Our semantics deals with the issue that the guides’ control
flows may diverge.
We then adapt guide types and automatic type inference from Wang et al. [52] to our new

semantics. There are two challenges: (i) different guides may have different control-flow structures
as long as their types are structurally equal (whereas the guide-type system in Wang et al. [52]
only supports nominal types); (ii) a guide may sample a subset of random variables (whereas Wang
et al. [52] only consider complete samples). For challenge (i), we develop a type-equality checking
algorithm for guide types with structural equality. In our setting, guide types correspond to context-
free types [47], which have infinite state spaces. By translating guide types to context-free processes
with finite norms, whose bisimilarity is decidable in polynomial time [21], we prove that guide-
type equality is decidable in polynomial time. For challenge (ii), we devise a coverage-checking
algorithm for verifying that sequentially composed guides satisfy the compatibility condition that
“the composition covers all possible sample traces in the model.” We reduce coverage checking to
verifying that every random variable in any control-flow path is freshly sampled by at least one
guide. Our coverage-checking algorithm essentially bisimulates guide types alongside structures of
guide programs.

We have implemented type-inference, type-equality-checking, and coverage-checking algorithms.
An empirical evaluation of our system on a diverse benchmark set shows that the type-inference
algorithm is more expressive than the algorithm from Wang et al. [52] and that the coverage-
checking algorithm can efficiently handle many benchmarks in practice.

Contributions. This article makes the following contributions:

• We present a flexible coroutine-based framework for programmable inference with sequentially
composed guides that can access and reuse previous traces (§3). Our system handles expressive
constructs such as conditional branching and general recursion in both models and guides.
• We prove that—by translating guide types to context-free processes with finite norms—structural-
type-equality checking in our framework is decidable in polynomial time (§4 and Thm. 4.7).
This connection enables more expressive automatic type inference while remaining efficient.
• We present a novel coverage-checking algorithm (§5) for verifying that sequentially composed
guide programs have full coverage over the support of the target model program; along with a
proof that our algorithm is sound (Thm. 5.1).
• We implement and evaluate type-equality and coverage-checking algorithms on a diverse
benchmark set (§6), showing that our system (i) can analyze programs beyond the reach of
previous static analyses; and (ii) efficiently identifies both correct and incorrect guide programs.

2 Overview
2.1 Bayesian Inference, Markov-Chain Monte Carlo, and Block Metropolis-Hastings
Bayesian inference is the problem of conditioning a probabilistic model on observed data and
computing (or approximating) a posterior distribution on latent variables, which encode information

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

308:4 Pham et al.

about the “ground truth” that cannot be observed directly. Probabilistic programming [2, 19]
provides a framework for implementing probabilistic models and performing Bayesian inference.

Markov-ChainMonte Carlo (MCMC) is a family of algorithms that generate a sequence {lat𝑖 }𝑖=1,...,𝑇
of correlated samples of latent variables from a suitable Markov chain whose stationary distribution
is the target posterior. MCMC uses kernels to generate a new state lat𝑖 from the previous state
lat𝑖−1. TheMetropolis-Hastings (MH) algorithm [20, 34] is a generic method to construct kernels via
custom proposal distributions (called guide programs in probabilistic programming), which generate
new values for latent variables. In each iteration, MH computes an acceptance ratio for a proposed
state and then accepts it with a probability equal to the ratio.
The program Model in Fig. 1a describes a probabilistic model on random variables specified

by commands sample(@ℓ, 𝑑), where ℓ is a label that uniquely identifies a random variable and
𝑑 is a primitive distribution, such as Cat (categorical) distributions whose support is the integer
ring ℕ𝑘 (where 𝑘 is the number of categories), Normal distributions whose support is the real
line ℝ, and InvGamma (inverse-gamma) distributions whose support is the positive real line ℝ+.
The program specifies a regression model with univariate polynomials with degree at most two.
Fig. 1b plots 50 randomly generated polynomials. Fig. 1d implements a proposal distribution for
this model as a guide program Guide1. The program takes the previous sample trace—which records
the values of latent variables from the previous iteration—as its input and generates a new trace
that is compatible with the regression model. By “compatible,” we mean (informally) that this guide
program generates latent variables from a distribution with the same support as the model. This
program implements a single-block MH proposal in the sense that it generates new values for latent
variables jointly as one block. The left of Fig. 1c plots the last 50 posterior samples from this run.

In a high-dimensional space of latent variables, using a single proposal can suffer from low
acceptance rates during MCMC sampling, which leads to slow convergence. A run of MH using
the single-block proposal in Fig. 1d for 5,000 iterations resulted in a poor acceptance rate of only
2.3%. Fig. 1f shows three trace plots for three latent variables (@𝑐0, @𝑐1, and @𝑐2) from the 5,000
samples, where the red lines plot the ground-truth values for them. We can see from the plots that
this particular run was inefficient in exploring the posterior and did not seem to mix at all.

Multiple-block MH. A generalization of single-block MH is multiple-block Metropolis-Hastings
(BMH), also known as Metropolis-within-Gibbs [17]. Alg. 1 shows a simplified case of BMH where
the target distribution 𝜋 (𝑥) is defined over a fixed-dimensional space R𝑑 . The latent variables are
partitioned into 𝐵 ≥ 1 blocks (𝑥1, . . . , 𝑥𝐵), where each 𝑥𝑏 ∈ R𝑛𝑏 and 𝑛1 + · · · + 𝑛𝐵 = 𝑑 . At each
iteration, BMH updates a subset (block) of variables 𝑥𝑏 by sampling from a proposal distribution
𝑞𝑏 (𝑏 = 1, . . . , 𝐵). BMH makes more local steps in each iteration as compared to single-block MH
and often obtains higher acceptance rates. The well-known (block) Gibbs sampling algorithm is a

Algorithm 1Multiple-Block Metropolis-Hastings (BMH)
Require: target distribution 𝜋 (𝑥1, . . . , 𝑥𝐵); proposal distributions (𝑞1, . . . , 𝑞𝐵).
1: Initialize 𝑥0 ← (𝑥0

1, . . . , 𝑥
0
𝐵
).

2: for 𝑗 = 1, 2, . . . do
3: 𝑥 𝑗 ← (𝑥 𝑗−1

1 , . . . , 𝑥
𝑗−1
𝐵
)

4: for 𝑏 = 1, . . . , 𝐵 do
5: Propose a new value 𝑥𝑏 ∼ 𝑞𝑏 (−;𝑥 𝑗) for block 𝑏.

6: Compute the acceptance ratio 𝛼 ←
𝜋 (𝑥𝑏, 𝑥 𝑗

−𝑏)
𝜋 (𝑥 𝑗)

𝑞𝑏 (𝑥 𝑗−1
𝑏

;𝑥 𝑗

−𝑏, 𝑥𝑏)
𝑞𝑏 (𝑥𝑏 ;𝑥 𝑗) .

7: Update 𝑥 𝑗

𝑏
← 𝑥𝑏 with probability min(1, 𝛼).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:5

1 proc Model(xs : vec[5] (ℝ)) =
2 degree← sample(@𝑑,Cat(0.3; 0.5; 0.2)) ;
3 𝑐0 ← sample(@𝑐0,Normal(0, 2)) ;
4 f ← (
5 if degree = 0 then
6 return(𝜆𝑥. 𝑐0)
7 else
8 𝑐1 ← sample(@𝑐1,Normal(0, 2)) ;
9 if degree = 1 then
10 return(𝜆𝑥. 𝑐0 + 𝑐1 ∗ 𝑥)
11 else
12 𝑐2 ← sample(@𝑐2,Normal(0, 2)) ;
13 return(𝜆𝑥. 𝑐0 + 𝑐1 ∗ 𝑥 + 𝑐2 ∗ 𝑥 ∗ 𝑥)
14);
15 noise2← sample(@𝑛, InvGamma(1, 1)) ;
16 noise← return(sqrt(noise2)) ;
17 ys← foreach (𝑖, 𝑥) in xs (
18 𝑦← sample(@𝑦𝑖 ,Normal(𝑓 (𝑥), noise)) ;
19 return(𝑦)
20);
21 return(𝑦𝑠)

(a) Probabilistic program Model over curves.

−4 −3 −2 −1 0 1 2 3 4

−20

−10

0

10

20

(b) 50 prior curves drawn randomly from Model.

−4 −2 0 2 4

−40

−30

−20

−10

0

Single-Block MH

−4 −2 0 2 4

−40

−30

−20

−10

0

Multiple-Block MH

(c) 50 posterior curves given data.

1 proc Guide1(𝜎 : trace) =
2 degree← sample(@𝑑,Cat(1/3; 1/3; 1/3)) ;
3 𝑐0 ← sample(@𝑐0,Normal(𝜎 [@𝑐0], 0.5)) ;
4 _← (
5 if degree = 0 then
6 return()
7 else
8 𝑐1 ← sample(@𝑐1,Normal(𝜎 [@𝑐1] or 0, 0.5)) ;
9 if degree = 1 then
10 return()
11 else
12 𝑐2 ← sample(@𝑐2,Normal(𝜎 [@𝑐2] or 0, 0.5)) ;
13 return()
14);
15 noise2← sample(@𝑛, InvGamma(1, 1)) ;
16 return()

(d) Proposal program Guide1 for Single-Block MH.

1 proc Guide2,𝑑 (𝜎 : trace) =
2 degree← sample(@𝑑,Cat(2/5; 119/200; 1/200)) ;
3 if degree = 0 then return() else
4 𝑐1 ← (if degree ≤ 𝜎 [@𝑑] then return(𝜎 [@𝑐1])
5 else sample(@𝑐1,Normal(0, 0.5)));
6 if degree = 1 then return() else
7 𝑐2 ← (if degree ≤ 𝜎 [@𝑑] then return(𝜎 [@𝑐2])
8 else sample(@𝑐2,Normal(0, 0.5)));
9 return()
10 proc Guide2,𝑐𝑖 (𝜎 : trace) = (for 𝑖 = 0, 1, 2)
11 𝑐𝑖 ← (if 𝜎 [@𝑑] < 𝑖 then return(0)
12 else sample(@𝑐𝑖 ,Normal(𝜎 [@𝑐𝑖], 0.5)));
13 return()
14 proc Guide2,𝑛 (𝜎 : trace) =
15 noise2← sample(@𝑛, InvGamma(1, 1)) ;
16 return()

(e) Proposal programsGuide2,∗ for Multiple-BlockMH.

0 2000 4000

Iteration

−3

−2

−1

0

c0

0 2000 4000

Iteration

−2

−1

0

1

2

3

c1

0 2000 4000

Iteration

−1.5

−1.0

−0.5

0.0

0.5

1.0

c2

(f) Trace plots for @𝑐0, @𝑐1, @𝑐2 (Single-Block MH).

0 2000 4000

Iteration

−6

−4

−2

0

2

4

c0

0 2000 4000

Iteration

−2

0

2

4

c1

0 2000 4000

Iteration

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

c2

(g) Trace plots for@𝑐0,@𝑐1,@𝑐2 (Multiple-BlockMH).

Fig. 1. Bayesian inference for a regression model over polynomial curves of order up to 2.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

308:6 Pham et al.

special case of BMH, where the proposal distribution for a block of latent variables is its conditional
distribution given the observed data and latent variables in all other blocks.

Fig. 1e demonstrates a sequence of guide programs, each of which implements a block proposal
distribution 𝑞𝑏 for the regression model. The proposal Guide2,ℓ with a subscript ℓ is intended to
mutate the value of the random variable @ℓ . We sequentially compose these proposals—each
of which is followed by an MH acceptance routine—to obtain an MCMC kernel. Similar to the
single-block proposal, these proposals must be compatible with the model; that is, after each guide
program mutates a block of random variables, the mutated trace is valid with respect to the model.
The proposal Guide2,𝑑 is intended to mutate @𝑑 , which is the degree of the regression polynomial,
but it needs to take care of missing coefficients (see lines 5 and 8). Note that we deliberately
implement Guide2,𝑑 to sample @𝑑 from a “bad” distribution Cat(2/5, 119/200, 1/200), which leads
the inference to explore quadratic functions with a very small probability.
Fig. 1g shows the trace plots for the random variables @𝑐0, @𝑐1, and @𝑐2 from a run of 5,000

iterations of the composition of the block proposals. Compared with Fig. 1f, BMH is much more
efficient in exploring the sample space: the acceptance rate is about 38.6%. The trace plots for all
three coefficients indicate that the run mixes well. We plot the last 50 samples of this BMH in the
right of Fig. 1c. These curves capture uncertainty better and present more diverse samples than the
single-block MH run. Note that though we use a “bad” proposal for @𝑑 , BMH is robust enough to
converge after the first few hundreds of iterations that do not explore quadratic functions at all.
A number of case studies in the literature of PPLs demonstrate the benefit of BMH, where

each constituent proposal mutates a different block of random variables. For example, Chib and
Greenberg [9, §7.2] describe BMH involving two distinct block proposals to compute a posterior
distribution of a stationary second-order autoregressive time-series model. More recent examples
include discovering models (encoded as probabilistic context-free grammars) for time-series data
by Mansinghka et al. [33, §3.1] and Cusumano-Towner et al. [12, §7.2] and linear regression with
outlier detection by Mansinghka et al. [33, §3.2] and Cusumano-Towner et al. [12, §3.2].

Sound and unsound guides. In order for BMH to be sound (i.e., it defines a Markov chain that
converges to the conditional distribution of amodel given observed data), the sequential composition
of guide programs in BMH must be compatible with the model program. More concretely, every set
of positive-probability traces under the target distribution should have positive probability under
the distribution defined by a sequential composition of guide programs [48, Theorem 1]. If this
compatibility condition is not satisfied, then BMH may fail to explore positive-probability regions
in the target distribution.
To illustrate unsound guide programs, consider Guide2,𝑐1 from Fig. 1e. Suppose we modify the

expression Normal(𝜎 [@𝑐1], 0.5) in line 12 by replacing the random variable @𝑐1 with @𝑐2. This
change could easily result in a runtime error, because the random variable @𝑐2 is not guaranteed
to exist in the previous trace. A more subtle example of unsound BMH is obtained by removing
Guide2,𝑐2 from the sequential composition of guide programs. Then the random variable @𝑐2 is
never resampled, unless Guide2,𝑑 increases the polynomial degree from 1 to 2. Likewise, if we
replace the expression Normal(𝜎 [@𝑐2], 0.5) in line 12 with a Gamma distribution, whose support
is R>0 rather than R, the modified guide is unsound. This is because, if the preceding guide program
Guide2,𝑑 keeps the random variable @𝑑 unchanged, the resulting Markov chain cannot sample a
negative value for the random variable @𝑐2, yielding a mismatch with the set of traces admitted by
the model program Model. Fig. 2 displays the Bayesian inference result of the unsound sequential
composition of guide programs, where the Normal distribution in Guide2,𝑐2 has been replaced with
a Gamma distribution. The posterior samples in Fig. 2a fit poorly with the observed data (red points)
as compared to the samples from sound BMH in Fig. 1c, reflecting a failure of convergence to the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:7

−4 −2 0 2 4
−40

−30

−20

−10

0

10
Unsound Multiple-Block MH

(a) 50 posterior curves.

0 2000 4000
Iteration

−8

−6

−4

−2

0

2

4

6

20

0 2000 4000
Iteration

−2

0

2

4

21

0 2000 4000
Iteration

−1.0

−0.5

0.0

0.5

1.0

22

(b) Trace plots of the three polynomial coefficients.

Fig. 2. Results using an unsound BMH guide program for the inference problem in Fig. 1.

targe distribution. In addition, the trace plot of the random variable @𝑐2 in Fig. 2b indicates that the
unsound BMH does not converge to the ground-truth value (denoted by the red horizontal line).
Programming BMH proposals is more difficult than programming single-block MH ones. To

ensure the model-guide compatibility, each block-proposal guide needs to take care of the change
in the model’s control flow that might lead to different sets of random variables. The next sections
discuss how our new framework achieves sound BMH via coverage-annotated guide types.

2.2 Programmable Block MH via Guide-Typed Coroutines
Guide-typed coroutines. We adapt a coroutine-based paradigm for implementing models and

guides from Wang et al.’s work, which supports sound programmable single-block MH. The idea is
to treat the model and guide as two communicating coroutines: the model determines the control
flow (which influences the set of latent variables), so it sends branching information to the guide;
meanwhile, the guide determines proposals for latent variables, so it sends sampling information
to the model. Such message-passing communication can be easily realized through coroutines
connected by bidirectional channels. Fig. 3b reimplements the model shown in Fig. 1a by making
the communication explicit: the sampling (sample(. . .)) and branching (if . . .) commands are
annotated with rv (resp., sd) to indicate receiving (resp., sending) information, as well as the name
of a channel on which the communication takes place. The model consumes a lat channel for
communication with the guide, and provides an obs channel for identifying observed data.

Wang et al. [52] proposed guide types to enforce that the model and guide follow a communication
protocol, which describes the support of the model distribution. The type 111 specifies an ended
channel. The type 𝜏∧𝐴means the channel provider draws and sends a random sample of type 𝜏 , and
proceeds with a type-𝐴 protocol. The obs channel is given a guide typeObs ≔ ℝ∧ℝ∧ℝ∧ℝ∧ℝ∧111.
The type 𝐴N𝐵 means the channel provider receives a branch selection and proceeds with a type-𝐴
or 𝐵 protocol accordingly. Fig. 3a defines a guide-type operator Coeffs[·] that corresponds to the
communication carried out from lines 7 to 15 of Fig. 3b. The type operator is parameterized by a
continuation type that specifies the communication after the protocol described by the operator.
The lat channel is given a guide type Lat ≔ ℕ3 ∧ℝ ∧ Coeffs[ℝ+ ∧ 111]. We instantiate Coeffs with
ℝ+ ∧ 111 because the model samples @𝑛—whose type is ℝ+—after it samples the coefficients.
Fig. 3c provides a template to implement MH proposals as guide coroutines. Ignoring the code

with a yellow background, the template yields a reimplementation of the single-block MH proposal
shown in Fig. 1d. The compatibility is justified by the fact that the Guide coroutine provides the lat
channel whose guide type is Lat, which is the same asModel’s signature. Dual to themodel coroutine,
the guide samples and sends random values on the lat channel, and receives branch selections from

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

308:8 Pham et al.

Lat
def
= ℕ3 ∧ℝ ∧ Coeffs[ℝ+ ∧ 111]

Coeffs[𝑋] def= 𝑋 N (ℝ ∧ (𝑋 N (ℝ ∧𝑋)))
Obs

def
= ℝ ∧ℝ ∧ℝ ∧ℝ ∧ℝ ∧ 111

OLat
def
= ℕ3 ∧ℝ ∧OCoeffs[ℝ+ ∧ 111]

OCoeffs[𝑋] def= 𝑋 � (ℝ ∧ (𝑋 � (ℝ ∧𝑋)))

(a) Definitions of type operators.

1 proc Model(xs : vec[5] (ℝ))
2 consume lat :: Lat
3 provide obs :: Obs =
4 degree← samplerv {lat} (Cat(0.3; 0.5; 0.2)) ;
5 𝑐0 ← samplerv {lat} (Normal(0, 2)) ;
6 f ← (
7 ifsd{lat} degree = 0 then
8 return(𝜆𝑥. 𝑐0)
9 else
10 𝑐1 ← samplerv {lat} (Normal(0, 2)) ;
11 ifsd{lat} degree = 1 then
12 return(𝜆𝑥. 𝑐0 + 𝑐1 ∗ 𝑥)
13 else
14 𝑐2 ← samplerv {lat} (Normal(0, 2)) ;
15 return(𝜆𝑥. 𝑐0 + 𝑐1 ∗ 𝑥 + 𝑐2 ∗ 𝑥 ∗ 𝑥)
16);
17 noise2← samplerv {lat} (InvGamma(1, 1)) ;
18 noise← return(sqrt(noise2)) ;
19 ys← foreach (𝑖, 𝑥) in xs (
20 𝑦← samplesd{obs} (Normal(𝑓 (𝑥), noise)) ;
21 return(𝑦)
22);
23 return(𝑦𝑠)

(b) The model coroutine.

1 proc Guide(𝜎 : trace)
2 consume old :: OLat
3 provide lat :: Lat =
4 old_d ← oldsample{old}(); degree← samplesd{lat} (□1) ;
5 old_c0 ← oldsample{old}(); 𝑐0 ← samplesd{lat} (□2) ;
6 𝑓 ← (
7 ifrv {lat} ★ then
8 oldifrv{old} same then return() else return()
9 else
10 oldifrv{old} same then
11 old_c1 ← oldsample{old}(); 𝑐1 ← samplesd{lat} (□3) ;
12 ifrv {lat} ★ then
13 oldifrv{old} same then return() else return()
14 else
15 oldifrv{old} same then
16 old_c2 ← oldsample{old}(); 𝑐2 ← samplesd{lat} (□4) ;
17 return()
18 else
19 𝑐2 ← samplesd{lat} (□6) ;
20 return()
21 else
22 𝑐1 ← samplesd{lat} (□7) ;
23 ifrv {lat} ★ then
24 return()
25 else
26 𝑐2 ← samplesd{lat} (□8) ;
27 return()
28);
29 old_n← oldsample{old}(); noise2← samplesd{lat} (□5) ;
30 return()

(c) A template of guide coroutines.

Fig. 3. Guide-typed coroutines for the regression model and MH proposals.

the same channel (see lines 7 and 12). The★ symbol serves as a placeholder and it indicates that the
branch selection is sent by the consumer of the lat channel, i.e., the model coroutine. We instantiate
the boxes □𝑖 for 𝑖 ∈ {1, . . . , 5} as follows: □1 = Cat(1/3, 1/3, 1/3),□2 = Normal(𝜎 [@𝑐0], 0.5),□3 =

Normal(𝜎 [@𝑐1] or 0, 0.5),□4 = Normal(𝜎 [@𝑐2] or 0, 0.5),□5 = InvGamma(1, 1).

