
Typable Fragments of
Polynomial

Automatic Amortized Resource Analysis
Long Pham and Jan Hoffmann

Carnegie Mellon University

January 28th, 2021

1

AARA is a type-based resource analysis

Polynomial costs bounds

Time

Memory

Power
Programs

Type inference of
AARA

Automatic Amortized
Resource Analysis

2

Two questions about any type systems

1. Semantic characterization
of typable programs?

Untyped programs

Simply-typed λ-calculus

Extended polynomials

=

Untyped programs

System F

Hindley-Milner

2. Sufficient condition for
typability?

Example: Example:

3

First contribution: semantic characterization
of AARA

1. Input-output relations remain identical.
2. Cost bound is larger than or equal to the original

running time. 4

Polynomial-time untyped programs

Typable in AARA

Polynomial-time Turing machines

Second contribution: sufficient condition for
AARA’s typability

Polynomial-time untyped programs

Typable in AARA

Inherently
polynomial time

The sufficient condition should be
1. not identical to AARA
2. easy to understand

5

This talk

❑Motivation

❑Basic idea of AARA

❑Sufficient condition for AARA’s typability

❑Challenges in the typability proof

6

Semantic characterization of
AARA is in the paper

AARA uses the potential method

7

𝑠0 𝑠1 𝑠2

𝑠3𝑎 𝑠4𝑎

𝑠3𝑏 𝑠4𝑏 𝑠5𝑐

𝑠5𝑎

𝑠5𝑏

Upper cost
bound

Program state

Potential

AARA uses the potential method

Input list:

Output list:

8

A B C D

A A B B C C D D

A B C D A B C D A B C D D

A B C D D A B C D DC. . .

C C D DA A B B

AARA uses the potential method

. . .

Input list:

Output list:

9

A B C D

A A B B C C D D

A B C D A B C D A B C D D

C C D DA A B B

AARA: benefits and expressive power

10

Programs Multivariate polynomial cost bounds

Benefits:
1. Automatic type inference by LP solving
2. Precision by amortized analysis
3. Soundness
4. Certification in the form of type derivations

This talk

❑Motivation

❑Basic idea of AARA

❑Sufficient condition for AARA’s typability

❑Challenges in the typability proof

11

Inherently polynomial time: termination

1. Primitive recursion instead of general recursion.

2a. The program must be polynomial-time.

12

Polynomial time programs

Typable in AARA

Terminating programs

Inherently polynomial time: compositionality

2b. Every subexpression must be polynomial time.

13

Typable

Typable

Typable
Typable

Typable

Typable

Inherently polynomial time: primitive recursion

Primitive recursion has the form

14

Recursive result

If e0 and e1 are polynomial time, is e
always also polynomial time?

Question

Inherently polynomial time: primitive recursion

15

×2

Recursive result

Stepping function

×2 ×2 ×2 Exponential

Inherently polynomial time: primitive recursion

16

3. In a primitive recursion, the stepping function’s running time
is constant in 𝑧 .

×2

Recursive result

Stepping function

Inherently polynomial time: summary

17

1. Primitive recursion instead of general recursion.
2b. Every subexpression must be polynomial time.
3. In a primitive recursion, the stepping function’s running time is
constant in |𝑧|.

This talk

❑Motivation

❑Basic idea of AARA

❑Sufficient condition for AARA’s typability

❑Challenges in the typability proof

18

Naïve theorem is not compositional

19

𝑒 is inherently
polynomial time

Input
potential

Output
potential

Goal

𝑥

𝑒2𝑒1

Problem

We need a stronger theorem

20

𝑒 is inherently
polynomial time

Input
potential

Output
potential

New Goal

How do we find a loop invariant?

21

𝑒 is inherently
polynomial time

Input
potential

Output
potential

New Goal

Problem
Recursive result

Stepping function

How do we find a loop invariant?

22

Problem
Recursive result

Stepping function

𝑒1

𝑒0 𝑧1 𝑧2 𝑧3
𝑒1

𝑒1

Identical resource-
annotated types

Loop invariant

=

We need uniform resource annotations

23

Special case

𝑒1 runs in constant time in 𝑧 .

General case

𝑒 runs in constant time in 𝑣𝑖 .

Uniform resource-annotated types of YELLOW with respect to 𝑣1, … , 𝑣𝑛.

Contributions

1. Embedding of polynomial-time Turing machines in AARA

2. Definition of inherently polynomial time

3. Typability proof under two restrictions:
• Variable sharing

• Nested lists.

24

