Programmable MCMC with Soundly Composed Guide Programs

Long Pham¹, Di Wang², Feras Saad¹, Jan Hoffmann¹

¹Carnegie Mellon University

²Peking University

OOPSLA 2024

October 25, 2024

Probabilistic Programming

- 1. Probabilistic model $p(\theta, y)$ as a (model) program
- $\boldsymbol{\theta}$: latent variable
- y: observed variable
- 2. Posterior distribution by Bayes' rule:

$$p(\boldsymbol{\theta} \mid \boldsymbol{y} = D) = \frac{p(\boldsymbol{\theta}, \boldsymbol{y} = D)}{\int p(\boldsymbol{\theta}, \boldsymbol{y} = D) d\boldsymbol{\theta}}$$
 Integral over the space of $\boldsymbol{\theta}$ is difficult

May contain conditional

statements and loops

Sampling-based inference algorithms (e.g., Markov-chain Monte Carlo)

Proposal distribution

$$\boldsymbol{\theta}_{1}^{*} \sim q(\boldsymbol{\theta} \mid \boldsymbol{\theta}_{0})$$

 $\boldsymbol{\theta}_{1} \coloneqq \begin{cases} \boldsymbol{\theta}_{1}^{*} & \text{some probability} \\ \boldsymbol{\theta}_{0} & \text{otherwise} \end{cases}$

Model program probabilistically generates a polynomial degree and coefficients

```
d \sim \text{Categorical}(0.3, 0.5, 0.2)

c_0 \sim \text{Normal}(...)

if d \ge 1 then

c_1 \sim \text{Normal}(...)

if d \ge 2 then

c_2 \sim \text{Normal}(...)

y \sim \text{polynomial}_{\vec{c}}(x)
```

1. Polynomial degree d

2. Constant coefficient c_0

The set of random variables depends on the execution path

3. Generate coefficients c_1 and c_2 if necessary

4. Generate

observed variable y

Model program probabilistically generates a polynomial degree and coefficients

```
\begin{aligned} d &\sim \text{Categorical}(0.3, 0.5, 0.2) \\ c_0 &\sim \text{Normal}(...) \\ \text{if } d &\geq 1 \text{ then} \\ c_1 &\sim \text{Normal}(...) \\ \text{if } d &\geq 2 \text{ then} \\ c_2 &\sim \text{Normal}(...) \\ y &\sim \text{polynomial}_{\vec{c}}(x) \end{aligned}
```


Model program probabilistically generates a polynomial degree and coefficients

```
\begin{aligned} d &\sim \text{Categorical}(0.3, 0.5, 0.2) \\ c_0 &\sim \text{Normal}(...) \\ \text{if } d &\geq 1 \text{ then} \\ c_1 &\sim \text{Normal}(...) \\ \text{if } d &\geq 2 \text{ then} \\ c_2 &\sim \text{Normal}(...) \\ y &\sim \text{polynomial}_{\vec{c}}(x) \end{aligned}
```


Model program probabilistically generates a polynomial degree and coefficients

```
\begin{aligned} d &\sim \text{Categorical}(0.3, 0.5, 0.2) \\ c_0 &\sim \text{Normal}(...) \\ \text{if } d &\geq 1 \text{ then} \\ c_1 &\sim \text{Normal}(...) \\ \text{if } d &\geq 2 \text{ then} \\ c_2 &\sim \text{Normal}(...) \\ y &\sim \text{polynomial}_{\vec{c}}(x) \end{aligned}
```


Programmable Inference: Guide Programs

Traditional PPLs use a generic inference algorithm, but it may perform poorly

Modern PPLs (e.g., Gen and Pyro) support programmable inference where the inference algorithm is customized by a user-written guide program

It customizes a proposal distribution for MCMC

Programmable Inference: BMH

Multiple-Block Metropolis-Hastings (BMH) samples r.v.s block by block

- Split latent variables into four blocks: d, c_0, c_1, c_2
- Specify proposal distributions for each block

Guide programs

Contribution: Soundness Verification of BMH

Sufficient soundness condition of BMH

Model and guide must have the same support

Unsound BMH: replace a normal distribution with a gamma distribution

10

Our contribution

Guide is unable to sample negative values for coefficient c₂

Develop a type-based framework for verifying that the model and guide have the same support in BMH

Outline

Motivation for soundness verification of BMH

- Germulation of BMH
- Polynomial-time decidability of structural guide-type equality
- Coverage checking
- Implementation and evaluation

Contribution 1: Formulation of BMH

BMH is a sequential composition of guide programs

Contribution 1: Formulation of BMH

BMH is a sequential composition of guide program

The communication protocol is described by a guide type:

Branch selection
$$\begin{cases} 1, \\ N_3 \land \mathbb{R} \land \& \\ \mathbb{R} \land \& \begin{cases} 1, \\ \mathbb{R} \land \& \\ \mathbb{R} \land 1 \end{cases}$$

Distribution type of d

Contribution 2: Structural Guide-Type Equality

Soundness ingredient

The model and guide must have an equal guide type

Context-free guide types

Types indexed by type parameters $T[X] \coloneqq \mathbb{R} \land (X \& T[T[X]])$ Run a protocol *T*, followed by a continuation *X* The recursive call is a sequential composition of *T*

Guide types may have infinite state spaces: T[X], T[T[X]], T[T[T[X]]], ...

