Typable Fragments of Polynomial Automatic Amortized Resource Analysis

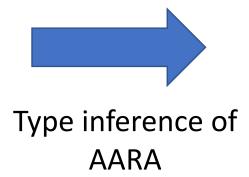
Long Pham and Jan Hoffmann
Carnegie Mellon University

January 28th, 2021

AARA is a type-based resource analysis

Automatic Amortized Resource Analysis

Programs



Polynomial costs bounds

Time

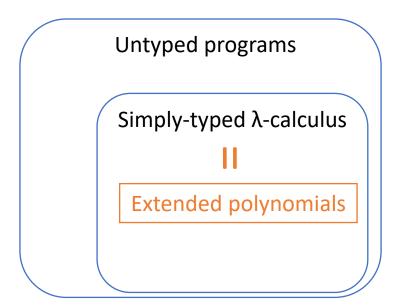
Memory

Power

Two questions about any type systems

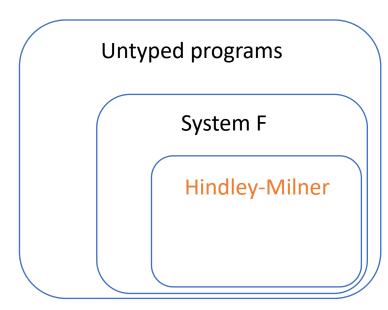
1. Semantic characterization of typable programs?

Example:

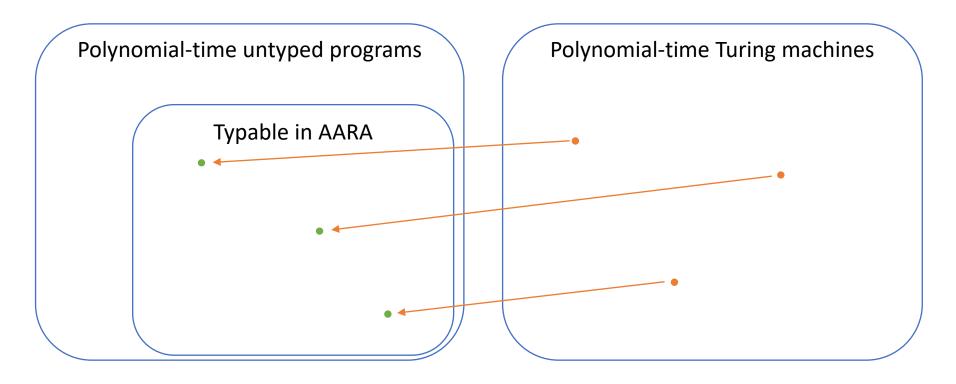


2. Sufficient condition for typability?

Example:



First contribution: semantic characterization of AARA



- 1. Input-output relations remain identical.
- 2. Cost bound is larger than or equal to the original running time.

Second contribution: sufficient condition for AARA's typability

Polynomial-time untyped programs Typable in AARA Inherently polynomial time The sufficient condition should be

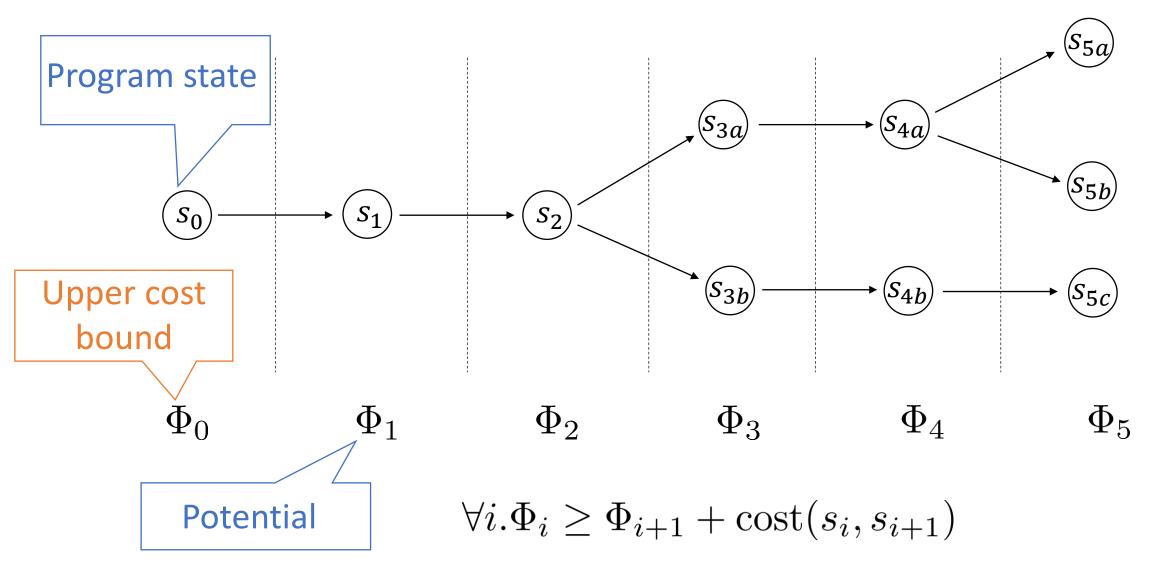
- 1. not identical to AARA
- 2. easy to understand