Towards multiple-block MH. To support BMH proposals, a natural approach would be to introduce
point distributions, e.g., Delta(𝑣) whose support is {𝑣}, and refine the guide-type system to deal
with such distributions. Using this construct, single-site proposals𝑚𝑥 and𝑚𝑦 for random variables
@𝑥 and @𝑦, respectively, could be expressed as follows (where 𝜎 denotes the previous trace):

𝑚𝑥
def
= _← samplesd{lat}(Normal(𝜎 [@𝑥], 0.5)); _← samplesd{lat}(Delta(𝜎 [@𝑦])); return()

𝑚𝑦
def
= _← samplesd{lat}(Delta(𝜎 [@𝑥])); _← samplesd{lat}(Normal(𝜎 [@𝑦], 0.5))); return()

For a target distribution with full support over ℝ2, the sequential composition𝑚𝑥 and𝑚𝑦 yields
a sound kernel because it also has full support over ℝ2. Unfortunately, there are fundamental
challenges with designing a type system that can reason about arbitrary user-specified delta distri-
butions. Consider changing the second command of𝑚𝑥 to instead be samplesd{lat}(Delta(42)).
Clearly, the single-site update𝑚𝑥 is no longer sound, because every move for @𝑥 would be rejected
(except when the previous trace 𝜎 satisfies 𝜎 [@𝑦] = 42, which has probability zero under the target

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:9

distribution). To correctly reason about the model-guide compatibility of BMH in the presence
of general point distributions Delta(𝑒), the type system would therefore need to analyze the
expressions 𝑒 and distinguish between cases such as Delta(𝜎 [@𝑦]) and Delta(42). This approach
is as hard as checking for the semantic equivalence of two expressions, and also requires finding
the locations of all point masses (if any) in the target distribution.

BMH guides as coroutines. The previous example suggests that our system should properly align
the previous trace within a block proposal coroutine and add a command for “keeping the value of a
random variable unchanged,” which is a restricted type of point distribution. To deal with alignment,
we grant BMH guide coroutines the access to another read-only channel, e.g., old, that records the
messages exchanged between the model and a previous guide coroutine. To support this “keeping
unchanged” behavior, we add two kinds of commands: one for retrieving an old sample from the pre-
vious trace, written oldsample{old}(), the other for forwarding an unchanged sample to the model,
written samplesd{lat}(Keep). Meanwhile, the alignment of branching is nontrivial: the control flow
of the model with respect to the previous guide could diverge from the model’s flow with respect to
the current guide. In our system, we deal with branch alignment by imposing the following structure:

ifrv{lat} ★ then oldifrv{old} same then𝑚true,true else𝑚true,false
else oldifrv{old} same then𝑚false,false else𝑚false,true

We introduce the oldifrv{old} same . . . command to read a branch selection from the old channel.
Such a structure identifies four branches𝑚𝑏1,𝑏2 with 𝑏1, 𝑏2 ∈ {true, false}, where 𝑏1 is the branch
selection received from the model, and 𝑏2 is the one read from the previous trace. When 𝑏1 ≠ 𝑏2,
the command𝑚𝑏1,𝑏2 cannot access the previous trace, because the control flow diverges.
Ignoring the code with a red background, Fig. 3c can be used to reimplement the block guides

shown in Fig. 1e. The code with a yellow background deals with alignment. Below presents
instantiations of boxes that correspond to the block-proposal guide programs given in Fig. 1e.

Guide2,𝑑 : □1 = Cat(2/5; 119/200; 1/200),□2 = □3 = □4 = □5 = Keep,□6 = □7 = □8 = Normal(0, 0.5)
Guide2,𝑐0 : □2 = Normal(old_𝑐0, 0.5),□1 = □3 = □4 = □5 = Keep,□6 = □7 = □8 = Normal(0, 0.5)
Guide2,𝑐1 : □3 = Normal(old_𝑐1, 0.5),□1 = □2 = □4 = □5 = Keep,□6 = □7 = □8 = Normal(0, 0.5)
Guide2,𝑐2 : □4 = Normal(old_𝑐2, 0.5),□1 = □2 = □3 = □5 = Keep,□6 = □7 = □8 = Normal(0, 0.5)
Guide2,𝑛 : □5 = InvGamma(1, 1),□1 = □2 = □3 = □4 = Keep,□6 = □7 = □8 = Normal(0, 0.5)

They all fill in □6, □7, and □8 in the same way: those sampling commands are in the branches where
the current control flow diverges from the previous trace. For other boxes, the guide coroutines
resample the random variable of interest and use sample(Keep) for other unchanged variables.

2.3 Coverage-Annotated Guide Types for Soundly Composed Guides
Coverage annotations. We now consider the guide types of the block guides shown above. Fig. 3a

defines a guide type OLat that prescribes the communication through the old channel. Dual to the
N type constructor, the type 𝐴 � 𝐵 specifies a channel whose receiver receives a branch selection
and proceeds with a type 𝐴 or type 𝐵 protocol. The type OLat has the same structure as the type
Lat; the difference is that OLat can be obtained by replacing all the N constructor in Lat with �.

The lat channel has a variant of the Lat guide type where primitive types (e.g., R) are annotated
with coverage annotations in subscripts. An annotation 𝑐 (“covered”) means a random variable
is freshly resampled in this guide, and an annotation 𝑢 (“uncovered”) means an old value of the
random variable, if exists in the previous trace, is reused. Below summarizes the coverage-annotated
types for the five coroutines.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

308:10 Pham et al.

Lat2,𝑑
def
= (ℕ3)𝑐 ∧ℝ𝑢 ∧ Coeffs2,𝑑 [(ℝ+)𝑢 ∧ 111], Coeffs2,𝑑

def
= 𝑋 N (ℝ𝑢 ∧ (𝑋 N (ℝ𝑢 ∧ 𝑋)))

Lat2,𝑐0
def
= (ℕ3)𝑢 ∧ℝ𝑐 ∧ Coeffs2,𝑐0 [(ℝ+)𝑢 ∧ 111], Coeffs2,𝑐0

def
= 𝑋 N (ℝ𝑢 ∧ (𝑋 N (ℝ𝑢 ∧ 𝑋)))

Lat2,𝑐1
def
= (ℕ3)𝑢 ∧ℝ𝑢 ∧ Coeffs2,𝑐1 [(ℝ+)𝑢 ∧ 111], Coeffs2,𝑐1

def
= 𝑋 N (ℝ𝑐 ∧ (𝑋 N (ℝ𝑢 ∧ 𝑋)))

Lat2,𝑐2
def
= (ℕ3)𝑢 ∧ℝ𝑢 ∧ Coeffs2,𝑐1 [(ℝ+)𝑢 ∧ 111], Coeffs2,𝑐2

def
= 𝑋 N (ℝ𝑢 ∧ (𝑋 N (ℝ𝑐 ∧ 𝑋)))

Lat2,𝑛
def
= (ℕ3)𝑢 ∧ℝ𝑢 ∧ Coeffs2,𝑐1 [(ℝ+)𝑐 ∧ 111], Coeffs2,𝑛

def
= 𝑋 N (ℝ𝑢 ∧ (𝑋 N (ℝ𝑢 ∧ 𝑋)))

Type-equality checking. To satisfy the model-guide compatibility, the model and guide(s) must
have equal guide types for the lat channel. To this end, it is not enough to check their syntactic
equality. For example, if for the Guide2,𝑛 coroutine we want the proposal distribution for the noise
variable to depend on the degree of the polynomial, we would move the sample command in
line 29 of Fig. 3c into the branching commands and derive its guide type for the lat channel as

Lat′2,𝑛
def
= (ℕ3)𝑢 ∧ℝ𝑢 ∧ (((ℝ+)𝑐 ∧ 111) N (ℝ𝑢 ∧ (((ℝ+)𝑐 ∧ 111) N (ℝ𝑢 ∧ ((ℝ+)𝑐 ∧ 111))))),

which is structurally equal to Lat2,𝑛 . Wang et al. [52] developed a nominal type system, which cannot
check the equality between Lat2,𝑛 and Lat2,𝑛′ . Generally, guide types may have infinite state spaces,
which enable guide types to express complex probabilistic models such as probabilistic context-free
grammars [26]. However, infinite state spaces also pose a challenge to deciding structural type
equality. In §4, we show that structural type equality is decidable in polynomial time by translating
guide types to context-free processes with finite norms.

Coverage checking. In addition to the model-guide type equality, we must verify that every
random variable is freshly sampled by at least some guide in the sequential composition. It is not
enough to compute the superposition of all coverage-annotated guide types and check that the
superposition is fully covered (i.e., all random variables come with subscript 𝑐). This is because old
samples of one random variable can be reused for another random variable on a different execution
path (§5.2). In §5, we present a coverage-checking algorithm that verifies the full coverage of
sequentially composed guides by bisimulating guide types alongside the code of guides.

2.4 A Surface Syntax for Automatic Generation of BMH Guides
So far, block guide coroutines are verbose. As Fig. 3c demonstrates, if guide coroutines share
an identical structure that can be captured by a template, it is possible to automate block-guide
generation. We propose a lightweight surface syntax to aid the users to implement such canonical
guide coroutines easily. Fig. 4 demonstrates a reimplementation of the model and proposal programs
in Fig. 1a and Fig. 1e in our surface syntax. The model coroutine shown in Fig. 4b is almost identical
to the one shown in Fig. 3b, except that the code with a blue background explicitly assigns a unique
label to each sample site. We use those labels only to guide the elaboration of guide coroutines
shown in Fig. 4c into the form shown in Fig. 3c. In essence, the elaboration process automatically
• transforms the model program with labels (Fig. 4b) to two programs: a model coroutine
without labels (Fig. 3b) and a template of guide coroutines (Fig. 3c); and then
• translates each guide program in the surface syntax (Fig. 4c) to an instantiation of boxes, e.g.,
□𝑖 for 𝑖 ∈ {1, . . . , 8} in the template program shown in Fig. 3c.

The first step can be realized by a straightforward syntax-directed transformation. The second step
needs to translate each resample and resample_if_none command to an instantiation of one or
more boxes. Both kinds of resampling commands are parameterized by a channel name and take two
arguments: (i) the label for the random variable to be resampled, and (ii) a function that computes a
proposal distribution from available random variables of the previous trace. A resample command
is intended to mutate a random variable whose value is present in the previous trace, whereas a re-
sample_if_none command is intended to generate a value for a random variable whose old value is
not present. The set of available random variables is an under-approximation based on the data flow

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:11

Lat
def
= ℕ3 ∧ℝ ∧ Coeffs[ℝ+ ∧ 111]

Coeffs[𝑋] def= 𝑋 N (ℝ ∧ (𝑋 N (ℝ ∧𝑋)))
Obs

def
= ℝ ∧ℝ ∧ℝ ∧ℝ ∧ℝ ∧ 111

(a) Definitions of type operators.

1 proc Model(xs : vec[5] (ℝ))
2 consume lat :: Lat
3 provide obs :: Obs =
4 degree← samplerv {lat} (@𝑑,Cat(0.3; 0.5; 0.2)) ;
5 𝑐0 ← samplerv {lat} (@𝑐0,Normal(0, 2)) ;
6 f ← (
7 ifsd{lat} degree = 0 then
8 return(𝜆𝑥. 𝑐0)
9 else
10 𝑐1 ← samplerv {lat} (@𝑐1,Normal(0, 2)) ;
11 ifsd{lat} degree = 1 then
12 return(𝜆𝑥. 𝑐0 + 𝑐1 ∗ 𝑥)
13 else
14 𝑐2 ← samplerv {lat} (@𝑐2,Normal(0, 2)) ;
15 return(𝜆𝑥. 𝑐0 + 𝑐1 ∗ 𝑥 + 𝑐2 ∗ 𝑥 ∗ 𝑥)
16);
17 noise2← samplerv {lat} (@𝑛, InvGamma(1, 1)) ;
18 noise← return(sqrt(noise2)) ;
19 ys← foreach (𝑖, 𝑥) in xs (
20 𝑦← samplesd{obs} (Normal(𝑓 (𝑥), noise)) ;
21 return(𝑦)
22);
23 return(𝑦𝑠)

(b) The model coroutine.

1 proc Guide2,𝑑 () provide lat :: Lat =
2 degree← resample{lat}(@𝑑 ,
3 𝜆old_d.Cat(2/5; 119/200; 1/200));
4 𝑐1 ← resample_if_none{lat}(@𝑐1,
5 𝜆𝑜𝑙𝑑_𝑑. 𝜆old_c0 .Normal(0, 0.5));
6 𝑐2 ← resample_if_none{lat}(@𝑐2,
7 𝜆𝑜𝑙𝑑_𝑑. 𝜆old_c0 . 𝜆old_c1 .Normal(0, 0.5));
8 return()

1 proc Guide2,𝑐0 () provide lat :: Lat =
2 𝑐0 ← resample{lat}(@𝑐0,
3 𝜆𝑜𝑙𝑑_𝑑. 𝜆old_c0 .Normal(old_c0, 0.5));
4 return()

1 proc Guide2,𝑐1 () provide lat :: Lat =
2 𝑐1 ← resample{lat}(@𝑐1,
3 𝜆𝑜𝑙𝑑_𝑑. 𝜆old_c0 . 𝜆old_c1 .Normal(old_c1, 0.5));
4 return()

1 proc Guide2,𝑐2 () provide lat :: Lat =
2 𝑐2 ← resample{lat}(@𝑐2,
3 𝜆𝑜𝑙𝑑_𝑑. 𝜆old_c0 . 𝜆old_c1 . 𝜆old_c2 .Normal(old_c2, 0.5));
4 return()

1 proc Guide2,𝑛 () provide lat :: Lat =
2 𝑛𝑜𝑖𝑠𝑒2← resample{lat}(@𝑛,
3 𝜆𝑜𝑙𝑑_𝑑. 𝜆old_c0 . 𝜆old_n. InvGamma(1, 1));
4 return()

(c) The guide coroutines.

Fig. 4. Guide-typed coroutines (in the surface syntax) for the regression model and BMH proposals.

of themodel program; for example, the values of@𝑑,@𝑐0,@𝑐1,@𝑐2 are available for resampling@𝑐2
and the values of @𝑑,@𝑐0 are available for resampling @𝑛. In this way, we can associate each resam-
pling command with one or more boxes. For example, for the guides in Fig. 4c and the template in
Fig. 3c: resample{lat}(@𝑑, . . .) corresponds to □1, resample_if_none{lat}(@𝑐1, . . .) corresponds
to □7, resample_if_none{lat}(@𝑐2, . . .) corresponds to □6 and □8, resample{lat}(@𝑐0, . . .) cor-
responds to □2, resample{lat}(@𝑐1, . . .) corresponds to □3, resample{lat}(@𝑐2, . . .) corresponds
to □4, and resample{lat}(@𝑛, . . .) corresponds to □5.
In this article, we will focus on the more verbose core calculus demonstrated in Fig. 3. Such

verbosity allows the user to implement block guides more flexibly; for example, inside a program
fragment that does not involve branching, the user can first read all the old samples and then use
them to propose a value for a particular random variable.

3 Core Calculus for Coroutine-Based Programmable Inference
In coroutine-based programmable inference, model coroutines dictate control flows, while guide
coroutines specify user-customized distributions of latent variables. Given a model 𝑀 and a se-
quential composition of guides 𝐺1, . . . ,𝐺𝑛 , Fig. 5 illustrates the communication among a guide 𝐺𝑖 ,
the model𝑀 , and a guide 𝐺𝑖−1 (𝑖 = 2, . . . , 𝑛). The guide 𝐺𝑖 sends samples of latent variables to the
model𝑀 across a channel 𝑎𝑖 , and the model sends back branch selections to the guide. The model
𝑀 sends samples of observed variables on a channel obs𝑖 . A novelty of our new framework is that

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

308:12 Pham et al.

𝐺𝑖−1 𝐺𝑖 𝑀

𝑏𝑖 𝑎𝑖 obs𝑖

old branch selections
old samples

branch selections samples observed samples

Fig. 5. Sequential composition of guides 𝐺𝑖 (𝑖 = 1, . . . , 𝑛). Black circles indicate the channel providers.

the guide 𝐺𝑖 now has access to the old sample trace from the previous guide 𝐺𝑖−1 and can choose
to reuse old samples. The guide 𝐺𝑖 receives old samples and branch selections from the previous
guide 𝐺𝑖−1 on a channel 𝑏𝑖 .

3.1 Syntax
The core calculus consists of two layers: functional and coroutine layers. The former is a standard
functional programming language augmented with probability distributions. The latter defines
model and guide programs that communicate with each other by message passing across channels.

Functional layer. Types 𝜏 and expressions 𝑒 in the functional layer are formed by this grammar:

𝜏 F 𝟙 | 𝟚 | ℝ | ℝ(0,1) | ℝ+ | ℕ𝑛 | ℕ | 𝜏1 → 𝜏2 | dist(𝜏) base, arrow, and distribution types
𝑒 F 𝑥 | triv | true | false | if (𝑒; 𝑒1; 𝑒2) | 𝑟 | 𝑛 | op⋄ (𝑒1; 𝑒2) expressions; 𝑟 ∈ R, 𝑛 ∈ N
| 𝜆(𝑥 .𝑒) | app(𝑒1; 𝑒2) | let(𝑥 ; 𝑒1 .𝑒2)
| Ber(𝑒) | Unif | Beta(𝑒1, 𝑒2) | Pois(𝑒) | · · · distribution expressions.

Probability distributions have types dist(𝜏), where 𝜏 is the type of the supports of distributions.

Guide types. In the coroutine layer, guide types describe communication protocols between two
endpoints of channels. Fix a set X of type variables and a set T of unary type operators. Guide
types 𝐴 are defined by

𝑡 F 𝜏 | 𝜏𝑐 | 𝜏𝑢 normal and coverage-annotated functional types
𝐴 F 𝑋 | 111 | 𝑇 [𝐴] type variable, termination, and type application;𝑋 ∈ X,𝑇 ∈ T
| 𝑡 ∧𝐴 | 𝑡 ⊃ 𝐴 send and receive samples
| 𝐴1 �𝐴2 | 𝐴 N𝐴2 send and receive branch selections

T F
−−−−−−−−−−−−−−→
typedef (𝑇 .𝑋 .𝐴) mutually recursive type definitions.

Type 𝑡 is either an unannotated type 𝜏 from the functional layer or a coverage-annotated type (𝜏𝑐
or 𝜏𝑢), which ranges over coverage-annotated analogues (𝟙𝑐 , 𝟙𝑢 , ℝ𝑐 , ℝ𝑢 , . . .) of the normal types.
The subscript 𝑐 (“covered”) means the random variable is freshly sampled, and the subscript 𝑢
(“uncovered”) means the random variable is reused, whenever available, from the previous trace.
Coverage-annotated guide types are only used for channels 𝑎𝑖 that connect model and guide
coroutines (Fig. 5). Channels 𝑏𝑖 are typed with unannotated guide types.

The guide type 111 means termination, 𝑋 ∈ X is a type variable, and𝑇 [𝐴] is a unary type operator
𝑇 ∈ T applied to a guide type 𝐴. For each channel, we designate one of its two endpoints as a
provider1 and the other endpoint as a client. The guide type of a channel is described from the
channel provider’s viewpoint. Guide type 𝑡 ∧ 𝐴 means the provider sends a sample of type 𝑡 to
the client, and guide type 𝑡 ⊃ 𝐴 means the provider receives a sample of type 𝑡 from the client.
Guide type 𝐴1 � 𝐴2 means the provider sends a branch selection 𝑣 ∈ {true, false} and proceeds
with guide type 𝐴1 (if 𝑣 = true) or 𝐴2 (otherwise). Guide type 𝐴1 N𝐴2 means the provider receives

1Although the two endpoints of a channel can send messages in both directions, they are assigned different roles (i.e., a
provider and a client). These different roles are needed because guide types are based on binary session types, which in turn
correspond to intuitionistic linear logic [5].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:13

a branch selection and proceeds with guide type 𝐴1 or 𝐴2. Vector T stores mutually recursive type
definitions of the form 𝑇 [𝑋] ≔ 𝐴.

Coroutines. Given a set F of procedure identifiers, commands𝑚 for model coroutines are
𝑚 F ret(𝑒) | bnd(𝑚1;𝑥 .𝑚2) | call(𝑓 ; 𝑒) return a value, let-binding, and procedure call; 𝑓 ∈ F

| samplerv{a}(𝑒) | samplesd{obs}(𝑒) receive a sample and send a sample
| cond(𝑒;𝑚1;𝑚2) conditional command for models

D𝑀 F
−−−−−−−−−→
fix(𝑓 .𝑥 .𝑚) mutually recursive procedure definitions.

The syntax formodel coroutines has two sampling commands: samplerv{a}(𝑒) and samplesd{obs}(𝑒).
The former receives a sample from a guide on channel 𝑎. The latter draws a fresh sample for an
observed variable, sending it on channel obs. Conditional command cond(𝑒;𝑚1;𝑚2) branches on
a Boolean expression 𝑒 and proceeds to either command𝑚1 or𝑚2. Vector D𝑀 stores mutually
recursive procedure definitions of the form 𝑓 (𝑥) ≔𝑚.

Given a set F of procedure identifiers, commands𝑚 for guide coroutines are defined by
𝑚 F ret(𝑒) | bnd(𝑚1;𝑥 .𝑚2) | call(𝑓 ; 𝑒) return a value, let-binding, and procedure call; 𝑓 ∈ F

| sample(𝑒) | sample(keep) draw a fresh sample and reuse an old sample
| oldsample return an old sample
| cond(★;𝑚1;𝑚2) | oldcond(𝑚1;𝑚2) conditionals for current and old branch selections

D𝐺 F
−−−−−−−−−→
fix(𝑓 .𝑥 .𝑚) mutually recursive procedure definitions.

Guide coroutines have two sampling commands2: sample(𝑒) and sample(keep). The former draws
a fresh sample from a distribution 𝑒 , whereas the latter reuses the old sample. Command oldsample
returns the old sample. Conditional commands cond(★;𝑚1;𝑚2) and oldcond(𝑚1;𝑚2) are used
inside guide programs. The first conditional command cond(★;𝑚1;𝑚2) branches on the current
branch selections sent from the model𝑀 , while the second conditional command oldcond(𝑚1;𝑚2)
branches on the old branch selections from the previous guide.

