Programmable MCMC with Soundly Composed Guide Programs

Long Pham¹, Di Wang², Feras Saad¹, Jan Hoffmann¹

¹Carnegie Mellon University

²Peking University

OOPSLA 2024

October 25, 2024

Probabilistic Programming

- 1. Probabilistic model $p(\theta, y)$ as a (model) program
- \cdot θ : latent variable
- y: observed variable
- 2. Posterior distribution by B

on by Bayes' rule:
$$
p(\theta, y = D)
$$
 Integral over the
 $p(\theta | y = D) = \frac{p(\theta, y = D)}{(\theta - D) \cdot \theta}$ space of θ is

May contain conditional

statements and loops

 $\int p(\boldsymbol{\theta}, \boldsymbol{y} = D) d\boldsymbol{\theta}$ difficult

Sampling-based inference algorithms (e.g., Markov-chain Monte Carlo)

Proposal distribution

\n
$$
\theta_1^* \sim q(\theta | \theta_0)
$$
\n
$$
\theta_1 := \begin{cases} \theta_1^* & \text{some probability} \\ \theta_0 & \text{otherwise} \end{cases}
$$

Model program probabilistically generates a polynomial degree and coefficients

```
d \sim Categorical(0.3, 0.5, 0.2)
c_0 \sim Normal(...)
if d \geq 1 then
  c_1 \sim Normal(...)
  if d \geq 2 then
     c_2 \sim Normal(...)
y \sim polynomial_{\vec{c}}(x)
```
1. Polynomial degree d

2. Constant coefficient c_0

The set of random variables depends on the execution path

3. Generate coefficients c_1 and c_2 if necessary

4. Generate

observed variable y

Model program probabilistically generates a polynomial degree and coefficients

```
d \sim Categorical(0.3, 0.5, 0.2)
c_0 \sim Normal(...)
if d \geq 1 then
  c_1 \sim Normal(...)
  if d \geq 2 then
    c_2 \sim Normal(...)
y \sim polynomial_{\vec{c}}(x)
```


Model program probabilistically generates a polynomial degree and coefficients

```
d \sim Categorical(0.3, 0.5, 0.2)
c_0 \sim Normal(...)
if d \geq 1 then
  c_1 \sim Normal(...)
  if d \geq 2 then
     c_2 \sim Normal(...)
y \sim polynomial_{\vec{c}}(x)
```


Model program probabilistically generates a polynomial degree and coefficients

```
d \sim Categorical(0.3, 0.5, 0.2)
c_0 \sim Normal(...)
if d \geq 1 then
  c_1 \sim Normal(...)
  if d \geq 2 then
    c_2 \sim Normal(...)
```


Programmable Inference: Guide Programs

Traditional PPLs use a generic inference algorithm, but it may perform poorly

Modern PPLs (e.g., Gen and Pyro) support programmable inference where the inference algorithm is customized by a user-written guide program

It customizes a proposal distribution for MCMC

Programmable Inference: BMH

Multiple-Block Metropolis-Hastings (BMH) samples r.v.s block by block

- Split latent variables into four blocks: d , c_0 , c_1 , c_2
- Specify proposal distributions for each block

Guide programs

Contribution: Soundness Verification of BMH

Sufficient soundness condition of BMH

Model and guide must have the same support

Unsound BMH: replace a normal distribution with a gamma distribution

Guide is unable to sample negative values for coefficient c_2

Develop a type-based framework for verifying that the model and guide have the same support in BMH

Outline

Motivation for soundness verification of BMH

- ❑Formulation of BMH
- ❑Polynomial-time decidability of structural guide-type equality
- ❑Coverage checking
- ❑Implementation and evaluation

Contribution 1: Formulation of BMH

BMH is a sequential composition of guide programs

Contribution 1: Formulation of BMH

BMH is a sequential composition of guide program

The communication protocol is described by a guide type:

Branch selection

\n
$$
\mathbb{N}_3 \wedge \mathbb{R} \wedge \& \left\{ \mathbb{R} \wedge \& \left\{ \mathbb{R} \wedge 1 \right\} \right\}
$$
\nDistribution type of d

\nOutput

\n
$$
\left\{ \mathbb{R} \wedge \& \left\{ \mathbb{R} \wedge 1 \right\} \right\}
$$

Contribution 2: Structural Guide-Type Equality

Soundness ingredient

The model and guide must have an equal guide type

Context-free guide types

Types indexed by type parameters $T[X] := \mathbb{R} \wedge (X \& T[T[X]])$ The recursive call is a sequential composition of T Run a protocol T , followed by a continuation X

Guide types may have infinite state spaces: $T[X]$, $T[T[X]]$, $T[T[X]]$, ...

Contribution 2: Structural Guide-Type Equality

Structural guide-type equality is decidable in polynomial time

1. Translate guide types to context-free processes -

Context-free grammars viewed as processes

2. Require the norms (i.e., #of steps to reach termination) to be finite

3. Theorem (Hirshfeld et al., 1994). Bisimilarity of two context-free processes (i.e., structural guide-type equality) with finite norms is decidable in polynomial time.

Outline

- ❑Motivation for soundness verification of BMH
- ❑Formulation of BMH
- ❑Polynomial-time decidability of structural guide-type equality
- ❑Coverage checking
- ❑Implementation and evaluation

Contribution 3: Coverage Checking of Composed Guides

Every random variable must be covered (i.e., sampled freshly by at least one guide) on any execution path

Problem statement of coverage checking

For an arbitrary initial trace σ_0 and final trace σ_B , do there exist intermediate traces σ_1 , …, σ_{R-1} such that σ_i can be generated from σ_{i-1} ($i = 1, ... B$)?

Contribution 3: Coverage Checking of Composed Guides

Coverage-annotated guide types $\mathbb{R}_u \wedge \& \{$ 1, $\mathbb{R}_c \wedge 1$ **Coverage-checking algorithm** Subscript u means the sample is reused $\left.\begin{array}{ccc}\end{array}\right$ $\left.\begin{array}{ccc}\end{array}\right$ Subscript c means the sample is freshly sampled

Starting with a fully uncovered guide type T_0 , we bisimulate a guide type T_{i-1} alongside G_i to update coverage annotations

Implementation and Evaluation

Type equality and inference

Type inference of some BMH benchmarks require structural guide-type equality

Coverage checking

- Effective in benchmarks with regular guide types (i.e., finite state spaces).
- It can return False Negative for benchmarks with infinitestate guide types

Conclusion

- 1. Formulated Multiple-Block Metropolis-Hastings (BMH) in guide-based programmable inference
- 2. Proved polynomial-time decidability of structural guide-type equality
- 3. Developed a coverage-checking algorithm for verifying that every random variable is freshly sampled at least once