This talk

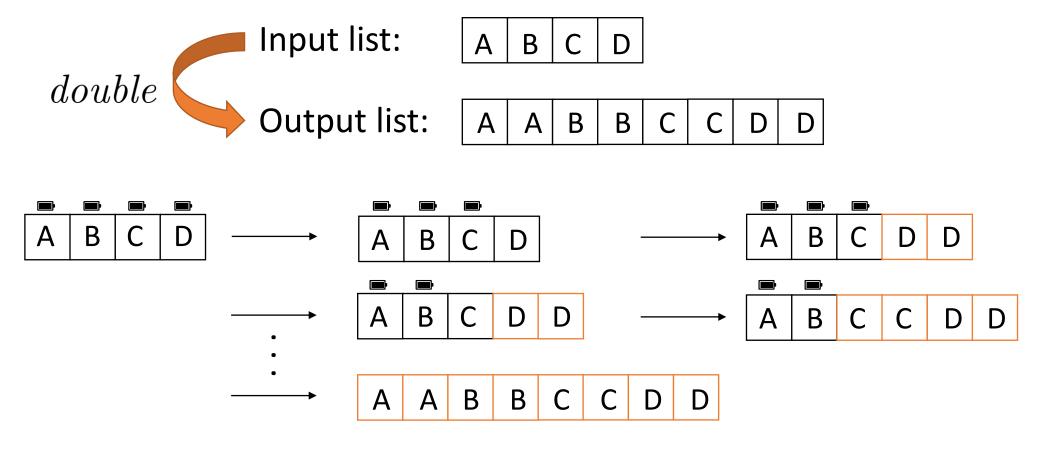
- **Motivation**
- ☐ Basic idea of AARA
- □ Sufficient condition for AARA's typability
- ☐ Challenges in the typability proof

Semantic characterization of AARA is in the paper

AARA uses the potential method

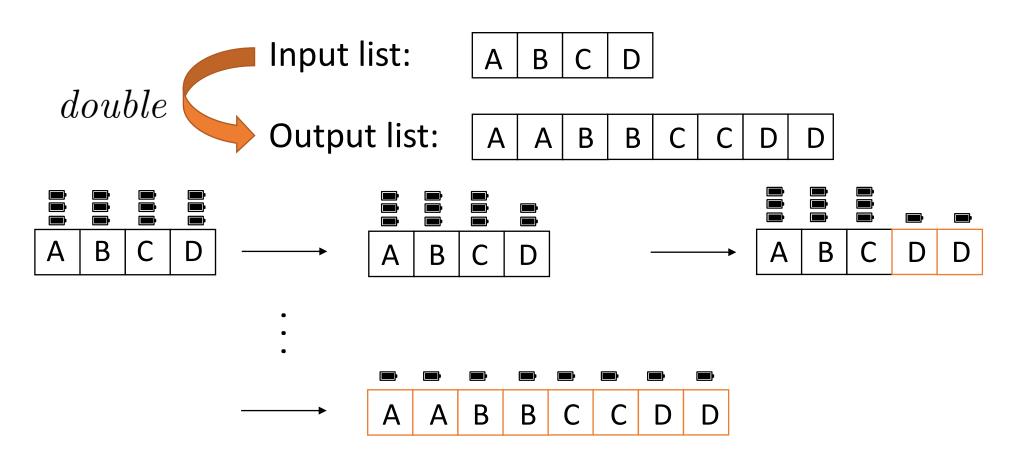


AARA uses the potential method



$$double: L^1(b) \to L^0(b)$$

AARA uses the potential method



 $double: L^3(b) \to L^1(b)$

AARA: benefits and expressive power

Benefits:

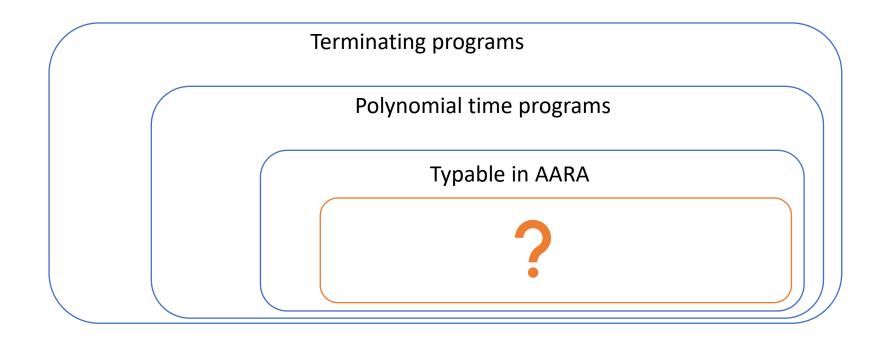
- 1. Automatic type inference by LP solving
- 2. Precision by amortized analysis
- 3. Soundness
- 4. Certification in the form of type derivations

Programs	Multivariate polynomial cost bounds
$double \ x$	x
$multiply \ x \ y$	$ x \cdot y $

This talk

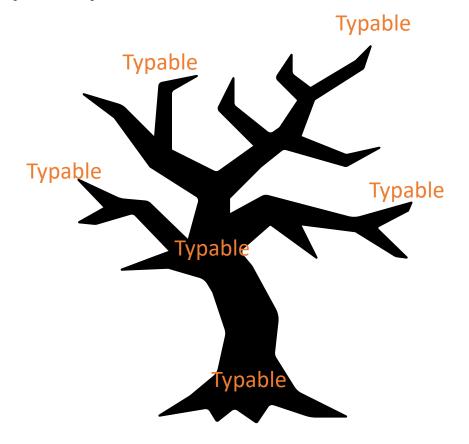
- **Motivation**
- **☑**Basic idea of AARA
- ☐ Sufficient condition for AARA's typability
- ☐ Challenges in the typability proof

Inherently polynomial time: termination



- 1. Primitive recursion instead of general recursion.
- 2a. The program must be polynomial-time.

Inherently polynomial time: compositionality



2b. Every subexpression must be polynomial time.

Inherently polynomial time: primitive recursion

 $\mathsf{FV}(e_1) \subseteq \{y,ys,z\}$ th $z \hookrightarrow e_1\}$

Primitive recursion has the form

$$e := \operatorname{rec} x \{ [] \hookrightarrow e_0 \mid (y :: ys) \text{ with } z \hookrightarrow e_1 \}$$

Question

If e_0 and e_1 are polynomial time, is e always also polynomial time?

Recursive result

Inherently polynomial time: primitive recursion

Recursive result $e := \operatorname{rec} x \; \{[] \hookrightarrow e_0 \; | \; (y :: ys) \; \text{with} \; z \hookrightarrow append \; \langle z, z \rangle \}$