Finally, an inference program for BMH is P = (D𝑀 ∪D𝐺 ,𝑚𝑀 , (𝑚𝐺,1, . . . ,𝑚𝐺,𝑛)), consisting of a
collectionD𝑀 ∪D𝐺 of procedure definitions, a model coroutine𝑚𝑀 , and a sequential composition
of guide coroutines𝑚𝐺,1, . . . ,𝑚𝐺,𝑛 (𝑛 ≥ 1) interleaved with the MH acceptance routines.

3.2 Operational Semantics
We adapt the trace-based semantics of models and guides from prior work [52]. To support BMH,
we propose a novel semantics of guide programs that access and reuse old samples.

Guidance traces. A guidance trace records the sequence of messages exchanged between two
coroutines across a channel. Formally, a trace 𝜎 is a finite sequence of two kinds of messages:
(i) val(𝑣) containing a sample 𝑣 and (ii) dir (𝑣) containing a branch selection 𝑣 ∈ {true, false}.

Models. The big-step operational semantics of a model program𝑚 is given by a judgment
𝑉 ; {𝑎 : 𝜎𝑎,1} ⊢𝑚 ⇓𝑤 𝑣 ; {𝑎 : 𝜎𝑎,2}, (3.1)

where 𝑉 is an environment (i.e., a mapping from variables to values), 𝑎 is a channel between the
model and guide (Fig. 5), 𝜎𝑎,𝑖 (𝑖 = 1, 2) is a trace on the channel 𝑎,𝑤 ∈ [0, 1] is a density associated
with𝑚’s run, and 𝑣 is the final output. The judgment (3.1) means that, with an initial trace 𝜎𝑎,1
on the channel 𝑎 and an environment 𝑉 , the model𝑚 runs successfully (without any deadlocks)
2The sampling commands in guide coroutines are not annotated with the directions of messages or channel names, unlike the
sampling commands samplerv {a} (𝑒) and samplesd{obs} (𝑒) in model coroutines. This is because the sampling command
sample(𝑒) and sample(keep) in guide coroutines are always sent from a guide to a model on channel 𝑎.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

308:14 Pham et al.

E:Sample
𝑉 ⊢ 𝑒 ⇓ 𝑑 𝑣 ∈ 𝑑.support 𝑤 = 𝑑.density(𝑣)

𝑉 ; {𝑎 : (val (𝑣) :: 𝜎𝑎), 𝑏 : 𝜎𝑏 };𝑄 ⊢
sample(𝑒) ⇓𝑤 𝑣; {𝑎 : 𝜎𝑎, 𝑏 : 𝜎𝑏 }; pop(𝑄)

E:Sample:Keep
𝑣 = get(𝑄,𝜎𝑏)

𝑉 ; {𝑎 : (val (𝑣) :: 𝜎𝑎), 𝑏 : 𝜎𝑏 };𝑄 ⊢
sample(keep) ⇓1 𝑣; {𝑎 : 𝜎𝑎, 𝑏 : 𝜎𝑏 }; pop(𝑄)

𝑉 ; {𝑎 : 𝜎𝑎, 𝑏 : (val (𝑣) :: 𝜎𝑏) };𝑄 ⊢ oldsample ⇓1 𝑣; {𝑎 : 𝜎𝑎, 𝑏 : 𝜎𝑏 }; push(𝑄, 𝑣)
E:OldSample

𝑣𝑎 = 𝑣𝑏 𝑖 = ite(𝑣𝑎, 1, 2) 𝑉 ; {𝑎 : 𝜎𝑎,1, 𝑏 : 𝜎𝑏,1};𝑄1 ⊢𝑚𝑖,1 ⇓𝑤 𝑣; {𝑎 : 𝜎𝑎,2, 𝑏 : 𝜎𝑏,2};𝑄2

𝑉 ; {𝑎 : (dir (𝑣𝑎) :: 𝜎𝑎,1), 𝑏 : (dir (𝑣𝑏) :: 𝜎𝑏,1) };𝑄1 ⊢
cond(★; oldcond(𝑚1,1;𝑚1,2) ; oldcond(𝑚2,1;𝑚2,2)) ⇓𝑤 𝑣; {𝑎 : 𝜎𝑎,2, 𝑏 : 𝜎𝑏,2};𝑄2

E:Cond:Eq

𝑣𝑎 ≠ 𝑣𝑏 𝑖 = ite(𝑣𝑎, 1, 2)
𝑗 = ite(𝑣𝑏 , 1, 2) 𝑉 ; {𝑎 : 𝜎𝑎,1}; · ⊢𝑚𝑖,2 ⇓𝑤 𝑣; {𝑎 : 𝜎𝑎,2}; · 𝑉 ; {𝑏 : 𝜎𝑏,1};𝑄1 ⊢𝑚 𝑗,1 ⇓_ _; {𝑏 : 𝜎𝑏,2};𝑄2

𝑉 ; {𝑎 : (dir (𝑣𝑎) :: 𝜎𝑎,1), 𝑏 : (dir (𝑣𝑏) :: 𝜎𝑏,1) };𝑄1 ⊢
cond(★; oldcond(𝑚1,1;𝑚1,2) ; oldcond(𝑚2,1;𝑚2,2)) ⇓𝑤 𝑣; {𝑎 : 𝜎𝑎,2, 𝑏 : 𝜎𝑏,2};𝑄2

E:Cond:Neq

Fig. 6. Key rules for the operational semantics of guide programs.

with a density 𝑤 , an output value 𝑣 , and a continuation trace 𝜎𝑎,2. The judgment (3.1) in Wang
et al. [52] additionally mentions a channel obs for observed variables (Fig. 5). But because observed
variables are not important in this article, for brevity, we omit the channel obs from the judgment
(3.1). Because we do not modify the semantics of model programs, the judgment (3.1) has the same
definition as in Wang et al. [52].

Guides. For a guide program𝑚, its new big-step operational semantics is given by a judgment
𝑉 ; {𝑎 : 𝜎𝑎,1, 𝑏 : 𝜎𝑏,1};𝑄1 ⊢𝑚 ⇓𝑤 𝑣 ; {𝑎 : 𝜎𝑎,2, 𝑏 : 𝜎𝑏,2};𝑄2, (3.2)

where 𝑉 is an environment, 𝑎 is a channel between the guide and model, 𝑏 is a channel between
this guide and the previous one,𝑤 ∈ [0, 1] is a density associated with𝑚’s run, and 𝑣 is an output
value. The judgment (3.2) means that, with initial traces 𝜎𝑎,1 and 𝜎𝑏,1 (i.e., old trace containing old
samples and branch selections) and an environment 𝑉 , the command𝑚 runs successfully with
a density𝑤 , an output value 𝑣 , and continuation traces 𝜎𝑎,2 and 𝜎𝑏,2. Additionally, the judgment
(3.2) contains an initial queue 𝑄1 and a continuation queue 𝑄2. The queues are used to track old
samples. When the guide runs a command sample(keep), the old sample is sent to the model. Here,
the queue comes in: the guide pops an element off the queue and sends it to the model.
The queue 𝑄 in the judgment (3.2) takes one of two forms: (i) 𝑏 : [𝑣1, . . . , 𝑣𝑛] and (ii) 𝑎 : 𝑛 for

some 𝑛 ∈ N. To illustrate them, consider the communication between a guide 𝐺𝑖 and a model𝑀 .
Suppose the guide 𝐺𝑖 has received 𝑛 ∈ N more samples from the previous guide 𝐺𝑖−1 than 𝐺𝑖 has
sent to the model 𝑀 . In such a scenario, the 𝑛 old samples 𝑣1, . . . , 𝑣𝑛 that have been received by
the guide 𝐺𝑖 but not yet sent to the model𝑀 are stored in a queue 𝑄 ≡ 𝑏 : [𝑣1, . . . , 𝑣𝑛]. Conversely,
if the guide𝐺𝑖 has sent 𝑛 ∈ N more samples to the model𝑀 than has received from the previous
guide 𝐺𝑖−1, the queue takes the form 𝑄 ≡ 𝑎 : 𝑛.

Definition. Fig. 6 displays key rules for the operational semantics of guide programs. The rule
E:Sample evaluates expression 𝑒 to a distribution, draws a sample from it, and pops the queue 𝑄 .
The rule E:Sample:Keep gets the old sample 𝑣 = get(𝑄, 𝜎𝑏) from the previous guide 𝐺𝑖−1. In this
rule, both the queue 𝑄 and trace 𝜎𝑏 are necessary because the old value 𝑣 is stored inside either the
queue 𝑄 or the trace 𝜎𝑏 , depending on which of the channels 𝑎 and 𝑏 is ahead of the other. The
rule E:OldSample returns the old sample, which is the first element of the old trace 𝜎𝑏 . We also
push it to the queue 𝑄 so that it can later be sent to the model𝑀 if necessary.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:15

The rules E:Cond:Eq and E:Cond:Neq concern a doubly nested conditional command that has
four branches. The outer conditional cond(★; ·; ·) branches on the model𝑀 ’s branch selection, and
the inner conditional oldcond(·; ·) branches on the previous guide’s branch selection. In branch
𝑚𝑖, 𝑗 (𝑖, 𝑗 ∈ {1, 2}), 𝑖 indicates the branch taken by the model𝑀 , and 𝑗 indicates whether the model
and previous guide have the same branch selection (𝑗 = 1 means identical branch selections).
If the model and previous guide have the same branch selection, the rule E:Cond:Eq applies,

proceeding with a command𝑚𝑖,1. Conversely, if the model and previous guide have different branch
selections, the rule E:Cond:Neq applies. Because the current and previous traces diverge, the guide
no longer has access to the old trace. Hence, we run𝑚𝑖,2 without access to the channel 𝑏 for the
old trace. At the same time, we run𝑚 𝑗,1 with trace 𝜎𝑏,1 on the channel 𝑏 in order to determine the
continuation trace 𝜎𝑏,2 and continuation queue 𝑄2. When we exit the doubly nested conditional
command, the current and previous traces join back, and the old trace 𝜎𝑏,2 becomes accessible to
the guide again.

Sequential composition of guides. The operational semantics of a sequential composition of closed
guide coroutines 𝐺1, . . . ,𝐺𝑛 is defined as follows. For 𝑖 = 1, . . . , 𝑛, channel 𝑎𝑖 connects model 𝑀
and guide𝐺𝑖 , and channel 𝑏𝑖 connects guides𝐺𝑖−1 and 𝐺𝑖 (Fig. 5). Consider an initial trace 𝜎0 that
the model𝑀 can generate with a positive density𝑤𝑀,0 > 0 and an output value 𝑣𝑀,0:

·; {𝑎 : 𝜎0} ⊢ 𝑀 ⇓𝑤𝑀,0 𝑣𝑀,0; {𝑎 : []}. (3.3)
The initial trace 𝜎0 is fed to the first guide𝐺1 on the channel 𝑏1. Using 𝜎0 as the old trace, the guide
𝐺1 produces a new trace 𝜎∗1 on the channel 𝑎1 with a positive density𝑤𝐺,1 > 0. We next perform
the MH update, calculating a ratio 𝑟1 (Eqn. (3.7)) and setting 𝜎1 ≔ 𝜎∗1 with probability min{𝑟1, 1}.
Otherwise, we retain the old trace and set 𝜎1 ≔ 𝜎0. The trace 𝜎1 is then fed to the second guide 𝐺2
as the old trace on the channel 𝑏2, and the guide produces a new trace 𝜎∗2 . This continues until we
obtain the final trace 𝜎𝑛 .

Formally, guide𝐺𝑖 generates a trace 𝜎∗𝑖 with a positive density𝑤𝐺,𝑖 > 0 and an output value 𝑣𝐺,𝑖 :
·; {𝑎𝑖 : 𝜎∗𝑖 , 𝑏𝑖 : 𝜎𝑖−1};𝑄empty ⊢ 𝐺𝑖 ⇓𝑤𝐺,𝑖 𝑣𝐺,𝑖 ; {𝑎 : [], 𝑏 : []};𝑄empty 𝑖 = 1, . . . , 𝑛. (3.4)

Here, 𝑄empty is the empty queue. The trace 𝜎∗𝑖 is generated by the model𝑀 with a positive density
𝑤𝑀,𝑖 > 0:

·;𝑎 : 𝜎∗𝑖 ⊢ 𝑀 ⇓𝑤𝑀,𝑖 𝑣𝑀,𝑖 ;𝑎 : [] 𝑖 = 1, . . . , 𝑛. (3.5)
Furthermore, we can swap the traces 𝜎∗𝑖 and 𝜎𝑖−1 in Eqn. (3.4) while keeping the density positive:

·; {𝑎𝑖 : 𝜎𝑖−1, 𝑏𝑖 : 𝜎∗𝑖 };𝑄empty ⊢ 𝐺𝑖 ⇓𝑤̂𝐺,𝑖 𝑣𝐺,𝑖 ; {𝑎 : [], 𝑏 : []};𝑄empty 𝑖 = 1, . . . , 𝑛 (3.6)
for an output value 𝑣𝐺,𝑖 and a positive density 𝑤̂𝐺,𝑖 > 0. The acceptance ratio 𝑟𝑖 in the MH update is

𝑟𝑖 ≔
𝑝𝑀 (𝜎∗𝑖)
𝑝𝑀 (𝜎𝑖−1) ·

𝑝𝐺𝑖
(𝜎𝑖−1 |𝜎∗𝑖)

𝑝𝐺𝑖
(𝜎∗

𝑖
|𝜎𝑖−1) =

𝑤𝑀,𝑖

𝑤𝑀,𝑖−1
· 𝑤̂𝐺,𝑖

𝑤𝐺,𝑖
𝑖 = 1, . . . , 𝑛, (3.7)

where 𝑝𝑀 (𝜎) is the density of a trace 𝜎 in the model𝑀 , and 𝑝𝐺𝑖
(𝜎1 | 𝜎2) is the density of a trace

𝜎1 in the guide 𝐺𝑖 with 𝜎2 being the old trace. As long as the guide 𝐺𝑖 is well-typed, because all
of𝑤𝑀,𝑖 ,𝑤𝑀,𝑖−1, 𝑤̂𝐺,𝑖 ,𝑤𝐺,𝑖 are positive, Eqn. (3.7) is positive (and finite). Hence, we always have a
positive probability of accepting the proposed trace 𝜎∗𝑖 in every MH update (Cor. A.8).

3.3 Type System
Type system. The typing judgment for a guide program𝑚 is

Γ;𝑎 : 𝐴1, 𝑏 : 𝐵1 ⊢𝑚 .∼. 𝜏 ;𝑎 : 𝐴2, 𝑏 : 𝐵2, (3.8)
where Γ is a functional typing context, 𝐴1 and 𝐵1 are the initial guide types of channels 𝑎 and 𝑏,
respectively, 𝜏 is the output type of command𝑚, and 𝐴2 and 𝐵2 are the continuation guide types
of channels 𝑎 and 𝑏, respectively. The judgment (3.8) means that, starting with well-typed traces

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

308:16 Pham et al.

𝜎𝑎,1 : 𝐴1 and 𝜎𝑏,1 : 𝐵1 and an environment 𝑉 : Γ, the guide program𝑚 will run successfully, with
an output value of type 𝜏 and continuation traces of guide types 𝐴2 and 𝐵2.

A key typing rule is T:Cond for a doubly nested conditional command:
Γ;𝑎 : 𝐴1, 𝑏 : 𝐵1 ⊢𝑚1,1

.∼. 𝜏 ;𝑎 : 𝐴,𝑏 : 𝐵 Γ;𝑎 : 𝐴′1 ⊢𝑚1,2
.∼. 𝜏 ;𝑎 : 𝐴

Γ;𝑎 : 𝐴2, 𝑏 : 𝐵2 ⊢𝑚2,1
.∼. 𝜏 ;𝑎 : 𝐴,𝑏 : 𝐵 Γ;𝑎 : 𝐴′2 ⊢𝑚2,2

.∼. 𝜏 ;𝑎 : 𝐴 |𝐴1 | = |𝐴′1 | |𝐴2 | = |𝐴′2 |
Γ;𝑎 : 𝐴1 N𝐴2, 𝑏 : 𝐵1 � 𝐵2 ⊢ cond(★; oldcond(𝑚1,1;𝑚1,2); oldcond(𝑚2,1;𝑚2,2)) .∼. 𝜏 ;𝑎 : 𝐴,𝑏 : 𝐵

T:Cond

If the model𝑀 takes branch 𝑖 ∈ {1, 2} and so does the previous guide, the current guide proceeds
with command𝑚𝑖,1, which is typed with initial guide types 𝐴𝑖 and 𝐵𝑖 . Conversely, if the model
and previous guide diverge, a command 𝑚𝑖,2 (𝑖 ∈ {1, 2}) is typed with (i) an initial guide type
𝐴′𝑖 on channel 𝑎 and (ii) no access to channel 𝑏 for the previous trace. Thus, to be well-typed,
command𝑚𝑖,2 (𝑖 ∈ {1, 2}) must not use sample(keep) and oldsample. The rule T:Cond also requires
|𝐴𝑖 | = |𝐴′𝑖 | (𝑖 = 1, 2), where |𝐴| is obtained by removing coverage annotations from guide type 𝐴.

Type inference. Guide types can be automatically inferred, relieving users of the need to manually
provide possibly complex guide types. To each procedure fix(𝑓 .𝑥 .𝑚), we assign fresh type operators
𝑇𝑓 ,𝑎 and 𝑇𝑓 ,𝑏 for channels 𝑎 and 𝑏, respectively. We then construct type definitions 𝑇𝑓 ,𝑎 [𝑋] ≔ 𝐴𝑓

and 𝑇𝑓 ,𝑏 [𝑋] ≔ 𝐵𝑓 such that
Γ;𝑎 : 𝐴𝑓 [𝑋], 𝑏 : 𝐵𝑓 [𝑋] ⊢𝑚 .∼. 𝜏 ;𝑎 : 𝑋,𝑏 : 𝑋 . (3.9)

We traverse a command 𝑚 backwards, starting with a type variable 𝑋 for a continuation and
incrementally building 𝐴𝑓 and 𝐵𝑓 . Exploiting the fact that typing rules are syntax-directed, we can
determine which typing rule to apply by looking at the syntactic form of the command𝑚.

3.4 Translation of the Lightweight Surface Syntax to the Core Calculus
This section describes how to translate a model coroutine 𝑀 and a guide coroutine 𝐺 from the
ergonomic lightweight surface syntax to the more verbose (but more expressive) core calculus.
Fig. 4b and Fig. 4c show the lightweight surface syntax of a model and guide coroutine, respectively.
Our goal is to translate them to Fig. 3b and Fig. 3c, respectively, which are written in the core
calculus (§3.1). To translate the model 𝑀 from the surface syntax to the core calculus, we simply
drop the labels of latent variables. The rest of the section focuses on the translation of the guide 𝐺 .

The translation of guide𝐺 consists of two stages. In the first stage, given a model coroutine𝑀 in
the surface syntax, we translate it to a template 𝐺templ for guide coroutines where each expression
𝑒 inside any sampling command sample(𝑒) is left blank. In the second stage, each 𝑒 is filled with
either concrete distributions or keep (i.e., the old value is reused).

The first stage of the translation is guided by a judgment
𝐶 ⊢ 𝑀 ; 𝐺templ, (3.10)

where 𝐶 is a set of channels,𝑀 is a model coroutine, and 𝐺templ is a template for guide coroutines.
The set 𝐶 of channels is either {𝑎} or {𝑎, 𝑏}, where channel 𝑎 connects the guide 𝐺 and model𝑀
and channel 𝑏 connects the current guide 𝐺 and its previous guide (Fig. 5). Thus, the set 𝐶 tracks
whether the old trace is present or not. The judgment (3.10) means that, if channels𝐶 are accessible
to a guide coroutine, the model 𝑀 is translated from the surface syntax to the template 𝐺templ.
Given a collection D𝑀 of procedure definitions for the model 𝑀 , we translate each procedure
fix(𝑓 .𝑥 .𝑚) ∈ D𝑀 to two versions: (i) fix(𝑓𝑎 .𝑥 .𝑚𝑎) such that {𝑎} ⊢𝑚 ;𝑚𝑎 and (ii) fix(𝑓𝑎,𝑏 .𝑥 .𝑚𝑎,𝑏)
such that {𝑎, 𝑏} ⊢𝑚 ;𝑚𝑎,𝑏 .