Contribution 2: Structural Guide-Type Equality

Structural guide-type equality is decidable in polynomial time

1. Translate guide types to context-free processes \lt

2. Require the norms (i.e., #of steps to reach termination) to be finite

3. Theorem (Hirshfeld et al., 1994). Bisimilarity of two context-free processes (i.e., structural guide-type equality) with finite norms is decidable in polynomial time.

Context-free grammars

viewed as processes

Outline

- Motivation for soundness verification of BMH
- **G**Formulation of BMH
- Polynomial-time decidability of structural guide-type equality
- Coverage checking
- Implementation and evaluation

Contribution 3: Coverage Checking of Composed Guides

Every random variable must be covered (i.e., sampled freshly by at least one guide) on any execution path

Problem statement of coverage checking

For an arbitrary initial trace σ_0 and final trace σ_B ,

do there exist intermediate traces σ_1 , ..., σ_{B-1} such that σ_i can be generated from σ_{i-1} (i = 1, ..., B)?

Contribution 3: Coverage Checking of Composed Guides

Starting with a fully uncovered guide type T_0 , we bisimulate a guide type T_{i-1} alongside G_i to update coverage annotations

Implementation and Evaluation

Table 1.	Experiment	results of guid	de-type inferer	ce and covera	age checking	of 28	benchmark	programs.

				Type Inference		Coverage Check		
Program	Description	Guide Type	LOC	Time (ms)	Prior Work	Match	Mismatch	Time (ms)
branching	Random control flow [Anglican]	Finite	46	1.33	1	True Pos.	True Neg.	0.46
coordination	Coordination game [Anglican]	Finite	24	0.19	1	True Pos.	True Neg.	0.34
drill	Oil wildcatter problem [Anglican]	Finite	56	0.17	1	True Pos.	True Neg.	0.37
ex-1	Ex. 1 [52]	Finite	42	1.31	1	True Pos.	True Neg.	0.46
gaussian	Gaussian with unknown means [Anglican]	Finite	20	0.16	1	True Pos.	True Neg.	0.46
gbm	Geometric Brownian motion [Anglican]	Finite	35	0.25	1	True Pos.	True Neg.	0.52
gda	Gaussian discriminant analysis [Anglican]	Finite	40	1.86	1	True Pos.	True Neg.	3.17
gmm	Gaussian mixture model [Anglican]	Finite	75	4.73	1	True Pos.	True Neg.	7.71
grw	Gaussian random walk [Anglican]	Finite	24	0.17	1	True Pos.	True Neg.	0.74
hmm	Hidden Markov model [Anglican]	Finite	76	2.56	1	True Pos.	True Neg.	7.21
kalman	Kalman filter [Anglican]	Finite	72	4.44	1	True Pos.	True Neg.	7.54
kalman-chaos	Kalman for chaotic attractors [Anglican]	Finite	114	5.86	1	True Pos.	True Neg.	5.68
lr	Bayesian linear regression [Anglican]	Finite	36	0.19	1	True Pos.	True Neg.	1.15
run-factory	Beta-binomial model [Anglican]	Finite	20	0.13	✓	True Pos.	True Neg.	0.61
scientists	Posterior estimation with Gaussians [54]	Finite	40	0.27	1	True Pos.	True Neg.	0.52
seq	Non-recursive sequence [52]	Finite	22	0.23	1	True Pos.	True Neg.	0.46
sprinkler	Bayesian network [Anglican]	Finite	26	0.14	1	True Pos.	True Neg.	0.43
user-behavior	Dishonest form filling [Anglican]	Finite	64	1.22	1	True Pos.	True Neg.	3.17
vae	Variational autoencoder [Pyro]	Finite	48	4.20	1	True Pos.	True Neg.	22.39
weight	Unreliable weight [Pyro]	Finite	18	0.26	1	True Pos.	True Neg.	0.70
aircraft	Aircraft detection [Anglican]	Regular	117	6.19	×	True Pos.	True Neg.	5.96
iter	Regular iteration [52]	Regular	47	2.01	×	True Pos.	True Neg.	0.54
marsaglia	Marsaglia algorithm [Anglican]	Regular	76	3.51	×	True Pos.	True Neg.	5.13
ptrace	Poisson trace [Anglican]	Regular	47	1.49	×	True Pos.	True Neg.	0.40
2		Context-Free	78	4.77	×	True Pos.	True Neg.	4.70
ex-2	EX. 2 [52]		93	15.48	×	False Neg.	True Neg.	3.26
ما ڈ ا ر م	Devilie iteration [50]	Context-Free	52	1.48	×	True Pos.	True Neg.	0.57
diter	Double iteration [52]		62	2.09	×	False Neg.	True Neg.	0.49
		Context-Free	242	879.53	×	True Pos.	True Neg.	4.71
gp-asi	Gaussian process DSL [52]		261	2487.91	×	False Neg.	True Neg.	4.59
		Context-Free	71	11.53	×	True Pos.	True Neg.	16.32
recur	Context-free recursion [52]		83	15.55	×	False Neg.	True Neg.	6.35

Type equality and inference

Type inference of some BMH benchmarks require structural guide-type equality

Coverage checking

- Effective in benchmarks with regular guide types (i.e., finite state spaces).
- It can return False Negative for benchmarks with infinitestate guide types

Conclusion

- 1. Formulated Multiple-Block Metropolis-Hastings (BMH) in guide-based programmable inference
- 2. Proved polynomial-time decidability of structural guide-type equality
- 3. Developed a coverage-checking algorithm for verifying that every random variable is freshly sampled at least once