Exponential

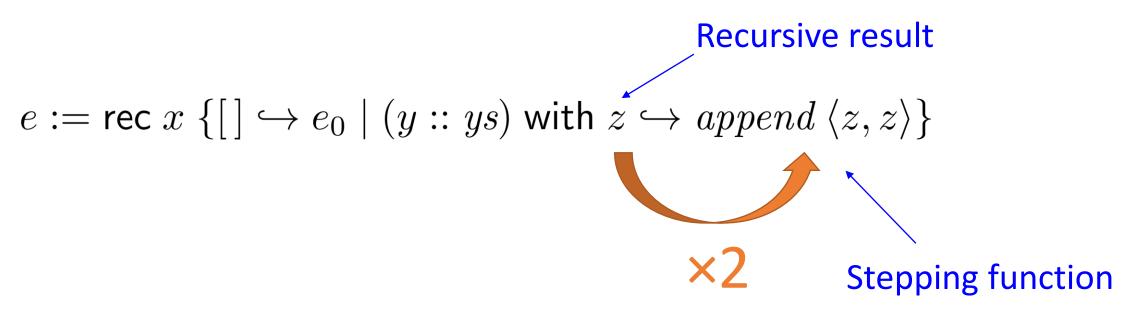
 e_0 ×2

 $\times 2$

 $\times 2$

Stepping function

Inherently polynomial time: primitive recursion



3. In a primitive recursion, the stepping function's running time is constant in |z|.

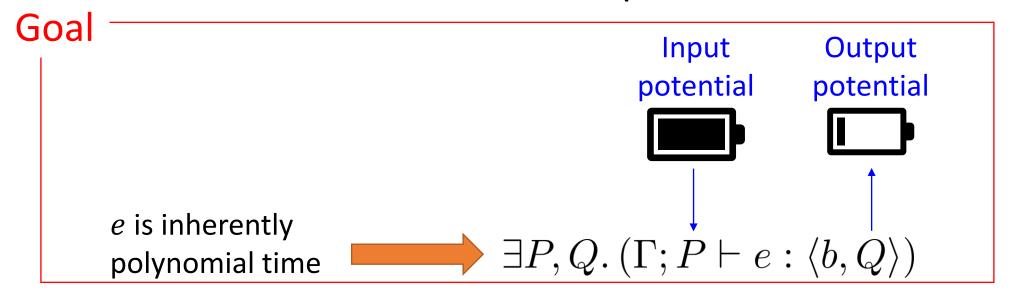
Inherently polynomial time: summary

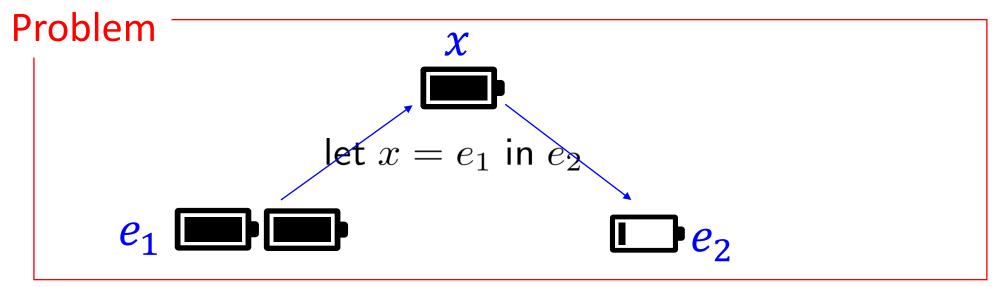
- 1. Primitive recursion instead of general recursion.
- 2b. Every subexpression must be polynomial time.
- 3. In a primitive recursion, the stepping function's running time is constant in |z|.

This talk

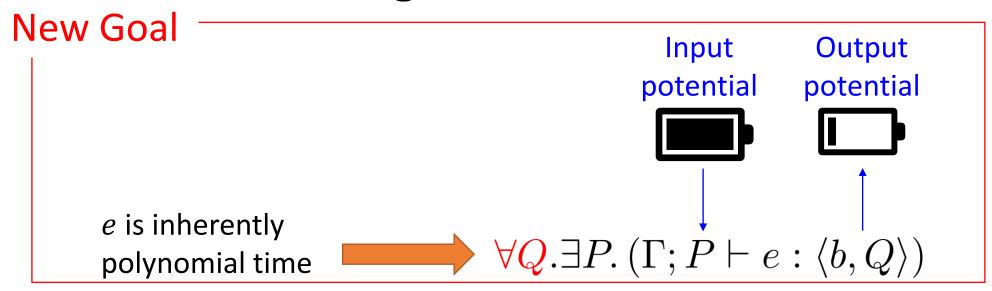
- **Motivation**
- **☑**Basic idea of AARA
- **Sufficient condition for AARA's typability**
- ☐ Challenges in the typability proof