Fig. 7 shows inference rules for the judgment (3.10). The rule TR:Sample is for the sampling com-
mand samplerv{a}(@𝑣, 𝑒) when the channel 𝑏 is present (i.e., the old trace is accessible). Here, @𝑣 is
a label of a latent variable. The resulting command, bnd(oldsample; 𝑣old .samplesd{a}(□𝑣)), receives
the old value, binds it to a fresh variable 𝑣old, and then draws a sample from □𝑣 , which is to be filled

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:17

TR:Ret

𝐶 ⊢ ret(𝑒) ; ret(𝑒)

TR:Bnd
𝐶 ⊢𝑚1 ;𝑚′1 𝐶 ⊢𝑚2 ;𝑚′2

𝐶 ⊢ bnd(𝑚1;𝑥.𝑚2) ; bnd(𝑚′1;𝑥.𝑚′2)

TR:Call

𝐶 ⊢ call(𝑓 ;𝑒) ; call(𝑓𝐶 ;𝑒)

𝑣old is a fresh label of a latent variable

{𝑎,𝑏} ⊢ samplerv {a} (@𝑣, 𝑒) ; bnd(oldsample; 𝑣old .sample(□𝑣))
TR:Sample

TR:Sample:A

{𝑎} ⊢ samplerv {a} (@𝑣, 𝑒) ; sample(□𝑣)

TR:Sample:Obs
obs ∉ 𝐶

𝐶 ⊢ samplesd{obs} (𝑒) ; ret(triv)

TR:Cond
{𝑎,𝑏} ⊢𝑚𝑖 ;𝑚𝑖,1 {𝑎} ⊢𝑚𝑖 ;𝑚𝑖,2 (𝑖 = 1, 2)

{𝑎,𝑏} ⊢ cond(𝑒 ;𝑚1;𝑚2) ;
cond(★; oldcond(𝑚1,1;𝑚1,2) ; oldcond(𝑚2,1;𝑚2,2))

TR:Cond:A
{𝑎} ⊢𝑚1 ;𝑚′1 {𝑎} ⊢𝑚2 ;𝑚′2

{𝑎} ⊢ cond(𝑒 ;𝑚1;𝑚2) ; cond(★;𝑚′1;𝑚′2)

Fig. 7. Inference rules for the translation of the lightweight surface syntax to the core calculus.

later. The rule TR:Sample:A applies to the sampling command samplerv{a}(@𝑣, 𝑒) when the chan-
nel 𝑏 is absent. The rule TR:Sample:Obs applies to the sampling command samplesd{obs}(𝑒), which
samples an observed variable and sends it on channel obs. Because guides do not involve observed
variables, we translate this sampling command to the no-op command ret(triv). Finally, the rule
TR:Cond translates the conditional command cond(𝑒;𝑚1;𝑚2) in the model𝑀 to a doubly-nested
conditional command cond(★; oldcond(𝑚1,1;𝑚1,2); oldcond(𝑚2,1;𝑚2,2)) for the guide template.
In the second stage of the translation, for every sampling command sample(□𝑣) appearing in

the template 𝐺templ, we fill □𝑣 with either a distribution 𝑒 or keep, according to the guide 𝐺 in
the surface syntax. If the guide 𝐺 contains resample{𝑎}(@𝑣, 𝑓), where function 𝑓 takes in latent
variables’ old values and returns a distribution, then every occurrence of □𝑣 in the template𝐺templ
is replaced with a distribution 𝑓 𝑣old,1 · · · 𝑣old,𝑛 , where 𝑣old,1, . . . , 𝑣old,𝑛 are variables representing the
latent variables’ old values. Here, we assume that these variables are in the scope of sample(□𝑣).
Conversely, if the guide 𝐺 contains resample_if_none{𝑎}(@𝑣, 𝑓), we replace each occurrence
of □𝑣 in the template with either (i) a distribution 𝑓 𝑣old,1 · · · 𝑣old,𝑛 if 𝑏 ∉ 𝐶 (where 𝐶 is the set of
channels in the judgment (3.10) of sample(□𝑣)); or (ii) keep otherwise.
To improve programmability of our system, we use several constructs that aim to simplify the

workflow. Firstly, in addition to the full syntax of the core calculus (§3), we provide the lightweight
surface syntax (§3.4) that makes it easier to write guide programs when the full expressiveness
of the core calculus is not needed. Secondly, the operational semantics of our PPL is conceptually
simple: it extends the semantics of Wang et al. [52] with one extra channel 𝑏𝑖 connecting the
previous and current guide coroutines (Fig. 5). Thirdly, the guide-type system automatically infers
the guide types of guide coroutines, and their structural type equality with a model coroutine’s
guide type is also checked automatically (§4.2). Thus, the type system requires no user interaction,
though some understanding of the type system’s details may be needed to debug guide programs.

4 Type-Equality Checking
We check type equality of guide types (while disregarding their coverage annotations) in two places.
First, in type inference, we check that the two branches of a conditional command cond(★;𝑚1;𝑚2)
have equal guide types (§3.3). Second, after inferring the guide types of a model𝑀 and a guide 𝐺 ,
we check that they have equal guide types. Otherwise, with unequal guide types, they may cause
communication errors (e.g., deadlocks) at runtime, resulting in unsound probabilistic inference.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

308:18 Pham et al.

4.1 Context-Free Guide Types
Guide types are said to be regular if they encode regular (tree) languages that can be recognized by
finite-state (tree) automata [14, 16, 40]. For example, a guide type𝑇 [𝑋] ≔ ℝ∧ (𝑋 N𝑇 [𝑋]) is regular
because, as we traverse the type and unroll recursion, we encounter finitely many syntactically
different types (i.e., subtrees [40, Section 21.7]).

Type-equality checking of guide types is straightforward if they are regular. Because regular guide
types can be encoded as finite-state (tree) automata, the type-equality problem can be reduced to
the bisimilarity-checking problem between two finite-state (tree) automata. Bisimilarity means two
given types, viewed as transition system, can always make the same transitions to their next states
in lockstep. To ensure termination of bisimulation, we must detect a cycle, which is straightforward
because we can only ever visit finitely many states during the bisimulation.

The guide-type framework [52] admits more types than regular types. For example, a guide type
𝑇 [𝑋] ≔ ℝ ∧ (𝑋 N𝑇 [𝑇 [𝑋]]) is non-regular. As we traverse the type 𝑇 [𝑋] and expand recursion,
it yields infinitely many types (e.g., 𝑇 [𝑋],𝑇 [𝑇 [𝑋]], . . .). Furthermore, a guide type 𝑇 [𝑋] is said
to be context-free because it can be encoded as a context-free process, which can have infinitely
many states. Context-free guide types are critical for expressing a number of Bayesian-inference
problems; e.g., probabilistic context-free grammars (PCFG) [26].

We now formally define type equality of guide types. Given a guide type 𝐴 and a collection T of
type definitions, let unfoldT (𝐴) denote the operation of unfolding type 𝐴 [13]:

typedef (𝑇 .𝑋 .𝐴) ∈ T
unfoldT (𝑇 [𝐵]) = unfoldT (𝐴[𝐵/𝑋])

𝐴 ≠ 𝑇 [_]
unfoldT (𝐴) = 𝐴

.

In contrast to Wang et al. [52], which treats guide types iso-recursively, this work treats guide
types equi-recursively. It is a widely adopted convention in the literature of session types [13, 15,
47, 49] to interpret session types—on which guide types are built—equi-recursively. Under the
equi-recursive interpretation, structural type equality is defined by type bisimilarity [13, 47].

Definition 4.1 (Type bisimulation). Let Type be the set of closed guide types. A binary relation
𝑅 ⊆ Type × Type is a type bisimulation if and only if (𝐴, 𝐵) ∈ 𝑅 implies:

• If unfoldT (𝐴) = 𝜏 ∧𝐴′, then unfoldT (𝐵) = 𝜏 ∧ 𝐵′ and (𝐴′, 𝐵′) ∈ 𝑅.
• If unfoldT (𝐴) = 𝐴1 N𝐴2, then unfoldT (𝐵) = 𝐵1 N 𝐵2 and (𝐴𝑖 , 𝐵𝑖) ∈ 𝑅 for 𝑖 ∈ {1, 2}. The case
of unfoldT (𝐴) = 𝐴1 �𝐴2 is defined analogously.
• If unfoldT (𝐴) = 1, then unfoldT (𝐵) = 1.

Definition 4.2 (Guide type equality). Two closed guide types𝐴 and 𝐵 are equal (denoted by𝐴 = 𝐵)
if and only if there exists a type bisimulation 𝑅 such that (𝐴, 𝐵) ∈ 𝑅.

4.2 Bisimilarity Checking
Challenge of infinite-state bisimulation. It is a non-trivial challenge to algorithmically check

bisimilarity between two guide types because they generally correspond to infinite-state transition
systems. For example, consider the problem of deciding the bisimilarity between two guide types:

𝑇1 [𝑋] ≔ ℝ ∧ (𝑋 N𝑇1 [𝑇1 [𝑋]]) 𝑇2 [𝑋] ≔ ℝ ∧ (𝑋 N𝑇2 [𝑇2 [𝑋]]) . (4.1)
Suppose we bisimulate 𝑇1 [𝑋] and 𝑇2 [𝑋] and construct a type bisimulation 𝑅 that witnesses the
type equivalence. Initially, we place the pair (𝑇1 [𝑋],𝑇2 [𝑋]) in the type bisimulation 𝑅. Next, we
unfold the pair (𝑇1 [𝑋],𝑇2 [𝑋]) and bisimulate it, spawning a new pair (𝑇1 [𝑇1 [𝑋]],𝑇2 [𝑇2 [𝑋]]) to be
included in the type bisimulation 𝑅. This pattern continues, resulting in an infinite sequence of
guide-type pairs to be included in the type bisimulation 𝑅.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:19

Context-free processes. To algorithmically decide type equality of guide types, we reduce the
problem to bisimilarity checking of so-called context-free processes that simulate context-free
grammars. We formally define context-free grammars and processes as follows.

Definition 4.3 (Context-free grammar in Greibach normal form). A context-free grammar is a four-
tuple𝐺 = (𝑉 ,𝑇 , 𝑃, 𝑆), where (i)𝑉 is a finite set of variables; (ii)𝑇 is a finite set of terminal symbols;
(iii) 𝑃 ⊆ 𝑉 × (𝑉 ∪𝑇)∗ is a finite set of production rules; and (iv) 𝑆 ∈ 𝑉 is the starting variable. The
context-free grammar 𝐺 is said to be in Greibach normal form (GNF) if every (𝑋, 𝛼) ∈ 𝑃 satisfies
𝛼 ∈ 𝑇𝑉 ∗. Every context-free grammar can transformed into GNF.

Definition 4.4 (Context-free process). A process is a transition system (𝑆,𝐴,→, 𝛼0), where (i) 𝑆 is
a (possibly infinite) set of states; (ii) 𝐴 is a finite set of actions; (iii)→ ⊆ 𝑆 ×𝐴 × 𝑆 is a transition
relation; and (iv) 𝛼0 ∈ 𝑆 is the initial state. With a context-free grammar (𝑉 ,𝑇 , 𝑃, 𝑆) in GNF, we
associate the process (𝑉 ∗,𝑇 ,→, 𝑆), where there are no transitions from 𝜖 (i.e., the empty string),
and 𝑋𝜎

𝑎−→ 𝛼𝜎 if and only if (𝑋 → 𝑎𝛼) ∈ 𝑃 . Such a process is called a context-free process.

Translation from guide types to processes. Consider a closed guide type 𝐴main together with a
finite set T of type definitions of the form typedef (𝑇 .𝑋 .𝐴). We translate T to rules of a context-
free grammar/process and 𝐴main to a string of variables (i.e., the initial state of the context-free
process). For each type definition typedef (𝑇 .𝑋 .𝐴) ∈ T , we assume 𝐴 does not contain 111. This is a
valid assumption in our setting because any typedef (𝑇 .𝑋 .𝐴) inferred by the guide-type-inference
algorithm (§3.3) for a procedure definition fix(𝑓 .𝑥 .𝑚) never introduces 1.

In each type definition typedef (𝑇 .𝑋 .𝐴), we preprocess 𝐴 such that the type definition becomes
𝑇 [𝑋] ≔ 𝜏 ∧𝑇1 [· · ·𝑇𝑛 [𝑋] · · ·], or (4.2)
𝑇 [𝑋] ≔ 𝑇1 [· · ·𝑇𝑛 [𝑋] · · ·] ⋄𝑇 ′1 [· · ·𝑇 ′𝑚 [𝑋] · · ·] where ⋄ ∈ {N,�}, (4.3)

where 𝑇1, . . . ,𝑇𝑛,𝑇
′
1 , . . . ,𝑇

′
𝑚 are type operators. Any type definition 𝑇 [𝑋] ≔ 𝐴 can be transformed

to the forms (4.2) and (4.3) by introducing fresh type operators, as long as 𝐴 does not contain 111.

Definition 4.5 (Translation of type definitions). Consider a type definition typedef (𝑇 .𝑋 .𝐴) ∈ T
in either of the forms Eqns. (4.2) and (4.3). This type definition is translated to a GNF production
rule(s) of a context-free grammar as

(𝑇 [𝑋] ≔ 𝜏 ∧𝑇1 [· · ·𝑇𝑛 [𝑋] · · ·]) ; {𝑇
𝜏∧−−→ 𝑇1𝑇2 · · ·𝑇𝑛} (4.4)

(𝑇 [𝑋] ≔ 𝑇1 [· · ·𝑇𝑛 [𝑋] · · ·] ⋄𝑇 ′1 [· · ·𝑇 ′𝑚 [𝑋] · · ·]) ; {𝑇
⋄true−−−→ 𝑇1 · · ·𝑇𝑛,𝑇

⋄false−−−→ 𝑇 ′1 · · ·𝑇 ′𝑚}, (4.5)
where ⋄ ∈ {N,�} in Eqn. (4.5). Type operators 𝑇,𝑇𝑖 ,𝑇𝑗 (𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . ,𝑚) on the
right-hand sides of Eqns. (4.4) and (4.5) are treated as variables of the context-free grammar. To
obtain all production rules of the context-free grammar, we perform the above transformation to
each type definition in T and aggregate the outputs.

The translation of a closed guide type𝐴main works similarly. First, it is transformed to a guide type
𝑇1 [· · ·𝑇𝑛 [111] · · ·]. It is then translated to a word 𝑇1 · · ·𝑇𝑛 , where 𝑇1, . . . ,𝑇𝑛 are treated as variables
of a context-free grammar. The result is used as the initial state of a context-free process.

Bisimilarity checking of context-free processes. The seminal work by Hirshfeld et al. [21] shows
that we can check bisimilarity between context-free processes in polynomial time, provided that
we impose one additional restriction: the context-free processes have finite norms.

Definition 4.6 (Norm). Consider a context-free process induced by a context-free grammar
𝐺 = (𝑉 ,𝑇 , 𝑃, 𝑆). The norm of a word 𝛼 ∈ 𝑉 ∗ is the minimum number of transitions necessary to
reach the empty string 𝜖 . A context-free process is said to be normed if if all states have finite
norms.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

308:20 Pham et al.

Because traces must be finitely long [52], we require guide types to have finite norms as well. For
example, an infinite-norm guide type 𝑇 [𝑋] ≔ ℝ ∧𝑇 [𝑇 [𝑋]] should be rejected in the coroutine-
based programmable inference because programs with such a guide type produce infinitely long
traces of ℝ-typed samples in all execution paths. Finite norms are critical for polynomial-time
complexity. Without this assumption, although bisimilarity checking remains decidable [10], its
complexity becomes EXPTIME-hard [27] and 2-EXPTIME (double exponential) [25].

Theorem 4.7 (Polynomial-time checking of guide-type eqality). Given two guide types 𝐴1
and 𝐴2, if they have finite norms, their equality can be checked in polynomial time.

Thm. 4.7 for polynomial-time type-equality checking is novel considering the fact that guide types
build on context-free session types, whose type equality is EXPTIME-hard. Polynomial-time equality
checking for guide types is enabled by the crucial difference between guide types and session types:
the former is required to have finite norms, while the latter is not. Our contribution in this work is
to spot this critical difference, show how to translate guide types to context-free processes with
finite norms, and thereby conclude that guide-type equality is decidable in polynomial time.3

5 Coverage Checking
To verify the model-guide compatibility, in addition to the type equality between the model and
guides, we check the coverage of random variables: they are each freshly sampled by some guide.

5.1 Problem Statement
We introduce the coverage-checking problem of a sequential composition of well-typed guide
coroutines𝐺1, . . . ,𝐺𝑛 . For each 𝑖 = 1, . . . , 𝑛, channel 𝑎𝑖 connects model𝑀 and guide𝐺𝑖 , and channel
𝑏𝑖 connects guides𝐺𝑖−1 and𝐺𝑖 (Fig. 5). For 𝑖 = 1, . . . , 𝑛, let 𝐴𝑖 be the coverage-annotated guide type
of channel 𝑎𝑖 such that ∀1 ≤ 𝑖, 𝑗 ≤ 𝑛. |𝐴𝑖 | = |𝐴 𝑗 | and define 𝐵 = |𝐴𝑖 | [�/N] (for any 𝑖), where |𝐴𝑖 | is
the result of removing coverage annotations from 𝐴𝑖 . Suppose we have for some functional type 𝜏𝑖

·;𝑎𝑖 : 𝐴𝑖 , 𝑏 : 𝐵 ⊢ 𝐺𝑖
.∼. 𝜏𝑖 ;𝑎𝑖 : 111, 𝑏 : 111 𝑖 = 1, . . . , 𝑛. (5.1)

The coverage-checking problem asks the following: for any initial trace 𝜎0 : 𝐵 with a positive
density in the model𝑀 (Eqn. (3.3)) and any desirable final trace 𝜎𝑛 : 𝐵 also with a positive density
in the model𝑀 (Eqn. (3.5)), can we have

·; {𝑎𝑖 : 𝜎𝑖 , 𝑏𝑖 : 𝜎𝑖−1};𝑄empty ⊢ 𝐺𝑖 ⇓𝑤𝐺,𝑖 𝑣𝐺,𝑖 ; {𝑎 : [], 𝑏 : []};𝑄empty (𝑖 = 1, . . . , 𝑛) (5.2)
for intermediate traces 𝜎𝑖 : 𝐵 (𝑖 = 1, . . . , 𝑛 − 1), positive densities𝑤𝐺,𝑖 > 0 (𝑖 = 1, . . . , 𝑛), and output
values 𝑣𝐺,𝑖 (𝑖 = 1, . . . , 𝑛)? If so, the Markov chain induced by the guides 𝐺1, . . . ,𝐺𝑛 is irreducible,
which is a key soundness ingredient of multiple-block MH [41, 48].

As described in §3.2, each guide coroutine is followed by the MH acceptance routine. Guide 𝐺𝑖

proposes a new candidate trace 𝜎∗𝑖 , and it is accepted with probability min{𝑟𝑖 , 1}, where ratio 𝑟𝑖 is
defined in Eqn. (3.7). In the formulation of the coverage-checking problem Eqn. (5.2), without loss
of generality, we focus on the case where every acceptance routine accepts the newly proposed
trace 𝜎∗𝑖 . In our framework, as long as the old trace 𝜎𝑖−1 has a positive density in the model 𝑀
(Eqn. (3.5)), the acceptance routine is guaranteed to accept the proposed trace 𝜎∗𝑖 with a positive
probability (Cor. A.8). Also, if the MH acceptance routine retains the old trace 𝜎𝑖−1, we can simulate
this effect by setting trace 𝜎∗𝑖 to 𝜎𝑖−1, which is possible for any well-typed guide program.

3The original paper [21] shows a𝑂 (𝑛13)-time algorithm, where 𝑛 is the size of the input context-free grammar. [29] later
improves the asymptotic complexity to𝑂 (𝑛8polylog(𝑛)) .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:21

@𝑥 : R𝑢

@𝑦1 : R𝑢 @𝑦2 : R𝑐

@𝑧1 : R𝑐 @𝑧2 : R𝑢

(a) Guide 𝐺1.

@𝑥 : R𝑐

@𝑦1 : R𝑐

@𝑧1 : R𝑐

@𝑦2,@𝑧2 : R𝑢

(b) Guide 𝐺2.

@𝑥 : R𝑢

@𝑦1 : R𝑢 @𝑦2 : R𝑢

@𝑧1 : R𝑢 @𝑧2 : R𝑐

(c) Guide 𝐺3.

Fig. 8. Mismatch in the control flows of guide programs. Guide 𝐺2 has a different control-flow graph from

guides 𝐺1 and 𝐺3, but they all have equal guide types (ignoring their coverage annotations).

5.2 Technical Challenge
A naïve solution to coverage checking is to verify that the superposition of coverage-annotated
guide types𝐴1, . . . , 𝐴𝑛 covers all random variables. However, this solution fails because old samples
of a random variable can be reused for another random variable on a different execution path.

To demonstrate the issue, consider a sequential composition of guides𝐺1,𝐺2,𝐺3 whose control
flows are illustrated in Fig. 8. Label @ℓ : ℝ𝑐 means random variable @ℓ is covered (i.e., freshly
sampled) and @ℓ : ℝ𝑢 means random variable @ℓ is uncovered (i.e., old sample is reused). In
guides 𝐺1 and 𝐺3, the two branches of a conditional command remain diverged, while in guide
𝐺2, the two branches join back after temporary divergence. This is because guide 𝐺2 has code
bnd(cond(★;𝑚1,1;𝑚1,2);𝑥 .𝑚2), where commands𝑚1,1 and𝑚1,2 join back before command𝑚2. The
three guides have coverage-annotated guide types 𝐴1, 𝐴2, 𝐴3, respectively, where

𝐴1 ≔ ℝ𝑢 ∧N
{
ℝ𝑢 ∧ℝ𝑐 ∧ 111,
ℝ𝑐 ∧ℝ𝑢 ∧ 111

}
𝐴2 ≔ ℝ𝑐 ∧N

{
ℝ𝑐 ∧ℝ𝑢 ∧ 111,
ℝ𝑐 ∧ℝ𝑢 ∧ 111

}
𝐴3 ≔ ℝ𝑢 ∧N

{
ℝ𝑢 ∧ℝ𝑢 ∧ 111,
ℝ𝑢 ∧ℝ𝑐 ∧ 111

}
. (5.3)

The superposition of Eqn. (5.3) covers all random variables: as we bisimulate Eqn. (5.3) in lockstep,
every random variables is covered by at least one of the three guides. However, this is a pitfall:
the sequential composition of 𝐺1,𝐺2,𝐺3 fails to generate some traces that model𝑀 can generate.
Consider an initial trace 𝜎0 = [𝑣0,1, dir (false), 𝑣0,3, 𝑣0,4] for some fixed values 𝑣0,1, 𝑣0,3, 𝑣0,4 ∈ R.
Ideally, the sequential composition of guides should be able to generate any trace

𝜎3 ∈ {[𝑣1, dir (𝑣2), 𝑣3, 𝑣4] | 𝑣1, 𝑣3, 𝑣4 ∈ R, 𝑣2 = 𝑀 (𝑣1)} (5.4)
with a positive density, where𝑀 (𝑣1) ∈ {true, false} denotes the branch chosen by model𝑀 given
sample 𝑣1 ∈ R for random variable @𝑥 . Suppose (roman*) guide 𝐺1 takes the second branch,
(roman*)𝐺2 takes the first branch, and (roman*)𝐺3 also takes the first branch because it reuses the
previous sample 𝑣1 freshly sampled by 𝐺2. Consequently, guide 𝐺𝑖 generates trace 𝜎𝑖 (𝑖 = 1, 2, 3):

𝜎1 = [𝑣0,1, dir (false), 𝑣3, 𝑣0,4] 𝜎2 = 𝜎3 = [𝑣1, dir (true), 𝑣3, 𝑣0,4] . (5.5)
Trace 𝜎3 still contains sample 𝑣0,4 from the initial trace 𝜎0. This means we cannot generate every
trace from the set (5.4) with a positive density, independently of the initial trace 𝜎0.
The root problem is that although 𝐺1 and 𝐺2 have different control flows, their guide types do

not reflect this difference. Guide 𝐺2 diverges from the old trace 𝜎1 after @𝑥 . But guide 𝐺2 regains
access to trace 𝜎1 after the two branches in𝐺2 join back. Interestingly, guide𝐺2 now reuses the old
sample 𝑣0,4 in 𝜎1, which is originally for random variable @𝑧2, for random variable @𝑦2. Thus, old
samples can later be reused for different random variables in different branches. So in coverage
checking, it is not sufficient to examine the superposition of coverage-annotated guide types.

5.3 Coverage-Checking Algorithm
Key idea. To overcome the limitation described in §5.2, we propose a coverage-checking algorithm

that reshapes a guide type according to the control flow of a guide program. In the example of
Fig. 8, we start with a fully uncovered guide type 𝐴0 ≔ ℝ𝑢 ∧ ((ℝ𝑢 ∧ℝ𝑢 ∧111)N (ℝ𝑢 ∧ℝ𝑢 ∧111)). We

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

308:22 Pham et al.

C:Call
fix(𝑓 .𝑥 .𝑚) ∈ D𝐺 A ⊢𝑚[𝑒/𝑥] : (𝐴𝑋 , B)

A ⊢ call(𝑓 ;𝑒) : (𝑇 [𝑋], B)

C:Sample:Any
∀𝑖 ∈ I.𝜏𝑖 = 𝜏𝑐

{𝜏𝑖 ∧𝐴𝑖 | 𝑖 ∈ I} ⊢ sample(_) : (𝜏𝑐 ∧𝑋, {𝐴𝑖 | 𝑖 ∈ I})

𝑒 : dist(𝜏)
{𝜏𝑖 ∧𝐴𝑖 | 𝑖 ∈ I} ⊢

sample(𝑒) : (𝜏𝑐 ∧𝑋, {𝐴𝑖 | 𝑖 ∈ I})

C:Sample:Dist
∃𝑖 ∈ I.𝜏𝑖 = 𝜏𝑢

{𝜏𝑖 ∧𝐴𝑖 | 𝑖 ∈ I} ⊢
sample(keep) : (𝜏𝑢 ∧𝑋, {𝐴𝑖 | 𝑖 ∈ I})

C:Sample:Keep

{𝐴𝑖,1 | 𝑖 ∈ I} ⊢𝑚1,1 : (𝐴1,𝑋 , B1) {𝐴𝑖,2 | 𝑖 ∈ I} ⊢𝑚2,1 : (𝐴2,𝑋 , B2)
{𝐴𝑖,1 N𝐴𝑖,2 | 𝑖 ∈ I} ⊢ cond(★; oldcond(𝑚1,1;𝑚1,2) ; oldcond(𝑚2,1;𝑚2,2)) : (𝐴1,𝑋 N𝐴2,𝑋 , B1 ∪ B2)

C:Cond

Fig. 9. Key rules for bisimulating guide types alongside commands in the coverage-checking algorithm.

bisimulate guide type 𝐴0 alongside the code of guide 𝐺1, updating coverage annotations whenever
we encounter sample(𝑒) in the code. This results in coverage-annotated guide type 𝐴1 (Eqn. (5.3)).
Next, we bisimulate guide type 𝐴1 alongside the code of guide 𝐺2. During the bisimulation, when
the two branches of 𝐺2 merge back, we also merge the coverage-annotated base types @𝑦2 : ℝ𝑐

and @𝑧2 : ℝ𝑢 in guide type 𝐴1, yielding ℝ𝑢 because it is their supertype. This results in a guide
type 𝐴2 (Eqn. (5.3)). Finally, we bisimulate guide type 𝐴2 alongside the code of 𝐺3, obtaining

𝐴′3 ≔ ℝ𝑐 ∧ ((ℝ𝑐 ∧ℝ𝑢 ∧ 111) N (ℝ𝑐 ∧ℝ𝑐 ∧ 111)) . (5.6)
Guide type 𝐴′3 in Eqn. (5.6) correctly indicates that random variable @𝑦2 may be uncovered.

Bisimulation of types and commands. To formalize the idea of bisimulating a guide type (and
more generally a set A of guide types) alongside command𝑚, we introduce a judgment

A ⊢𝑚 : (𝐴𝑋 ,B), (5.7)
where A is a set of input guide types, 𝐴𝑋 is an output guide type containing type variable 𝑋 , and
B is a set of continuation guide types after the bisimulation. The judgment (5.7) means, given a
set A of input guide types, as we bisimulate all guide types in A and command𝑚 in lockstep and
update coverage annotations, we obtain an output guide type 𝐴𝑋 , where type variable 𝑋 stands for
a continuation guide type, and a set B of continuation guide types.

Fig. 9 lists key rules defining judgment (5.7). The rule C:Sample:Any applies to both sample(𝑒)
for a distribution expression 𝑒 and sample(keep). The rule states that, if all guide types in the input
set {𝜏𝑖 ∧ 𝐴𝑖 | 𝑖 ∈ I} cover the random variable, then it remains covered in the result 𝜏𝑐 ∧ 𝐴. In
the rule C:Sample:Dist, if a guide draws a fresh sample, the random variable is deemed covered
in the result. Conversely, the rule C:Sample:Keep stipulates that, if the input set of guide types
contains an uncovered type and the sampling command reuses an old value, the random variable
is uncovered. The rule C:Call replaces a procedure call with the procedure definition. The rule
C:Cond states that, for a conditional command, we consider commands𝑚1,1 (i.e., model 𝑀 and
the previous guide both take the first branch) and𝑚2,1 (i.e., model𝑀 and the previous guide take
the second branch). The overall set of continuation guides is the union B1 ∪ B2. It is unnecessary
to consider commands𝑚1,2 and𝑚2,2 because they are disallowed from calling sample(keep) and
hence always draw fresh samples.

Repeated bisimulation. The coverage-checking algorithm works as follows. Given a sequential
composition of well-typed guides𝐺1, . . . ,𝐺𝑛 , let 𝑎𝑖 (𝑖 = 1, . . . , 𝑛) be the channel connecting guide𝐺𝑖

and model𝑀 . Let 𝐵 be the unannotated guide type of all channels 𝑎1, . . . , 𝑎𝑛 , and 𝐵0 be the coverage-
annotated guide type obtained from 𝐵 by annotating all random variables with subscript 𝑢. We first
bisimulate the fully uncovered guide type 𝐵0 alongside guide𝐺1, resulting in {𝐵0} ⊢ 𝐺1 : (𝐵1,𝑋 , {111}).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:23

Next, we bisimulate 𝐵1 ≔ 𝐵1,𝑋 [111/𝑋] for guide 𝐺2, repeating this step for all subsequent guides.
Once we obtain the final guide type 𝐵𝑛 , we check if it is fully covered.

Thm. 5.1 states the soundness of the coverage-checking algorithm.

Theorem 5.1 (Soundness of the coverage-checking algorithm). Consider a sequential
compositions of well-typed guides 𝐺1, . . . ,𝐺𝑛 . Channel 𝑎𝑖 (𝑖 = 1, . . . , 𝑛) connects guide 𝐺𝑖 and model
𝑀 , and channel 𝑏𝑖 (𝑖 = 1, . . . , 𝑛) connects guides 𝐺𝑖 and 𝐺𝑖−1. For each 𝑖 = 1, . . . , 𝑛, suppose

·;𝑎𝑖 : 𝐴𝑖 , 𝑏𝑖 : 𝐵 ⊢ 𝐺𝑖
.∼. 𝜏𝑖 ;𝑎𝑖 : 111, 𝑏𝑖 : 111, (5.8)

where coverage-annotated guide types 𝐴𝑖 and unannotated guide types 𝐵 satisfy ∀1 ≤ 𝑖 ≤ 𝑛. 𝐵 = |𝐴𝑖 |.
Let 𝐵0 be a fully uncovered coverage-annotated guide type obtained from 𝐵. Suppose

{𝐵𝑖−1} ⊢ 𝐺𝑖 : (𝐵𝑖,𝑋 , {111}) 𝐵𝑖 ≔ 𝐵𝑖,𝑋 [111/𝑋] 𝑖 = 1, . . . , 𝑛. (5.9)
If 𝐵𝑛 is fully covered (i.e., all random variables are marked with subscript 𝑐), then the Markov chain
induced by the sequential composition of guides 𝐺1, . . . ,𝐺𝑛 is irreducible.

Implementation and heuristic. To algorithmically compute guide type 𝐴𝑋 and set B in Eqn. (5.7),
we incrementally construct a typing tree bottom-up according to the rules in Fig. 9. Every time we
apply the rule C:Call for a procedure call call(𝑓 ; 𝑒), we record the pair (𝑓 ,A), which are used to
detect a cycle. If guide types are regular (i.e., they have finitely many states), we are guaranteed to
detect a cycle because there can only be finitely many pairs (𝑓 ,A). However, if the guide types are
context-free with infinitely many states (§4.1), then the algorithm may diverge.

To prevent the divergence caused by infinite-state context-free guide types, we can replace the
rule C:Call with a heuristic rule for procedure calls:

C:Call:Heuristic
A = {𝑇𝑖 [𝐴𝑖] | 𝑖 ∈ I} {𝑇𝑖 [111] | 𝑖 ∈ I} ⊢ call(𝑓 ; 𝑒) : (𝐴𝑋 , {111}) 𝑇𝑓 ,A is a fresh type operator

A ⊢ call(𝑓 ; 𝑒) : (𝑇𝑓 ,A [𝑋], {𝐴𝑖 | 𝑖 ∈ I})
.

The rule C:Call:Heuristic states that, if the setA of input guide types has the form {𝑇𝑖 [𝐴𝑖] | 𝑖 ∈ I},
we split it into A1 ≔ {𝑇𝑖 [111] | 𝑖 ∈ I} and A2 ≔ {𝐴𝑖 | 𝑖 ∈ I}. We then bisimulate A1 alongside
command call(𝑓 ; 𝑒), ensuring that the output set of continuation guide types is {111}. This heuristic
assumes that each guide type𝑇𝑖 [111] (𝑖 ∈ I) exactly matches the control flow of procedure 𝑓 . Because
the rule C:Call:Heuristic matches a procedure call with a set of the form {𝑇𝑖 [111] | 𝑖 ∈ I}, of
which there are finitely many, the coverage-checking algorithm eventually terminates. The rule
C:Call:Heuristic works for infinite-state context-free guide types when all guides𝐺1, . . . ,𝐺𝑛 have
the same code structure with respect to their procedure-call sites: all guides call procedures in
the same sites within code. However, if some procedures inline a procedure call while others do
not, the heuristic C:Call:Heuristic no longer works, because some guide types in the set A of
input guide types will not have the form 𝑇𝑖 [𝐴𝑖]. Thus, the coverage-checking algorithm with the
heuristic is not complete, but it does not affect the soundness of coverage checking (Thm. 5.1).

6 Evaluation
Implementation. We implemented in OCaml (i) a type-inference algorithm (with equality check-

ing) for individual guides and (ii) a coverage-checking algorithm for sequentially composed guides.
For type inference, we have extended the algorithm from [52], which only supports nominal

type equality, with a saturation-based structural-type-equality checking algorithm for context-free
guide types with finite norms [22] (§4). Its time complexity is 𝑂 (𝑛4𝑣), where 𝑛 is the overall size of
type definitions and 𝑣 is the maximum norm of type operators [22]. This is not a polynomial-time
algorithm, since 𝑣 can be exponential in 𝑛 in the worst case. Nonetheless, as long as the maximum
norm is small, this algorithm has better asymptotic complexity than a worst-case polynomial-time

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

308:24 Pham et al.

Table 1. Experiment results of guide-type inference and coverage checking of 28 benchmark programs.

Type Inference Coverage Check

Program Description Guide Type LOC Time (ms) Prior Work Match Mismatch Time (ms)

branching Random control flow [Anglican] Finite 46 1.33 ✓ True Pos. True Neg. 0.46
coordination Coordination game [Anglican] Finite 24 0.19 ✓ True Pos. True Neg. 0.34
drill Oil wildcatter problem [Anglican] Finite 56 0.17 ✓ True Pos. True Neg. 0.37
ex-1 Ex. 1 [52] Finite 42 1.31 ✓ True Pos. True Neg. 0.46
gaussian Gaussian with unknown means [Anglican] Finite 20 0.16 ✓ True Pos. True Neg. 0.46
gbm Geometric Brownian motion [Anglican] Finite 35 0.25 ✓ True Pos. True Neg. 0.52
gda Gaussian discriminant analysis [Anglican] Finite 40 1.86 ✓ True Pos. True Neg. 3.17
gmm Gaussian mixture model [Anglican] Finite 75 4.73 ✓ True Pos. True Neg. 7.71
grw Gaussian random walk [Anglican] Finite 24 0.17 ✓ True Pos. True Neg. 0.74
hmm Hidden Markov model [Anglican] Finite 76 2.56 ✓ True Pos. True Neg. 7.21
kalman Kalman filter [Anglican] Finite 72 4.44 ✓ True Pos. True Neg. 7.54
kalman-chaos Kalman for chaotic attractors [Anglican] Finite 114 5.86 ✓ True Pos. True Neg. 5.68
lr Bayesian linear regression [Anglican] Finite 36 0.19 ✓ True Pos. True Neg. 1.15
run-factory Beta-binomial model [Anglican] Finite 20 0.13 ✓ True Pos. True Neg. 0.61
scientists Posterior estimation with Gaussians [54] Finite 40 0.27 ✓ True Pos. True Neg. 0.52
seq Non-recursive sequence [52] Finite 22 0.23 ✓ True Pos. True Neg. 0.46
sprinkler Bayesian network [Anglican] Finite 26 0.14 ✓ True Pos. True Neg. 0.43
user-behavior Dishonest form filling [Anglican] Finite 64 1.22 ✓ True Pos. True Neg. 3.17
vae Variational autoencoder [Pyro] Finite 48 4.20 ✓ True Pos. True Neg. 22.39
weight Unreliable weight [Pyro] Finite 18 0.26 ✓ True Pos. True Neg. 0.70
aircraft Aircraft detection [Anglican] Regular 117 6.19 ✗ True Pos. True Neg. 5.96
iter Regular iteration [52] Regular 47 2.01 ✗ True Pos. True Neg. 0.54
marsaglia Marsaglia algorithm [Anglican] Regular 76 3.51 ✗ True Pos. True Neg. 5.13
ptrace Poisson trace [Anglican] Regular 47 1.49 ✗ True Pos. True Neg. 0.40

ex-2 Ex. 2 [52] Context-Free 78 4.77 ✗ True Pos. True Neg. 4.70
93 15.48 ✗ False Neg. True Neg. 3.26

diter Double iteration [52] Context-Free 52 1.48 ✗ True Pos. True Neg. 0.57
62 2.09 ✗ False Neg. True Neg. 0.49

gp-dsl Gaussian process DSL [52] Context-Free 242 879.53 ✗ True Pos. True Neg. 4.71
261 2487.91 ✗ False Neg. True Neg. 4.59

recur Context-free recursion [52] Context-Free 71 11.53 ✗ True Pos. True Neg. 16.32
83 15.55 ✗ False Neg. True Neg. 6.35

algorithm [21], which has complexity 𝑂 (𝑛13). This type-equality checking algorithm can also be
used to verify that model and guide programs have equal guide types.

For coverage checking, starting with a fully uncovered guide type, we bisimulate the coverage-
annotated guide type with each successive guide program to update coverage annotations (§5.3).

Evaluation setup. We evaluate our prototype on 28 benchmark guide programs collected from
[52] and [Pyro, Anglican]. The benchmarks are modified as follows: (i) we add an extra channel
𝑏 through which the guides access old traces and (ii) we split each guide program into multiple
guides, each of which covers some but not all random variables.
Our benchmark set contains 20 programs with non-recursive guide types, 4 programs with

regular recursive guide types, and 4 programs with infinite-state context-free guide types. Tab. 2
displays the guide types of these benchmarks. Each context-free benchmark has two versions: (i) all
guides in the sequential composition have aligned code structures with respect to procedure calls
and (ii) some of the guides’ code structures are misaligned. For each benchmark (and each of the
two versions of a context-free benchmark), we consider two kinds of sequentially composed guides:
one where the composition is fully covered and another where the composition is not fully covered.

Results. Our goal is to evaluate the effectiveness of the type-inference and coverage-checking
algorithms. Tab. 1 shows the experiment results on the 28 benchmark guide programs. Context-free
benchmarks each have two rows in Tab. 1. The top row is the version where all guides in the
composition have the aligned code structure with respect to procedure call sites. The bottom row
is where the guides have misaligned code structures.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:25

Table 2. Guide types of the 28 benchmarks. The notation 𝜏𝑑 expands to 𝜏 ∧ · · · ∧𝜏 with 𝑑 many 𝜏 ’s. Functional

type tensor(𝜏 ; [𝑑1, . . . , 𝑑𝑛]) denotes a tensor of the element type 𝜏 and dimensions [𝑑1, . . . , 𝑑𝑛]. Functional
type simplex[𝑑] denotes a 𝑑-dimensional simplex.

Program Guide Types

branching ℕ ∧ (111 N ℕ ∧ 111)
coordination 𝟚 ∧ 𝟚 ∧ 111
drill ℕ3 ∧ 111
ex-1 ℝ+ ∧ (111 N ℝ(0,1) ∧ 111)
gaussian ℝ ∧ 111
gbm ℝ ∧ 111
gda tensor(ℝ; [3])2 ∧ tensor(ℝ; [2]) ∧ 111
gmm simplex[3] ∧ tensor(ℝ; [2; 2])6 ∧ ℕ100

3 ∧ 111
grw ℝ ∧ℝ+ ∧ 111
hmm ℕ17

3 ∧ 111
kalman tensor(ℝ; [2])101 ∧ 111
kalman-chaos ℝ2

(0,1) ∧ℝ
153 ∧ 111

lr ℝ3 ∧ℝ+ ∧ 111
run-factory ℝ(0,1) ∧ 111
scientist ℝ ∧ℝ7

(0,1) ∧ 111
seq ℝ2 ∧ 111
sprinkler 𝟚2 ∧ 111
user-behavior ℕ2 ∧ 𝟚6 ∧ 111
vae tensor(ℝ; [50])256 ∧ 111
weight ℝ ∧ 111
aircraft ℕ ∧𝑇1 [111] with𝑇1 [𝑋] ≔ (ℝ ∧ ℕ ∧𝑇2 [𝑇1 [𝑋]]) N 111 and𝑇2 [𝑋] ≔ (ℝ ∧𝑇2 [𝑋]) N 111
iter 𝑇 [111] with𝑇 [𝑋] ≔ 111 N (ℝ ∧𝑇 [𝑋])
marsaglia 𝑇 [111] with𝑇 [𝑋] ≔ ℝ(0,1) ∧ℝ(0,1) ∧ (111 N𝑇 [𝑋])
ptrace 𝑇 [111] with𝑇 [𝑋] ≔ ℝ(0,1) ∧ (111 N𝑇 [𝑋])
ex-2 𝑇1 [111] with𝑇1 [𝑋] ≔ ℝ(0,1) ∧𝑇2 [𝑋] and𝑇2 [𝑋] ≔ ℝ(0,1) ∧ ((ℝ+ ∧ 111) N𝑇2 [𝑇2 [𝑋]])
diter 𝑇 [111] with𝑇 [𝑋] ≔ 111 N ℝ ∧𝑇 [𝑇 [𝑋]]
gp-dsl 𝑇 [111] with𝑇 [𝑋] ≔ 𝟚 ∧ ((ℕ3 ∧ ((ℝ+ ∧𝑇 [𝑇 [𝑋]]) N𝑇 [𝑇 [𝑋]])) N (ℕ5 ∧ (ℝ+ ∧ℝ+ ∧ 111 N ℝ+ ∧ 111)))
recur 𝑇 [111] with𝑇 [𝑋] ≔ 111 N (ℝ ∧𝑇 [ℝ ∧𝑇 [ℝ ∧𝑇 [111]]])

In The Guide Type column, “Finite” refers to non-recursive guide types; e.g.,𝐴 ≔ ℕ∧(111N (ℕ∧111))
in the benchmark branching. “Regular” refers to regular recursive guide types; e.g.,𝐴 ≔ 111N (ℝ∧𝐴)
in the benchmark iter. “Context-free” refers to infinite-state context-free guide types; e.g.,𝑇 [𝑋] ≔
ℝ(0,1) ∧ ((ℝ+ ∧ 𝑋) N 𝑇 [𝑇 [𝑋]]) in the benchmark ex-2. The LOC column states the number
of lines of code. The Type Inference columns show (i) the running time of type inference and
(ii) whether type-equality constraints generated during type inference can be verified using syntactic
type-equality checking from Wang et al. [52]. The Cov. Check columns show (i) the output (True
Pos. or False Neg.) for fully covered sequential compositions of guides, (ii) the output (True Neg. or
False Pos.) for uncovered sequential compositions, and (iii) the total running time of checking the
coverage of both the fully covered and uncovered sequential compositions.

For type inference, our algorithm successfully infers guide types for all benchmarks. Generally,
more lines of code in a benchmark lead to longer time for type inference. This is because the
type-inference algorithm traverses the source code to construct typing trees. For the eight regular
recursive and context-free benchmarks, the prior work [52] fails in type inference because syntactic
equality checking cannot verify the type-equality constraints generated by these benchmarks.

For coverage checking, our algorithm successfully verifies the full coverage of all non-recursive
and regular recursive benchmarks. For context-free benchmarks, we make use of the heuristic
C:Call:Heuristic (§5.3). If all guides in a sequential composition have the same code structure

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

308:26 Pham et al.

Table 3. Language features supported by various verification methods for checking model-guide compatibility.