Naïve theorem is not compositional

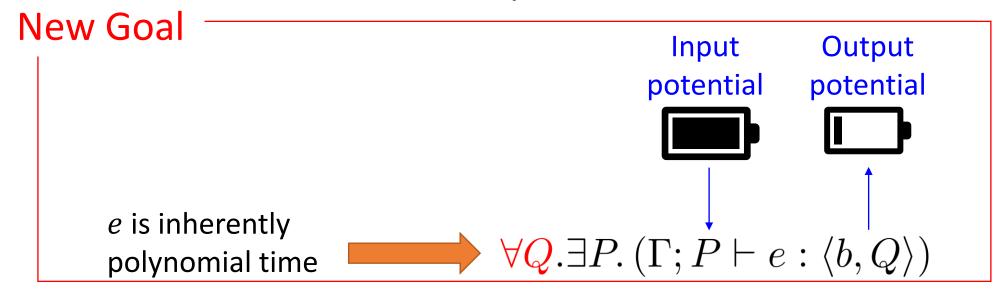


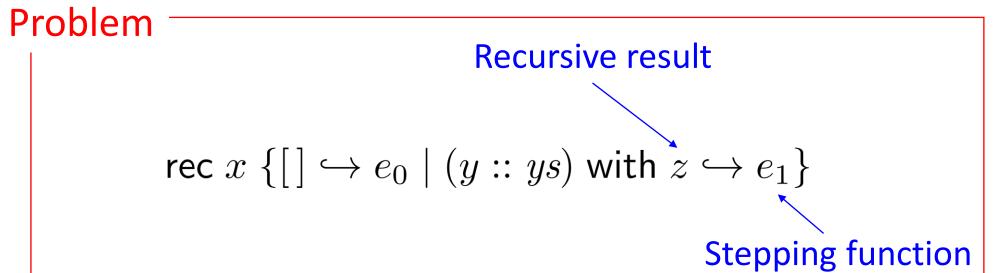


We need a stronger theorem



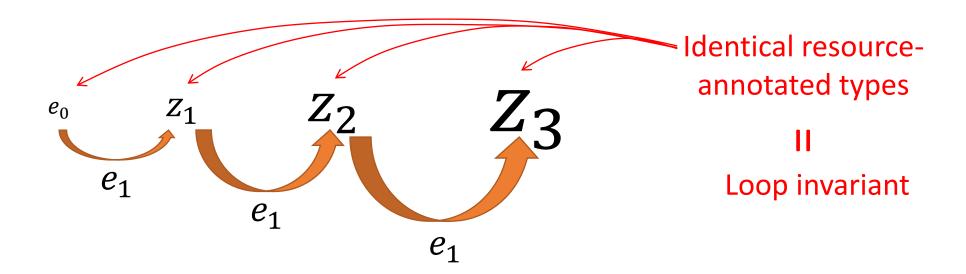
How do we find a loop invariant?





How do we find a loop invariant?

Problem Recursive result $\operatorname{rec} x \; \{[] \hookrightarrow e_0 \; | \; (y :: ys) \; \text{with} \; z \hookrightarrow e_1 \}$ Stepping function



We need uniform resource annotations

$$\operatorname{rec} x \{[] \hookrightarrow e_0 \mid (y :: ys) \text{ with } z \hookrightarrow e_1\}$$

Special case

$$y: \square , ys: \square , z: \square \vdash e_1: \square$$

 e_1 runs in constant time in |z|.

Uniform resource-annotated types of YELLOW with respect to v_1, \dots, v_n .

General case

$$x_1: \square, \ldots, x_m: \square, v_1: \square, \ldots, v_n: \square \vdash e: \square$$

e runs in constant time in $|v_i|$.

Contributions

- 1. Embedding of polynomial-time Turing machines in AARA
- 2. Definition of inherently polynomial time
- 3. Typability proof under two restrictions:
 - Variable sharing
 - Nested lists.