Language Feature Trace Types [31] Guide Types [52] Fidelio [32] This Work

General branching ✗ ✓ ✓ ✓

General recursion ✗ ✓ ✓ ✓

Reorder variables ✓ ✗ ✓ ✗

Sequentially compose guides ✓ ✗ ✗ ✓

Reuse old samples ✗ ✗ ✗ ✓

Structural type equality ✓ ✗ ✗ ✓

with respect to procedure call sites, our algorithm with the heuristic C:Call:Heuristic (§5.3) can
handle it. However, if the guides have misaligned code structures, the heuristic fails, terminating
and returning an error message. Without this heuristic for context-free types, the algorithm would
run forever in the context-free benchmarks. Because our coverage-checking algorithm is sound
(Thm. 5.1), it returns True Neg. for all cases of uncovered sequential compositions.

7 Related Work
Model-guide compatibility in programmable inference. Lee et al. [30] are one of the first to develop

static analyses for the model-guide compatibility (i.e., the model and guide have the same set of
random variables in all execution paths) in programmable Bayesian inference. Trace types [31]
characterize the space of possible execution traces. If the model and guide have equal trace types,
they are guaranteed to satisfy (mutual) absolute continuity. Trace types can handle programs where
execution paths may yield different sets of random variables. However, trace types do not support
general (i.e., support-altering and deterministic) branching and recursion, but only stochastic ones.
To address this limitation, Wang et al. [52] design a coroutine-based framework where models
and guides communicate by passing messages as prescribed by guide types. Li et al. [32] study
automatic generation of guide programs for deep amortized inference. They extend trace types [31]
with powerful tree structures and checkpoints for recording branch conditions, thereby enabling
expressive constructs such general branching, recursion, and variable reordering.
Our work considers sequential compositions of guides where each guide can choose between

drawing fresh samples and reusing old samples. This is a more general setting than most of the
aforementioned prior works [30–32, 52]. While trace types [31] offer a combinator for sequential
composition and their guide programs can take previous traces as input, their approach does
not support recursion or general branching. Our work verifies model-guide support match of
sequentially composed guides with rich control-flow structures by combining novel type system
techniques (§3.3 and §4) with an efficient coverage-checking algorithm (§5.3). Tab. 3 summarizes
the comparison between the prior and present works on verifying the model-guide compatibility.

PPL verification. Tassarotti and Tristan [45] develop a formally verified compiler ProbCompCert
for a fragment of the Stan PPL [6]. Instead of verifying PPL implementations, we focus on the
verification of programmable inference where guide coroutines are sequentially composed.

Session types. Guide types are inspired by session types. Originally proposed by Honda [23],
session types describe communication protocols of message-passing concurrent programs [5, 43,
49, 51]. Context-free session types [47] extend regular session types with sequential composition.
Nested session types [13] extend session types with prenex polymorphism. Type-equality checking
of context-free types is impractical due to it being EXPTIME-hard [27]. To make context-free
types practical, Padovani [36, 37] proposes a type-inference algorithm that leverages user-provided

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:27

code annotations. Almeida et al. [1] implement a type-equality checking algorithm for context-
free session types. Parameterized algebraic protocols [35] adopt the nominal and iso-recursive
interpretation of context-free and nested session types, thereby achieving linear-time type checking.

Although guide types build on session types, they have a key difference. For guide programs to
be sensible, guide types must have finite norms, while session types may have infinite norms. This
difference allows guide types to admit practical type-equality checking algorithms (§4).

We could reuse the type-equality checking algorithm for context-free session types by Almeida
et al. [1] because context-free types (with possibly infinite norms) are a generalization of guide
types (with finite norms). However, because Almeida et al. [1] targets context-free session types, its
algorithm has a different design from the algorithm in Hirshfeld and Moller [22], which specifically
targets finite-norm context-free processes and is implemented in our prototype. Also, the worst-
case complexity of the algorithm by Almeida et al. [1] is theoretically unknown in the setting of
guide types. A key contribution of this article is to show that it is possible to decide structural
type equality of guide types in polynomial time, and we do not intend to argue that a particular
type-equality checking algorithm is superior to others.

Composable probabilistic inference. Many PPLs support rich compositional frameworks for pro-
grammable probabilistic inference [3, 4, 12, 24, 44, 50], including custom proposals for MCMC.
These works do not study the problem of verifying or guaranteeing the correctness of custom
user-written proposals (i.e., model-guide compatibility), which is the central focus of our work.

8 Conclusion
This article has presented a coroutine-based programmable inference framework for sequential
compositions of guide programs where each guide can access and reuse old samples. By translating
guide types to context-free processes with finite norms, we show that the structural type equality of
guide types is decidable in polynomial time. This enables efficient type inference and type-equality
checking between the model and guides, which is a key soundness ingredient for the multiple-block
MH (BMH) algorithm. We also present a coverage-checking algorithm that verifies that sequentially
composed guides freshly samples all random variables, another key soundness ingredient of BMH.
We have implemented and evaluated a type-inference algorithm with structural type equality and
a coverage-checking algorithm, demonstrating their expressiveness and practicality.

Data-Availability Statement
The artifact [39] for this paper is available at doi:10.5281/zenodo.12669572.

Acknowledgments
The authors wish to thank the anonymous referees for their valuable comments and helpful
suggestions. This material is based upon work supported by the National Science Foundation
under Grant Nos. 2311983, 2007784, and 1845514. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References
[1] Bernardo Almeida, Andreia Mordido, and Vasco T. Vasconcelos. 2020. Deciding the Bisimilarity of Context-Free Session

Types. In Proceeding of the 26th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, Armin Biere and David Parker (Eds.). Springer, Cham, 39–56. https://doi.org/10.1007/978-3-030-45237-7_3

[2] Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva (Eds.). 2020. Foundations of Probabilistic Programming. Cam-
bridge University Press, Cambridge, UK. https://doi.org/10.1017/9781108770750

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

https://doi.org/10.5281/zenodo.12669572
https://doi.org/10.1007/978-3-030-45237-7_3
https://doi.org/10.1017/9781108770750

308:28 Pham et al.

[3] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman. 2019. Pyro: Deep Universal Probabilistic Programming.
Journal of Machine Learning Research 20, 1 (Jan. 2019), 973–978.

[4] Keith A. Bonawitz. 2008. Composable Probabilistic Inference with Blaise. Ph. D. Dissertation. Massachusetts Institute of
Technology. https://dspace.mit.edu/handle/1721.1/41887

[5] Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In Proceedings of the 21st
International Conference on Concurrency Theory. Springer, Berlin, Heidelberg, 222–236. https://doi.org/10.1007/978-3-
642-15375-4_16

[6] Bob Carpenter, AndrewGelman, MatthewD. Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,
Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A Probabilistic Programming Language. J. Statistical Softw. 76 (Jan.
2017), 1–32. Issue 1. https://doi.org/10.18637/jss.v076.i01

[7] Nick Chater, Joshua B. Tenenbaum, and Alan Yuille. 2006. Probabilistic Models of Cognition: Conceptual Foundations.
Trends in Cognitive Sciences 10, 7 (July 2006), 287–291. https://doi.org/10.1016/j.tics.2006.05.007

[8] Siddhartha Chib. 2001. Markov Chain Monte Carlo Methods: Computation and Inference. In Handbook of Econometrics,
James J. Heckman and Edward Leamer (Eds.). Vol. 5. Elsevier, Amsterdam, Chapter 57, 3569–3649. https://doi.org/10.
1016/S1573-4412(01)05010-3

[9] Siddhartha Chib and Edward Greenberg. 1995. Understanding the Metropolis-Hastings Algorithm. The American
Statistician 49, 4 (1995), 327–335. http://www.jstor.org/stable/2684568

[10] S. Christensen, H. Huttel, and C. Stirling. 1995. Bisimulation Equivalence Is Decidable for All Context-Free Processes.
Information and Computation 121, 2 (Sept. 1995), 143–148. https://doi.org/10.1006/inco.1995.1129

[11] Marco F. Cusumano-Towner. 2020. Gen: A High-Level Programming Platform for Probabilistic Inference. Ph. D. Disserta-
tion. Massachusetts Institute of Technology.

[12] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka. 2019. Gen: A General-
Purpose Probabilistic Programming System with Programmable Inference. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. Association for Computing Machinery, New York,
NY, USA, 221–236. https://doi.org/10.1145/3314221.3314642

[13] Ankush Das, Henry DeYoung, Andreia Mordido, and Frank Pfenning. 2021. Nested Session Types. In Proceedings of the
30th European Symposium on Programming. Springer, Cham, 178–206. https://doi.org/10.1007/978-3-030-72019-3_7

[14] Joost Engelfriet. 2015. Tree Automata and Tree Grammars. arXiv:1510.02036 [cs]
[15] Simon Gay and Malcolm Hole. 2005. Subtyping for Session Types in the Pi Calculus. Acta Informatica 42, 2 (Nov. 2005),

191–225. https://doi.org/10.1007/s00236-005-0177-z
[16] Ferenc Gécseg and Magnus Steinby. 2015. Tree Automata. arXiv:1509.06233 [cs]
[17] Alan E. Gelfand. 2000. Gibbs Sampling. J. Amer. Statist. Assoc. 95, 452 (Dec. 2000), 1300–1304. https://doi.org/10.1080/

01621459.2000.10474335
[18] Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith A. Bonawitz, and Joshua B. Tenenbaum. 2008. Church: A

Language for Generative Models. In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence. AUAI
Press, Arlington, VA, USA, 220–229. https://doi.org/10.5555/3023476.3023503

[19] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. 2014. Probabilistic Programming.
In Future of Software Engineering Proceedings. Association for Computing Machinery, New York, NY, USA, 161–181.
https://doi.org/10.1145/2593882.2593900

[20] W. K. Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 (April
1970), 97–109. Issue 1. https://doi.org/10.1093/biomet/57.1.97

[21] Y. Hirshfeld, M. Jerrum, and F. Moller. 1994. A Polynomial-Time Algorithm for Deciding Equivalence of Normed
Context-Free Processes. In Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Press,
Piscantaway, NJ, USA, 623–631. https://doi.org/10.1109/SFCS.1994.365729

[22] Yoram Hirshfeld and Faron Moller. 1994. A Fast Algorithm for Deciding Bisimilarity of Normed Context-Free
Processes. In Proceedings of the 5th International Conference on Concurrency Theory. Springer, Berlin, Heidelberg, 48–63.
https://doi.org/10.1007/978-3-540-48654-1_5

[23] Kohei Honda. 1993. Types for Dyadic Interaction. In Proceedings of the 4th International Conference on Concurrency
Theory. Springer, Berlin, Heidelberg, 509–523. https://doi.org/10.1007/3-540-57208-2_35

[24] Daniel E Huang. 2017. On Programming Languages for Probabilistic Modeling. Ph. D. Dissertation. Harvard University.
https://dash.harvard.edu/handle/1/40046525

[25] Petr Jancar. 2013. Bisimilarity on Basic Process Algebra Is in 2-ExpTime (an Explicit Proof). Logical Methods in
Computer Science 9, 1 (March 2013), 10. https://doi.org/10.2168/LMCS-9(1:10)2013

[26] F. Jelinek, J. D. Lafferty, and R. L. Mercer. 1992. Basic Methods of Probabilistic Context Free Grammars. In Speech
Recognition and Understanding, Pietro Laface and Renato Mori (Eds.). Springer, Berlin, Heidelberg, 345–360. https:
//doi.org/10.1007/978-3-642-76626-8_35

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

https://dspace.mit.edu/handle/1721.1/41887
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1016/j.tics.2006.05.007
https://doi.org/10.1016/S1573-4412(01)05010-3
https://doi.org/10.1016/S1573-4412(01)05010-3
http://www.jstor.org/stable/2684568
https://doi.org/10.1006/inco.1995.1129
https://doi.org/10.1145/3314221.3314642
https://doi.org/10.1007/978-3-030-72019-3_7
https://arxiv.org/abs/1510.02036
https://doi.org/10.1007/s00236-005-0177-z
https://arxiv.org/abs/1509.06233
https://doi.org/10.1080/01621459.2000.10474335
https://doi.org/10.1080/01621459.2000.10474335
https://doi.org/10.5555/3023476.3023503
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1109/SFCS.1994.365729
https://doi.org/10.1007/978-3-540-48654-1_5
https://doi.org/10.1007/3-540-57208-2_35
https://dash.harvard.edu/handle/1/40046525
https://doi.org/10.2168/LMCS-9(1:10)2013
https://doi.org/10.1007/978-3-642-76626-8_35
https://doi.org/10.1007/978-3-642-76626-8_35

Programmable MCMC with Soundly Composed Guide Programs 308:29

[27] Stefan Kiefer. 2013. BPA Bisimilarity Is EXPTIME-hard. Inform. Process. Lett. 113, 4 (Feb. 2013), 101–106. https:
//doi.org/10.1016/j.ipl.2012.12.004

[28] Tejas D. Kulkarni, Pushmeet Kohli, Joshua B. Tenenbaum, and Vikash K. Mansinghka. 2015. Picture: A Probabilistic
Programming Language for Scene Perception. In Proceedings of the 2015 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE Press, Piscantaway, NJ, USA, 4390–4399. https://doi.org/10.1109/CVPR.2015.7299068

[29] Sławomir Lasota and Wojciech Rytter. 2006. Faster Algorithm for Bisimulation Equivalence of Normed Context-Free
Processes. In Proceedings of the 31st International Symposium onMathematical Foundations of Computer Science. Springer,
Berlin, Heidelberg, 646–657. https://doi.org/10.1007/11821069_56

[30] Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. 2019. Towards Verified Stochastic Variational Inference
for Probabilistic Programs. Proceedings of the ACM on Programming Languages 4, POPL, Article 16 (December 2019),
33 pages. https://doi.org/10.1145/3371084

[31] Alexander K. Lew, Marco F. Cusumano-Towner, Benjamin Sherman, Michael Carbin, and Vikash K. Mansinghka. 2019.
Trace Types and Denotational Semantics for Sound Programmable Inference in Probabilistic Languages. Proceedings of
the ACM on Programming Languages 4, POPL, Article 19 (December 2019), 32 pages. https://doi.org/10.1145/3371087

[32] Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang. 2023. Type-Preserving, Dependence-Aware Guide Generation
for Sound, Effective Amortized Probabilistic Inference. Proceedings of the ACM on Programming Languages 7, POPL,
Article 50 (January 2023), 29 pages. https://doi.org/10.1145/3571243

[33] Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and Martin C. Rinard. 2018.
Probabilistic Programming with Programmable Inference. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation. Association for Computing Machinery, New York, NY, USA,
603–616. https://doi.org/10.1145/3192366.3192409

[34] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. 1953.
Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 21, 6 (June 1953),
1087–1092. https://doi.org/10.1063/1.1699114

[35] Andreia Mordido, Janek Spaderna, Peter Thiemann, and Vasco T. Vasconcelos. 2023. Parameterized Algebraic Protocols.
Proceedings of the ACM on Programming Languages 7, PLDI, Article 163 (June 2023), 25 pages. https://doi.org/10.1145/
3591277

[36] Luca Padovani. 2017. Context-Free Session Type Inference. In Proceedings of the 26th European Symposium on
Programming. Springer, Berlin, Heidelberg, 804–830. https://doi.org/10.1007/978-3-662-54434-1_30

[37] Luca Padovani. 2019. Context-Free Session Type Inference. ACM Transactions on Programming Languages and Systems
41, 2, Article 9 (March 2019), 37 pages. https://doi.org/10.1145/3229062

[38] Sungwoo Park, Frank Pfenning, and Sebastian Thrun. 2005. A Probabilistic Language based upon Sampling Functions.
In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Association for
Computing Machinery, New York, NY, USA, 171–182. https://doi.org/10.1145/1040305.1040320

[39] Long Pham, Di Wang, Feras Saad, and Jan Hoffmann. 2024. Artifact for Programmable MCMC with Soundly Composed
Guide Programs. Zenodo. https://doi.org/10.5281/zenodo.12669572

[40] Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press, Cambridge, MA.
[41] Gareth O. Roberts and Jeffrey S. Rosenthal. 2006. Harris Recurrence of Metropolis-within-Gibbs and Trans-

Dimensional Markov Chains. The Annals of Applied Probability 16, 4 (Nov. 2006), 2123–2139. https://doi.org/
10.1214/105051606000000510

[42] Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, and Vikash K. Mansinghka. 2019.
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling. Proceedings of the ACM on Programming
Languages 3, POPL (January 2019), 32 pages. https://doi.org/10.1145/3290350

[43] Alceste Scalas and Nobuko Yoshida. 2019. Less Is More: Multiparty Session Types Revisited. Proceedings of the ACM on
Programming Languages 3, POPL, Article 30 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290343

[44] Sam Stites, Heiko Zimmermann, Hao Wu, Eli Sennesh, and Jan-Willem van de Meent. 2021. Learning Proposals for
Probabilistic Programs with Inference Combinators. In Proceedings of the 37th Conference on Uncertainty in Artificial
Intelligence. PMLR, Norfolk, MA, USA, 1056–1066.

[45] Joseph Tassarotti and Jean-Baptiste Tristan. 2023. Verified Density Compilation for a Probabilistic Programming
Language. Proceedings of the ACM on Programming Languages 7, PLDI, Article 131 (June 2023), 22 pages. https:
//doi.org/10.1145/3591245

[46] Pyro Development Team. 2023. Getting Started With Pyro: Tutorials, How-to Guides and Examples — Pyro Tutorials
1.8.6 Documentation. https://pyro.ai/examples/index.html

[47] Peter Thiemann and Vasco T. Vasconcelos. 2016. Context-Free Session Types. In Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming. Association for Computing Machinery, New York, NY, USA,
462–475. https://doi.org/10.1145/2951913.2951926

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

https://doi.org/10.1016/j.ipl.2012.12.004
https://doi.org/10.1016/j.ipl.2012.12.004
https://doi.org/10.1109/CVPR.2015.7299068
https://doi.org/10.1007/11821069_56
https://doi.org/10.1145/3371084
https://doi.org/10.1145/3371087
https://doi.org/10.1145/3571243
https://doi.org/10.1145/3192366.3192409
https://doi.org/10.1063/1.1699114
https://doi.org/10.1145/3591277
https://doi.org/10.1145/3591277
https://doi.org/10.1007/978-3-662-54434-1_30
https://doi.org/10.1145/3229062
https://doi.org/10.1145/1040305.1040320
https://doi.org/10.5281/zenodo.12669572
https://doi.org/10.1214/105051606000000510
https://doi.org/10.1214/105051606000000510
https://doi.org/10.1145/3290350
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3591245
https://doi.org/10.1145/3591245
https://pyro.ai/examples/index.html
https://doi.org/10.1145/2951913.2951926

308:30 Pham et al.

[48] Luke Tierney. 1994. Markov Chains for Exploring Posterior Distributions. The Annals of Statistics 22 (Dec. 1994),
1701–1728. Issue 4. https://doi.org/10.1214/aos/1176325750

[49] Bernardo Toninho, Luís Caires, and Frank Pfenning. 2013. Higher-Order Processes, Functions, and Sessions: A Monadic
Integration. In Proceedings of the 22nd European Symposium on Programming. Springer, Berlin, Heidelberg, 350–369.
https://doi.org/10.1007/978-3-642-37036-6_20

[50] Dustin Tran. 2020. Probabilistic Programming for Deep Learning. Ph. D. Dissertation. Columbia University. https:
//doi.org/10.7916/d8-95c9-sj96

[51] Philip Wadler. 2012. Propositions as Sessions. In Proceedings of the 17th ACM SIGPLAN international Conference on
Functional Programming. Association for Computing Machinery, New York, NY, USA, 273–286. https://doi.org/10.
1145/2364527.2364568

[52] Di Wang, Jan Hoffmann, and Thomas Reps. 2021. Sound Probabilistic Inference via Guide Types. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. Association for
Computing Machinery, New York, NY, USA, 788–803. https://doi.org/10.1145/3453483.3454077

[53] FrankWood, JanWillem van deMeent, and Vikash K.Mansinghka. 2014. ANewApproach to Probabilistic Programming
Inference. In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics. PMLR, Norfolk, MA,
USA, 1024–1032.

[54] Frank Wood, Jan-Willem van de Meent, David Tolpin, Tuan Anh Le, Brooks Paige, Yuav Perov, Tom Rainforth, and
Hongseok Yang. 2023. The Anglican Probabilistic Programming System. https://probprog.github.io/anglican/examples/
index.html

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

https://doi.org/10.1214/aos/1176325750
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.7916/d8-95c9-sj96
https://doi.org/10.7916/d8-95c9-sj96
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1145/3453483.3454077
https://probprog.github.io/anglican/examples/index.html
https://probprog.github.io/anglican/examples/index.html

Programmable MCMC with Soundly Composed Guide Programs 308:31

E:Ret
𝑉 ⊢ 𝑒 ⇓ 𝑣

𝑉 ; Σ;𝑄 ⊢ ret(𝑒) ⇓1 𝑣 ; Σ;𝑄

E:Bnd
𝑉 ; Σ1;𝑄1 ⊢𝑚1 ⇓𝑤1 𝑣1; Σ2;𝑄2 𝑉 [𝑥 ↦→ 𝑣1]; Σ2;𝑄2 ⊢𝑚2 ⇓𝑤2 𝑣2; Σ3;𝑄3

𝑉 ; Σ1;𝑄1 ⊢ bnd(𝑚1;𝑥 .𝑚2) ⇓𝑤1 ·𝑤2 𝑣2; Σ3;𝑄3

E:Call
fix(𝑓 .𝑥 𝑓 .𝑚𝑓) ∈ D 𝑉 ⊢ 𝑒 ⇓ 𝑣1 [𝑥 𝑓 ↦→ 𝑣1]; Σ1;𝑄1 ⊢𝑚𝑓 ⇓𝑤 𝑣2; Σ2;𝑄2

𝑉 ; Σ1;𝑄1 ⊢ call(𝑓 ; 𝑒) ⇓𝑤 𝑣2; Σ2;𝑄2

Fig. 10. Rules for the operational semantics of guide programs that are independent of what channels are

present.

A Supplementary Material for the Core Calculus
A.1 Operational Semantics
We formally define operations on a queue 𝑄 that is used in a judgment of big-step operational
semantics Eqn. (3.2). If guide 𝐺𝑖 draws a sample and sends it to model𝑀 , we update the queue by

pop(𝑄) ≔

𝑎 : 𝑛 + 1 if 𝑄 = (𝑎 : 𝑛)
𝑎 : 1 if 𝑄 = (𝑏 : [])
𝑏 : [𝑣2, . . . , 𝑣𝑛] if 𝑄 = (𝑏 : [𝑣1, . . . , 𝑣𝑛]).

Conversely, when guide𝐺𝑖 receives an old sample from the previous guide, we update the queue by

push(𝑄, 𝑣) ≔

𝑎 : 𝑛 − 1 if 𝑄 = (𝑎 : 𝑛) with 𝑛 > 0
𝑏 : [𝑣] if 𝑄 = (𝑎 : 0)
𝑏 : ℓ ++ [𝑣] if 𝑄 = (𝑏 : ℓ) .

Finally, to work out what old sample corresponds to the current step in guide 𝐺𝑖 , we compute

get(𝑄, 𝜎𝑏) ≔


𝜎𝑏 [0] if 𝑄 = (𝑎 : 0) or 𝑄 = (𝑏 : [])
𝜎𝑏 [𝑛] if 𝑄 = (𝑎 : 𝑛)
𝑣1 if 𝑄 = (𝑏 : [𝑣1, . . . , 𝑣𝑛])
error otherwise.

In the last line of get(𝑄, 𝜎𝑏), when the queue 𝑄 stores no elements but we still demand an element
from the queue 𝑄 , we return a runtime error. Alternatively, we could return a fresh sample drawn
from a built-in sampler. This is the strategy adopted by Gen when a custom transition kernel
changes the control flow and needs to resample for those random variables that did not exist in the
old trace.
The rules for the big-step operational semantics of guide programs are given in Figs. 10 to 13.

Fig. 10 displays those rules that are independent of what channels are present. Fig. 11 displays
those rules that require both channels 𝑎 and 𝑏 to be present. Fig. 12 displays those rules where
channel 𝑎 is present but channel 𝑏 is absent, while Fig. 13 displays those rules where channel 𝑎 is
absent but channel 𝑏 is present.

In the rule E:Cond:Neq (Fig. 11), the fourth premise is a judgment that only uses channel 𝑎, and
the fifth premise is a judgment that only uses channel 𝑏. These judgments, where one channel is
absent, are defined in Figs. 10, 12 and 13. The fourth premise of the rule E:Cond:Neq runs command
𝑚𝑖,2 with initial trace 𝜎𝑎,1 on channel 𝑎, without access to the old trace 𝜎𝑏,1 on channel 𝑏. At the
same time, the fifth premise of E:Cond:Neq runs command𝑚 𝑗,1 with initial trace 𝜎𝑏,1 on channel 𝑏
and initial queue 𝑄1 in order to determine the continuation trace 𝜎𝑏,2 and continuation queue 𝑄2,
both of which are used in the conclusion of the rule E:Cond:Neq.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

308:32 Pham et al.

E:Sample
𝑉 ⊢ 𝑒 ⇓ 𝑑 𝑣 ∈ 𝑑.support 𝑤 = 𝑑.density(𝑣)

𝑉 ; {𝑎 : (val(𝑣) :: 𝜎𝑎), 𝑏 : 𝜎𝑏 };𝑄 ⊢
sample(𝑒) ⇓𝑤 𝑣 ; {𝑎 : 𝜎𝑎, 𝑏 : 𝜎𝑏 }; pop(𝑄)

E:Sample:Keep
𝑣 = get(𝑄, 𝜎𝑏)

𝑉 ; {𝑎 : (val(𝑣) :: 𝜎𝑎), 𝑏 : 𝜎𝑏 };𝑄 ⊢
sample(keep) ⇓1 𝑣 ; {𝑎 : 𝜎𝑎, 𝑏 : 𝜎𝑏 }; pop(𝑄)

𝑉 ; {𝑎 : 𝜎𝑎, 𝑏 : (val(𝑣) :: 𝜎𝑏)};𝑄 ⊢ oldsample ⇓1 𝑣 ; {𝑎 : 𝜎𝑎, 𝑏 : 𝜎𝑏 }; push(𝑄, 𝑣)
E:OldSample

𝑣𝑎 = 𝑣𝑏 𝑖 = ite(𝑣𝑎, 1, 2) 𝑉 ; {𝑎 : 𝜎𝑎,1, 𝑏 : 𝜎𝑏,1};𝑄1 ⊢𝑚𝑖,1 ⇓𝑤 𝑣 ; {𝑎 : 𝜎𝑎,2, 𝑏 : 𝜎𝑏,2};𝑄2

𝑉 ; {𝑎 : (dir (𝑣𝑎) :: 𝜎𝑎,1), 𝑏 : (dir (𝑣𝑏) :: 𝜎𝑏,1)};𝑄1 ⊢
cond(★; oldcond(𝑚1,1;𝑚1,2); oldcond(𝑚2,1;𝑚2,2)) ⇓𝑤 𝑣 ; {𝑎 : 𝜎𝑎,2, 𝑏 : 𝜎𝑏,2};𝑄2

E:Cond:Eq

𝑣𝑎 ≠ 𝑣𝑏 𝑖 = ite(𝑣𝑎, 1, 2)
𝑗 = ite(𝑣𝑏 , 1, 2) 𝑉 ; {𝑎 : 𝜎𝑎,1}; · ⊢𝑚𝑖,2 ⇓𝑤 𝑣 ; {𝑎 : 𝜎𝑎,2}; · 𝑉 ; {𝑏 : 𝜎𝑏,1};𝑄1 ⊢𝑚 𝑗,1 ⇓_ _; {𝑏 : 𝜎𝑏,2};𝑄2

𝑉 ; {𝑎 : (dir (𝑣𝑎) :: 𝜎𝑎,1), 𝑏 : (dir (𝑣𝑏) :: 𝜎𝑏,1)};𝑄1 ⊢
cond(★; oldcond(𝑚1,1;𝑚1,2); oldcond(𝑚2,1;𝑚2,2)) ⇓𝑤 𝑣 ; {𝑎 : 𝜎𝑎,2, 𝑏 : 𝜎𝑏,2};𝑄2

E:Cond:Neq

Fig. 11. Rules for the operational semantics of guide programs when both channels 𝑎 and 𝑏 are present.

In rule E:Cond:Neq, the fourth premise is a judgment that only uses channel 𝑎, and the fifth premise is a

judgment that only uses channel 𝑏. These judgments, where one channel is absent, are defined in Figs. 10, 12

and 13.

𝑉 ⊢ 𝑒 ⇓ 𝑑 𝑣 ∈ 𝑑.support 𝑤 = 𝑑.density(𝑣)
𝑉 ; {𝑎 : (val(𝑣) :: 𝜎𝑎)}; · ⊢ sample(𝑒) ⇓𝑤 𝑣 ; {𝑎 : 𝜎𝑎}; ·

E:Sample:A

𝑖 = ite(𝑣𝑎, 1, 2) 𝑉 ; {𝑎 : 𝜎𝑎,1}; · ⊢𝑚𝑖 ⇓𝑤 𝑣 ; {𝑎 : 𝜎𝑎,2}; ·
𝑉 ; {𝑎 : dir (𝑣𝑎) :: 𝜎𝑎,1}; · ⊢ cond(★;𝑚1;𝑚2) ⇓𝑤 𝑣 ; {𝑎 : 𝜎𝑎,2}; ·

E:Cond:A

Fig. 12. Rules for the operational semantics of guide programs when channel 𝑎 is present but channel 𝑏 is

absent. This form of judgments is used when the guide program does not have access to the old trace on

channel 𝑏.

E:Sample:B

𝑉 ; {𝑏 : 𝜎𝑏 };𝑄 ⊢ sample(𝑒) ⇓_ _; {𝑏 : 𝜎𝑏 }; pop(𝑄)

E:Sample:Keep:B

𝑉 ; {𝑏 : 𝜎𝑏 };𝑄 ⊢ sample(keep) ⇓_ _; {𝑏 : 𝜎𝑏 }; pop(𝑄)

𝑉 ; {𝑏 : val(𝑣) :: 𝜎𝑏 };𝑄 ⊢ oldcond(𝑚1;𝑚2) ⇓_ _; {𝑏 : 𝜎𝑏 }; push(𝑄, 𝑣)
E:OldSample:B

𝑖 = ite(𝑣𝑏 , 1, 2) 𝑉 ; {𝑏 : 𝜎𝑏,1};𝑄1 ⊢𝑚𝑖,1 ⇓_ _; {𝑏 : 𝜎𝑏,2};𝑄2

𝑉 ; {𝑏 : dir (𝑣𝑏) :: 𝜎𝑏,1};𝑄1 ⊢ cond(★; oldcond(𝑚1,1;𝑚1,2); oldcond(𝑚2,1;𝑚2,2)) ⇓_ _; {𝑏 : 𝜎𝑏,2};𝑄2
E:Cond:B

Fig. 13. Rules for the operational semantics of guide programs when channel 𝑎 is absent but channel 𝑏 is

present. This form of judgments is used to figure out the continuation trace on channel 𝑏 and continuation

queue 𝑄 , which become available to the guide once temporary divergence ends after a conditional command.

A.2 Type System
Fig. 14 displays key typing rules defining the typing judgment (3.8).

The rule T:Bnd is for the sequential composition of commands𝑚1 and𝑚2, where the continuation
guide types after running𝑚1 are used as initial guide types of𝑚2. The rule T:Sample states that, if 𝑒
has a distribution type dist(𝜏), then the initial guide type for channel 𝑎 is 𝜏𝑐 ∧𝐴, where subscript 𝑐
indicates that the random variable is freshly sampled. The rule T:Sample:Keep states that the initial

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:33

T:Ret
Γ ⊢ 𝑒 : 𝜏

Γ;Δ ⊢ ret(𝑒) .∼. 𝜏 ;Δ

T:Bnd
Γ;Δ1 ⊢𝑚1

.∼. 𝜏1;Δ2 Γ, 𝑥 : 𝜏1;Δ2 ⊢𝑚2
.∼. 𝜏2;Δ3

Γ;Δ1 ⊢ bnd(𝑚1;𝑥 .𝑚2) .∼. 𝜏2;Δ3

T:Sample
Γ ⊢ 𝑒 : dist(𝜏)

Γ;𝑎 : 𝜏𝑐 ∧𝐴,𝑏 : 𝐵 ⊢ sample(𝑒) .∼. 𝜏 ;𝑎 : 𝐴,𝑏 : 𝐵

T:Sample:Keep

Γ;𝑎 : 𝜏𝑢 ∧𝐴,𝑏 : 𝐵 ⊢ sample(keep) .∼. 𝜏 ;𝑎 : 𝐴,𝑏 : 𝐵

T:OldSample

Γ;𝑎 : 𝐴,𝑏 : 𝜏 ∧ 𝐵 ⊢ oldsample .∼. 𝜏 ;𝑎 : 𝐴,𝑏 : 𝐵

T:Call
(𝑓 : 𝜏1 ; 𝜏2;𝑎𝑖 : 𝑇𝑎𝑖) ∈ D Γ ⊢ 𝑒 : 𝜏1

Γ;𝑎𝑖 : 𝑇𝑎𝑖 [𝐴𝑖] ⊢ call(𝑓 ; 𝑒) .∼. 𝜏2;𝑎𝑖 : 𝐴𝑖

T:Cond
Γ;𝑎 : 𝐴1, 𝑏 : 𝐵1 ⊢𝑚1,1

.∼. 𝜏 ;𝑎 : 𝐴,𝑏 : 𝐵 Γ;𝑎 : 𝐴′1 ⊢𝑚1,2
.∼. 𝜏 ;𝑎 : 𝐴

Γ;𝑎 : 𝐴2, 𝑏 : 𝐵2 ⊢𝑚2,1
.∼. 𝜏 ;𝑎 : 𝐴,𝑏 : 𝐵 Γ;𝑎 : 𝐴′2 ⊢𝑚2,2

.∼. 𝜏 ;𝑎 : 𝐴 |𝐴1 | = |𝐴′1 | |𝐴2 | = |𝐴′2 |
Γ;𝑎 : 𝐴1 N𝐴2, 𝑏 : 𝐵1 � 𝐵2 ⊢ cond(★; oldcond(𝑚1,1;𝑚1,2); oldcond(𝑚2,1;𝑚2,2)) .∼. 𝜏 ;𝑎 : 𝐴,𝑏 : 𝐵

T:Sample:A
Γ ⊢ 𝑒 : dist(𝜏)

Γ;𝑎 : 𝜏𝑐 ∧𝐴 ⊢ sample(𝑒) .∼. 𝜏 ;𝑎 : 𝐴

T:Cond:A
Γ;𝑎 : 𝐴1 ⊢𝑚1

.∼. 𝜏 ;𝑎 : 𝐴 Γ;𝑎 : 𝐴2 ⊢𝑚2
.∼. 𝜏 ;𝑎 : 𝐴

Γ;𝑎 : 𝐴1 N𝐴2 ⊢ cond(★;𝑚1;𝑚2) .∼. 𝜏 ;𝑎 : 𝐴

Fig. 14. Typing rules for guide programs. In rule T:Cond, where channels 𝑎 and 𝑏 are both present, the second

and fourth premises use a form of judgments where only channel 𝑎 is present but channel 𝑏 is not. To justify

such judgments, we cannot use rules T:Sample, T:Sample:Keep, T:OldSample, and T:Cond because they

require channel 𝑏 to be accessible to the guide. Instead, we can only use the remaining rules to justify a

judgment that does not have channel 𝑏.

guide type for channel 𝑎 before running sample(keep) is obtained by prepending the continuation
guide type 𝐴 with a coverage-annotated type 𝜏𝑢 , where subscript 𝑢 indicates that the random
variable is copied from the old trace.

The rule T:Cond is for a doubly nested conditional command when both channels 𝑎 and 𝑏 are
present. The second and fourth premises of the rule T:Cond use a form of judgments where only
channel 𝑎 is present but channel 𝑏 is absent. This happens when the guide does not have access
to the old trace on channel 𝑏. To justify such judgments, the command cannot contain constructs
sample(keep) and oldsample because the typing rules T:Sample:Keep and T:OldSample require
channel 𝑏 to be present.
The rule T:Sample:A is used for a sampling command when channel 𝑎 is present but channel

𝑏 is absent. Likewise, the rule T:Cond:A is used for a conditional command when channel 𝑎 is
present but channel 𝑏 is absent. In addition to these two rules, the rules T:Ret, T:Bnd, T:Call are
independent of what channels are present. Hence, we can use these rules to justify a judgment
where only channel 𝑎 is present.

A.3 Type Safety
We present two type-safety results of an individual guide program: soundness and normalization.
Let 𝑣 : 𝜏 be a typing judgment of a value 𝑣 and 𝜎 : 𝐴 be a typing judgment of trace 𝜎 . They are both
straightforward to define, so we elide their definitions. Thm. A.1 states that, if a guide program is
well-typed, so are its output value and traces.

Theorem A.1 (Soundness). Consider a well-typed guide program𝑚 such that Γ;𝑎 : 𝐴1, 𝑏 : 𝐵1 ⊢
𝑚 .∼. 𝜏 ;𝑎 : 𝐴2, 𝑏 : 𝐵2. Suppose 𝑉 ; {𝑎 : 𝜎𝑎,1, 𝑏 : 𝜎𝑏,1};𝑄1 ⊢ 𝑚 ⇓𝑤 𝑣 ; {𝑎 : 𝜎𝑎,2, 𝑏 : 𝜎𝑏,2};𝑄2. Then 𝑣 : 𝜏

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

308:34 Pham et al.

holds, that is, 𝑣 is typable with type 𝜏 . Also, if 𝜎𝑎,2 : 𝐴2 and 𝜎𝑏,2 : 𝐵2 hold, then 𝜎𝑎,1 : 𝐴1 and 𝜎𝑏,1 : 𝐵1
hold.

Proof. For both claims, the proof goes by induction on the judgment 𝑉 ; {𝑎 : 𝜎𝑎,1, 𝑏 : 𝜎𝑏,1};𝑄1 ⊢
𝑚 ⇓𝑤 𝑣 ; {𝑎 : 𝜎𝑎,2, 𝑏 : 𝜎𝑏,2};𝑄2. Each case uses the inversion of the typing judgment Γ;𝑎 : 𝐴1, 𝑏 : 𝐵1 ⊢
𝑚 .∼. 𝜏 ;𝑎 : 𝐴2, 𝑏 : 𝐵2, which is possible because all typing rules are syntax-directed. □

Given a well-typed guide program𝑚, it is guaranteed to normalize as long as we impose two
additional conditions. Firstly, before running𝑚, the initial guide types 𝑎 : 𝐴1 and 𝑏 : 𝐵1 must be
identical, except that they may differ by a prefix of functional types. The initial queue 𝑄1 should
correctly capture the difference between 𝐴1 and 𝐵1. Otherwise, if the queue were not consistent
with guide types 𝐴1 and 𝐵1, guide program𝑚 might try to pop the empty queue, resulting in a
runtime error. Defn. A.2 formalizes this condition.

Definition A.2 (Invariant for guide types and queues). Given guide types 𝑎 : 𝐴 and 𝑏 : 𝐵 and a
queue 𝑄 , they are said to satisfy the invariant if one of the following is true.

• 𝑄 ≡ 𝑎 : 𝑛, and (𝜏1 ∧ · · · 𝜏𝑛 ∧𝐴) = 𝐵 [N/�] for some 𝜏1, . . . , 𝜏𝑛 .
• 𝑄 ≡ 𝑏 : [𝑣1, . . . , 𝑣𝑛] such that 𝑣𝑖 : 𝜏𝑖 (𝑖 = 1, . . . , 𝑛), and 𝐴[�/N] = (𝜏1 ∧ · · · 𝜏𝑛 ∧ 𝐵).

Here, 𝐵 [N/�] refers to the result of replacing every occurrence of � inside 𝐵 with N.

Secondly, Defn. A.3 defines guarded procedures: they take actions (e.g., sending a sample) before
calling another procedure. Without this condition, procedure 𝑓 might repeatedly call procedures
without making progress in communication with other coroutines.

Definition A.3 (Guarded procedures). A procedure fix(𝑓 .𝑥 .𝑚) ∈ D𝐺 is said to be guarded if if𝑚
sends or receives a message on a channel before𝑚 calls another procedure.

Thm. A.4 states that, if a guide program𝑚 is well-typed and satisfies the two conditions Defn. A.2
and Defn. A.3, then𝑚 runs and terminates successfully without causing communication errors
(e.g., deadlocks) and runtime errors (e.g., popping the empty queue).

Theorem A.4 (Normalization). Consider a well-typed guide program𝑚 such that Γ;𝑎 : 𝐴1, 𝑏 :
𝐵1 ⊢ 𝑚 .∼. 𝜏 ;𝑎 : 𝐴2, 𝑏 : 𝐵2. Suppose a well-typed environment 𝑉 : Γ and an initial trace 𝜎𝑎,1 : 𝐴1
for channel 𝑎. Assume that the guide types 𝐴1, 𝐵1, and queue 𝑄1 satisfy the invariant Defn. A.2 and
that all procedures 𝑓 are guarded (Defn. A.3). Then there exist an initial trace 𝜎𝑏,1 : 𝐵1 for channel 𝑏,
positive density𝑤 > 0, value 𝑣 , continuation traces 𝜎𝑎,2 : 𝐴2 and 𝜎𝑏,2 : 𝐵2, and continuation queue 𝑄2
such that 𝑉 ; {𝑎 : 𝜎𝑎,1, 𝑏 : 𝜎𝑏,1};𝑄1 ⊢𝑚 ⇓𝑤 𝑣 ; {𝑎 : 𝜎𝑎,2, 𝑏 : 𝜎𝑏,2};𝑄2. Additionally, continuation guide
types 𝐴2 𝐵2 and continuation queue 𝑄2 satisfy the invariant Defn. A.2.

Proof. The proof goes by lexicographic induction on the (finite) length of initial trace 𝜎𝑎,1 on
channel 𝑎 (outer induction) and the typing judgment Γ;𝑎 : 𝐴1, 𝑏 : 𝐵1 ⊢𝑚 .∼. 𝜏 ;𝑎 : 𝐴2, 𝑏 : 𝐵2 (inner
induction). The length of initial trace 𝜎𝑎,1 has a higher priority in the lexicographic induction. This
becomes important in the inductive case of command bnd(𝑚1;𝑥 .𝑚2), where the length of initial
trace 𝜎𝑎,1 for command𝑚1 remains the same, but the typing judgment gets strictly smaller to a
judgment of command𝑚1. In the inductive case of a procedure call call(𝑓 ; 𝑒), the length of initial
trace 𝜎𝑎,1 strictly decreases thanks to the assumption of guarded procedures (Defn. A.3): procedures
must send or receive messages before calling other procedures (and hence strictly reduce the length
of initial trace 𝜎𝑎,1). Meanwhile, the typing judgment in the inductive of procedure call call(𝑓 ; 𝑒)
may grow larger. □

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:35

A.4 Swapping Current and Old Traces
In this section, we prove that swapping the current and old traces of a well-typed guide program
keeps the density positive. This is sensible because if the guide draws a fresh sample, it can draw
any sample 𝑣 , including the old sample in the old trace. Also, if the guide reuses the old sample
by running command sample(keep), the current and old traces will have the same sample for the
random variable. Therefore, in either case, we can safely swap the current and old traces.
Defn. A.5 defines a trace 𝜎 augmented with a queue 𝑄 (denoted by 𝑄 + 𝜎). If 𝜎𝑏 is a trace on

channel 𝑏, the augmented trace 𝑄 + 𝜎𝑏 denotes a trace containing all samples from the previous
guide (or the very first trace supplied to the first guide) from the current random variable of channel
𝑎.

Definition A.5 (Traces augmented with queues). Let 𝜎𝑏 = [val(𝑣1), . . . , val(𝑣𝑛)] +𝜎𝑏,cont be a trace
where the first 𝑛 ≥ 0 messages are of the form val(·) (as opposed to a branch selection of the form
dir (·)) and 𝜎𝑏,cont is a continuation trace. Here, the operator + concatenates two traces. If queue
𝑄 at runtime has the form 𝑏 : [𝑢1, . . . , 𝑢𝑚] (i.e., the guide has received old samples 𝑢1, . . . , 𝑢𝑚 on
channel 𝑏 from the previous guide, but has not sent them to the model via channel 𝑎), then the
trace 𝜎𝑏 augmented with the queue 𝑄 is defined as

𝑄 + 𝜎𝑏 ≔ [val(𝑢1), . . . , val(𝑢𝑚)] + 𝜎𝑏 . (A.1)
Conversely, if 𝑄 has the form 𝑎 : 𝑚 with𝑚 ≤ 𝑛 (i.e., channel 𝑎 is 𝑛 steps ahead of channel 𝑏), then
the trace 𝜎𝑏 augmented with the queue 𝑄 is defined as

𝑄 + 𝜎𝑏 ≔ [val(𝑣𝑚+1), . . . , val(𝑣𝑛)] + 𝜎𝑏,cont . (A.2)
That is, the first𝑚 ≤ 𝑛 messages of 𝜎𝑏 are deleted. In both cases, 𝑄 + 𝜎𝑏 denotes a trace containing
all samples from the previous guide (or the very first trace supplied to the first guide) from the
current random variable of channel 𝑎 between the model and guide.

Theorem A.6 (Swap current and old traces). Consider a well-typed guide program𝑚 such that
Γ;𝑎 : 𝐴1, 𝑏 : 𝐵1 ⊢𝑚 .∼. 𝜏 ;𝑎 : 𝐴2, 𝑏 : 𝐵2. Assume that the guide types 𝐴1, 𝐵1, and queue 𝑄1 satisfy the
invariant Defn. A.2 and that all procedures are guarded (Defn. A.3). Given a well-typed environment
𝑉 : Γ, initial traces 𝜎𝑎,1 : 𝐴1 and 𝜎𝑏,1 : 𝐵1 for channels 𝑎 and 𝑏, respectively, suppose we have

𝑉 ; {𝑎 : 𝜎𝑎,1, 𝑏 : 𝜎𝑏,1};𝑄1 ⊢𝑚 ⇓𝑤1 𝑣1; {𝑎 : 𝜎𝑎,2, 𝑏 : 𝜎𝑏,2};𝑄2, (A.3)
where𝑤1 > 0 is a positive density, 𝑣1 is an output value, traces 𝜎𝑎,2 : 𝐴2 and 𝜎𝑏,2 : 𝐵2 are continuation
traces for channels 𝑎 and 𝑏, respectively, and𝑄2 is a continuation queue. Then for some positive density
𝑤2 > 0 and output value 𝑣2, we have

𝑉 ; {𝑎 : 𝑄1 + 𝜎𝑏,1, 𝑏 : 𝜎 ′𝑎,1};𝑄 ′1 ⊢𝑚 ⇓𝑤2 𝑣2; {𝑎 : 𝑄2 + 𝜎𝑏,2, 𝑏 : 𝜎 ′𝑎,2};𝑄 ′2, (A.4)
where trace 𝜎𝑎,1 can be split into queue 𝑄1 and trace 𝜎 ′𝑎,1 : 𝐵1 such that 𝜎𝑎,1 = 𝑄 ′1 + 𝜎 ′𝑎,1, and likewise
trace 𝜎𝑎,2 can be split into queue 𝑄2 and trace 𝜎 ′𝑎,2 : 𝐵2 such that 𝜎𝑎,2 = 𝑄 ′2 + 𝜎 ′𝑎,2.

Proof. The proof goes by induction on the judgment (A.3). □

Corollary A.7. Consider a well-typed guide program𝑚 such that ·;𝑎 : 𝐴,𝑏 : 𝐵 ⊢𝑚 .∼. 𝜏 ;𝑎 : 111, 𝑏 : 111,
where 𝐵 = |𝐴| [�/N]. Here, |𝐴| denotes the result of removing all coverage annotations from guide
type 𝐴, and |𝐴| [�/N] denotes the result of replacing every occurrence of N in |𝐴| with �. Assume
that all procedures are guarded (Defn. A.3). Given initial traces 𝜎𝑎 : 𝐴 and 𝜎𝑏 : 𝐵 for channels 𝑎 and 𝑏,
respectively, suppose we have

·; {𝑎 : 𝜎𝑎, 𝑏 : 𝜎𝑏};𝑄empty ⊢𝑚 ⇓𝑤1 𝑣1; {𝑎 : [], 𝑏 : []};𝑄empty, (A.5)
where𝑤1 > 0 is a positive density and 𝑣1 is an output value. Then for some positive density𝑤2 > 0
and output value 𝑣2, we have

·; {𝑎 : 𝜎𝑏, 𝑏 : 𝜎𝑎};𝑄empty ⊢𝑚 ⇓𝑤2 𝑣2; {𝑎 : [], 𝑏 : []};𝑄empty . (A.6)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

308:36 Pham et al.

C:Ret

A ⊢ ret(𝑒) : (𝑋,A)

C:Bnd
A1 ⊢𝑚1 : (𝐴1,𝑋 ,A2) A2 ⊢𝑚2 : (𝐴2,𝑋 ,A3)
A1 ⊢ bnd(𝑚1;𝑥.𝑚2) : (𝐴1,𝑋 [𝐴2,𝑋 /𝑋],A3)

C:Call
fix(𝑓 .𝑥 .𝑚) ∈ D𝐺 A ⊢𝑚[𝑒/𝑥] : (𝐴𝑋 , B)

A ⊢ call(𝑓 ;𝑒) : (𝑇 [𝑋], B)

C:Sample:Any
∀𝑖 ∈ I.𝜏𝑖 = 𝜏𝑐

{𝜏𝑖 ∧𝐴𝑖 | 𝑖 ∈ I} ⊢ sample(_) : (𝜏𝑐 ∧𝑋, {𝐴𝑖 | 𝑖 ∈ I})

C:Sample:Dist
𝑒 : dist(𝜏)

{𝜏𝑖 ∧𝐴𝑖 | 𝑖 ∈ I} ⊢
sample(𝑒) : (𝜏𝑐 ∧𝑋, {𝐴𝑖 | 𝑖 ∈ I})

C:Sample:Keep
∃𝑖 ∈ I.𝜏𝑖 = 𝜏𝑢

{𝜏𝑖 ∧𝐴𝑖 | 𝑖 ∈ I} ⊢
sample(keep) : (𝜏𝑢 ∧𝑋, {𝐴𝑖 | 𝑖 ∈ I})

C:OldSample

A ⊢ oldsample : (𝑋,A)

C:Cond
{𝐴𝑖,1 | 𝑖 ∈ I} ⊢𝑚1,1 : (𝐴1,𝑋 , B1) {𝐴𝑖,2 | 𝑖 ∈ I} ⊢𝑚2,1 : (𝐴2,𝑋 , B2)

{𝐴𝑖,1 N𝐴𝑖,2 | 𝑖 ∈ I} ⊢ cond(★; oldcond(𝑚1,1;𝑚1,2) ; oldcond(𝑚2,1;𝑚2,2)) : (𝐴1,𝑋 N𝐴2,𝑋 , B1 ∪ B2)

Fig. 15. Rules for bisimulating guide types alongside commands in the coverage-checking algorithm.

Proof. It follows from instantiating Thm. A.6 with a well-typed command𝑚 where ·;𝑎 : 𝐴,𝑏 :
𝐵 ⊢𝑚 .∼. 𝜏 ;𝑎 : 111, 𝑏 : 111 and 𝐵 = |𝐴| [�/N]. □

Corollary A.8 (Positive probability of accepting proposed traces). Consider a well-typed
guide program 𝐺 such that ·;𝑎 : 𝐴,𝑏 : 𝐵 ⊢ 𝐺 .∼. 𝜏 ;𝑎 : 111, 𝑏 : 111, where 𝐵 = |𝐴| [�/N]. Assume that all
procedures are guarded (Defn. A.3).
Fix an initial trace 𝜎0 : 𝐵 such that model𝑀 can generate it with a positive density𝑤𝑀,0 > 0 and

output value 𝑣𝑀,0:
·;𝑎 : 𝜎0 ⊢ 𝑀 ⇓𝑤𝑀,0 𝑣𝑀 ;𝑎 : [] . (A.7)

Suppose guide 𝐺 proposes a new trace 𝜎∗1 with a positive density𝑤𝐺,1 > 0 and output value 𝑣𝐺,1:
·; {𝑎 : 𝜎∗1 , 𝑏 : 𝜎0};𝑄empty ⊢ 𝐺 ⇓𝑤𝐺,1 𝑣𝐺,1; {𝑎 : [], 𝑏 : []};𝑄empty, (A.8)

where the proposed trace 𝜎∗1 can be generated by model𝑀 with positive density𝑤𝑀,1 > 0 and output
value 𝑣𝑀,0:

·;𝑎 : 𝜎∗1 ⊢ 𝑀 ⇓𝑤𝑀,1 𝑣𝑀,1;𝑎 : [] . (A.9)
Also, suppose we have for density ˆ𝑤𝐺,1 and output value ˆ𝑣𝐺,1

·; {𝑎 : 𝜎0, 𝑏 : 𝜎∗1 };𝑄empty ⊢ 𝐺 ⇓ ˆ𝑤𝐺,1 ˆ𝑣𝐺,1; {𝑎 : [], 𝑏 : []};𝑄empty, (A.10)
where the roles of traces 𝜎0 and 𝜎∗1 are swapped. The MH update accepts the proposed trace 𝜎∗1 with
probability min{1, 𝑟1}, where ratio 𝑟1 is defined in Eqn. (3.7):

𝑟1 ≔
𝑤𝑀,1

𝑤𝑀,0
· 𝑤̂𝐺,1

𝑤𝐺,1
. (A.11)

Because 𝑟1 > 0, the MH update has a positive probability of accepting the propose trace 𝜎∗1 .

Proof. In Eqn. (A.11), densities 𝑤𝑀,1, 𝑤𝑀,0, and 𝑤𝐺,1 are all positive. Furthermore, it follows
from Cor. A.7 that density ˆ𝑤𝐺,1 in Eqn. (A.10), where the current and old traces are swapped, is
positive. As a result, all four densities in Eqn. (A.11) are positive, making 𝑟1 positive. Therefore, the
MH update has a positive probability of accepting trace 𝜎∗1 . □

B Supplementary Material on Coverage Checking
B.1 Coverage-Checking Algorithm
Fig. 15 displays the full rules for bisimulating guide types alongside commands.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:37

[] : 111
𝜎𝑎 : 𝐴

★ :: 𝜎𝑎 : 𝜏𝑢 ∧𝐴
𝑣 : 𝜏 𝜎𝑎 : 𝐴

val(𝑣) :: 𝜎𝑎 : 𝜏𝑐 ∧𝐴
𝑖 = ite(𝑣, 1, 2) 𝜎𝑎 : 𝐴𝑖

dir (𝑣) :: 𝜎𝑎 : 𝐴1 N𝐴2

𝑇 [𝑋] ≔ 𝐴𝑋 𝜎𝑎 : 𝑇 [𝐵/𝑋]
𝜎𝑎 : 𝑇 [𝐵]

Fig. 16. Typing rules for partially filled traces.

B.2 Soundness of the Coverage-Checking Algorithm
In this section, we prove the soundness of the coverage-checking algorithm (§5.3).

A partially filled trace is a trace where some samples are arbitrary (denoted by ★). The symbol ★
means the corresponding random variable has not been freshly sampled by a guide yet. In order for
a sequential composition of guides𝐺1, . . . ,𝐺𝑛 to satisfy the model-guide support match, if we feed
an initial trace consisting only of ★ (i.e., arbitrary initial samples) and branch selections dir (𝑣) for
𝑣 ∈ {true, false}, all ★’s must be replaced by desirable samples by the time we obtain the final trace
𝜎𝑛 . The typing judgment of a partially filled trace is

𝜎 : 𝐴, (B.1)
where 𝜎 is a partially filled trace and 𝐴 is a labeled guide type. Judgment (B.1) is defined by Fig. 16.

Theorem B.1 (Correctness of bisimulating guide types alongside commands). Consider a
well-typed command𝑚 such that

Γ;𝑎 : 𝐴1, 𝑏 : 𝐵1 ⊢𝑚 .∼. 𝜏 ;𝑎 : 𝐴2, 𝑏 : 𝐵2, (B.2)
where either 𝐴1 or 𝐵1 is ahead of the other by 𝑛 ∈ N samples. Assume a set A1 = {𝐴1,old, 𝐴2,old, . . .}
of coverage-annotated guide type, where all coverage-annotated guide types 𝐴𝑖,old are equal to 𝐴1
(ignoring their coverage annotations); i.e, ∀𝑖 .|𝐴𝑖,old | = |𝐴1 |. Suppose the coverage-checking algorithm
returns A1 ⊢𝑚 : (𝐴merged,A2), where 𝐴merged is the output coverage-annotated guide type obtained
by bisimulating all types in A1 alongside command𝑚, and A2 is the set of continuation coverage-
annotated guide types after the bisimulation. As usual, we assume all procedures are guarded (Defn. A.3).
Now fix a partially filled trace 𝜎𝑎,1 : 𝐴merged [𝐴cont/𝑋] for an arbitrary continuation coverage-

annotated guide type 𝐴cont. Trace 𝜎𝑎,1 is the desirable trace for channel 𝑎 that we want command𝑚
to generate with a positive density. Also, fix an arbitrary coverage-annotated guide type 𝐴old ∈ A1,
an arbitrary branching structure in 𝐴old, and a well-typed evaluation context 𝑉 . Then there exist
a partially filled old trace 𝜎1,𝑏 for channel 𝑏, initial queue 𝑄1 (such that 𝑄1 + 𝜎𝑏,1 : 𝐴old and this
augmented trace (Defn. A.5) follows the branching structure of 𝐴old we just fixed), positive density
𝑤 > 0, output value 𝑣 , continuation traces 𝜎𝑎,2 : 𝐴cont, continuation trace 𝜎𝑏,2, and continuation queue
𝑄2 (such that 𝑄2 + 𝜎𝑏,2 is typable with some coverage-annotated guide type from A2) such that

𝑉 ; {𝑎 : 𝜎𝑎,1, 𝑏 : 𝜎𝑏,1};𝑄1 ⊢𝑚 ⇓𝑤 𝑣 ; {𝑎 : 𝜎𝑎,2, 𝑏 : 𝜎𝑏,2};𝑄2. (B.3)
Here, the content of initial queue 𝑄1 is determined by the number 𝑛 of messages by which initial guide
types 𝐴1 and 𝐵1 differ. Likewise, the content of continuation queue 𝑄2 is determined by the number of
messages by which continuation guide types 𝐴2 and 𝐵2 differ.

Proof. The proof goes by lexicographic induction on the length of desirable trace 𝜎𝑎,1, the
length of the old trace 𝜎𝑏,1, and the typing derivation Γ;𝑎 : 𝐴1, 𝑏 : 𝐵1 ⊢ 𝑚 .∼. 𝜏 ;𝑎 : 𝐴2, 𝑏 : 𝐵2 (in
the order from outer to inner inductions). Each case involves the inversion of a rule used in the
coverage-checking algorithm (Fig. 9), which is possible because the rules for the algorithm are all
syntax-directed. In the inductive case of command bnd(𝑚1;𝑥 .𝑚2), the desirable trace 𝜎𝑎,1 and old
trace 𝜎𝑏,1 remain identical, but the typing judgment becomes strictly smaller to a judgment for

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

308:38 Pham et al.

𝑚1. In the inductive case of a procedure call call(𝑓 ; 𝑒), the desirable trace 𝜎𝑎,1 or old trace 𝜎𝑏,1 gets
strictly smaller thanks to the assumption of procedures being guarded: they must send or receive a
message before calling other procedures. □

Corollary (Thm. 5.1). Consider a sequential composition of well-typed guides𝐺1, . . . ,𝐺𝑛 . Channel
𝑎𝑖 (𝑖 = 1, . . . , 𝑛) connects guide 𝐺𝑖 and model𝑀 , and channel 𝑏𝑖 (𝑖 = 1, . . . , 𝑛) connects guides 𝐺𝑖 and
𝐺𝑖−1. For each 𝑖 = 1, . . . , 𝑛, suppose

·;𝑎𝑖 : 𝐴𝑖 , 𝑏 : 𝐵 ⊢ 𝐺𝑖
.∼. 𝜏𝑖 ;𝑎𝑖 : 111, 𝑏𝑖 : 111, (B.4)

where 𝐴𝑖 is a coverage-annotated guide type and 𝐵 is an unannotated guide type such that ∀1 ≤ 𝑖 ≤
𝑛. 𝐵 = |𝐴𝑖 |. Let 𝐵0 be a coverage-annotated guide type obtained from 𝐵 by annotating all random
variables with subscript 𝑢. For each 𝑖 = 1, . . . , 𝑛, suppose

{𝐵𝑖−1} ⊢ 𝐺𝑖 : (𝐵𝑖,𝑋 , {111}) 𝐵𝑖 ≔ 𝐵𝑖,𝑋 [111/𝑋] . (B.5)
If 𝐵𝑛 is fully covered (i.e., all random variables are marked with subscript 𝑐), then the Markov chain
induced by the sequential composition of guides 𝐺1, . . . ,𝐺𝑛 is irreducible.

Proof. The proof goes by the successive application of Thm. B.1 to each guide𝐺𝑖 (𝑖 = 1, . . . , 𝑛).
Given an arbitrary initial trace 𝜎0 (which model 𝑀 can generate with a positive density) and a
desirable final trace 𝜎𝑛 (which model 𝑀 can also generate with a positive density), our goal is
to show that there exist intermediate traces 𝜎𝑖 : 𝐵 (𝑖 = 2, . . . , 𝑛 − 1), positive densities 𝑤𝐺,𝑖 > 0
(𝑖 = 1, . . . , 𝑛), and output values 𝑣𝐺,𝑖 (𝑖 = 1, . . . , 𝑛) such that

·; {𝑎𝑖 : 𝜎𝑖 , 𝑏𝑖 : 𝜎𝑖−1};𝑄empty ⊢ 𝐺𝑖 ⇓𝑤𝐺,𝑖 𝑣𝐺,𝑖 ; {𝑎 : [], 𝑏 : []};𝑄empty (𝑖 = 1, . . . , 𝑛) (B.6)
holds. Let us first consider the case of 𝑖 = 1. Let 𝜎0 : 𝐵0 be a partially filled trace that will be fed to
the first guide𝐺1, where all concrete samples val(𝑣) are replaced with★. Here, coverage-annotated
guide type 𝐵0 is fully uncovered, so typing judgment 𝜎0 : 𝐵0 is valid. It follows from Thm. B.1 that,
for any desirable partially filled trace 𝜎1 on channel 𝑎, we have

·; {𝑎1 : 𝜎1, 𝑏1 : 𝜎0};𝑄empty ⊢ 𝐺1 ⇓𝑤𝐺,1 𝑣𝐺,1; {𝑎 : [], 𝑏 : []};𝑄empty (B.7)
for positive density𝑤𝐺,1 > 0 and output value 𝑣𝐺,1. Repeatedly applying Thm. B.1 to subsequent
guides, we obtain from the last guide 𝐺𝑛

·; {𝑎𝑛 : 𝜎𝑛, 𝑏𝑛 : 𝜎𝑛−1};𝑄empty ⊢ 𝐺𝑛 ⇓𝑤𝐺,𝑛 𝑣𝐺,𝑛 ; {𝑎 : [], 𝑏 : []};𝑄empty (B.8)
for positive density 𝑤𝐺,𝑛 > 0 and output value 𝑣𝐺,𝑛 . Here, 𝜎𝑛 : 𝐵𝑛 is a partially filled trace of
coverage-annotated guide type 𝐵𝑛 . Because 𝐵𝑛 is known to be fully covered, 𝜎𝑛 can be set to any
desirable final trace (subject to the branch selections specified by model𝑀).

Each guide𝐺𝑖 (𝑖 = 1, . . . , 𝑛) is followed by the MH update that accepts the proposed trace 𝜎𝑖 with
the probability min{1, 𝑟𝑖 }, where ratio 𝑟𝑖 is defined in Eqn. (3.7). It follows from Cor. A.8 that the
ratio 𝑟𝑖 (Eqn. (3.7)) is positive, meaning that the MH has a positive probability of accepting the
proposed trace 𝜎𝑖 generated by guide 𝐺𝑖 . Consequently, the Markov chain induced by sequentially
composed 𝐺1, . . . ,𝐺𝑛 has a positive probability of jumping from the initial trace 𝜎0 : 𝐵0 to any
desirable trace 𝜎𝑛 : 𝐵𝑛 via intermediate traces 𝜎1, . . . , 𝜎𝑛−1. We therefore conclude that the Markov
chain is irreducible. □

Received 2024-04-05; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

	Abstract
	1 Introduction
	2 Overview
	2.1 Bayesian Inference, Markov-Chain Monte Carlo, and Block Metropolis-Hastings
	2.2 Programmable Block MH via Guide-Typed Coroutines
	2.3 Coverage-Annotated Guide Types for Soundly Composed Guides
	2.4 A Surface Syntax for Automatic Generation of BMH Guides

	3 Core Calculus for Coroutine-Based Programmable Inference
	3.1 Syntax
	3.2 Operational Semantics
	3.3 Type System
	3.4 Translation of the Lightweight Surface Syntax to the Core Calculus

	4 Type-Equality Checking
	4.1 Context-Free Guide Types
	4.2 Bisimilarity Checking

	5 Coverage Checking
	5.1 Problem Statement
	5.2 Technical Challenge
	5.3 Coverage-Checking Algorithm

	6 Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Supplementary Material for the Core Calculus
	A.1 Operational Semantics
	A.2 Type System
	A.3 Type Safety
	A.4 Swapping Current and Old Traces

	B Supplementary Material on Coverage Checking
	B.1 Coverage-Checking Algorithm
	B.2 Soundness of the Coverage-Checking Algorithm

