Typable Fragments of
Polynomial
Automatic Amortized Resource Analysis

Long Pham and Jan Hoffmann
Carnegie Mellon University
January 28th, 2021

AARA is a type-based resource analysis

k)
|

Automatic Amortized
Resource Analysis

Polynomial costs bounds

—)

Type inference of
AARA

Memory

Programs

Power

R

Two guestions about any type systems

1. Semantic characterization
of typable programs?

Example:

-

Untyped programs \

/Simply-typed)\—calculus\

\ //

2. Sufficient condition for

typability?

Example:

/ Untyped programs

~

/ System F

~

-

~

)/

First contribution: semantic characterization
of AARA

ﬂ?olynomial-time untyped programx /Polynomial—time Turing machines\
/ Typable in AARA \

L /NG /

1. Input-output relations remain identical.
2. Cost bound is larger than or equal to the original
running time.

Second contribution: sufficient condition for
AARA’s typability

1. not identical to AARA

2. easy to understand
/ Typable in AARA \

The sufficient condition should be
/ Polynomial-time untyped programs \

NN)

This talk

= o Semantic characterization of
Motivation AARA is in the paper
(JBasic idea of AARA —

dSufficient condition for AARA’s typability
(dChallenges in the typability proof

AARA uses the potential method

Program state |

g

g

Potential

V’L(I)z > (I)i_|_1 -+ COSt(Sz', Si_|_1)

AARA uses the potential method

A

B

C

D

Input list: A|B|C|D
double(_
Outputlist: |A|A|B|B|C|C|D|D
- AIB|IC|D — |A|B|C D|D
AlB|C| D D — A|B|/C|/C | DD

A/A/B B C C D D

double : L*(b) — L°(b)

AARA uses the potential method

Input list: A|B|C
double (
Output list: |A|A|B

> 0o
o |50
O 1IN
O (mEm

D

B

O

> (DN
oo |IEN

double : L3 (b) — L' (b)

> |1EW
o | 18T
O | 108

o |0

O i

AARA: benefits and expressive power

Benefits:
1. Automatic type inference by LP solving
2. Precision by amortized analysis

3. Soundness
4. Certification in the form of type derivations

Programs Multivariate polynomial cost bounds

double x)

multiply x y x| - |y

10

This talk

MMotivation

MBasic idea of AARA

dSufficient condition for AARA’s typability
1Challenges in the typability proof

Inherently polynomial time: termination

-~

N

Terminating programs

-~

\

Polynomial time programs

4 Typable in AARA

_

1. Primitive recursion instead of general recursion.

2a. The program must be polynomial-time.

12

Inherently polynomial time: compositionality

ypable

2b. Every subexpression must be polynomial time.

Inherently polynomial time: primitive recursion

Primitive recursion has the form

FV(€1) C {ya Y5, Z}

e:=recx {|] = e | (y: ys)with z — e}

Question

If &, and e, are polynomial time, is €
always also polynomial time?

Recursive result

14

Inherently polynomial time: primitive recursion

Recursive result

e:=recz {|] —eg| (y::ys) with z — append (z, 2) }

A NV AN

Stepping function

\/.

o Bxeﬁrgh{la |

Inherently polynomial time: primitive recursion

Recursive result

=recz {|| = e | (y:: ys) with z — append (z, z)}

ANV AN

Stepping function

3. In a primitive recursion, the stepping function’s running time
is constant in |z].

16

Inherently polynomial time: summary

1. Primitive recursion instead of general recursion.
2b. Every subexpression must be polynomial time.
3. In a primitive recursion, the stepping function’s running time is

constant in | z].

17

This talk

MMotivation

MBasic idea of AARA

MSufficient condition for AARA’s typability
(dChallenges in the typability proof

Naive theorem is not compositional

Goal

Input Output
potential potential
e is inherently l [
polynomial time > P, Q. (FQ Pre: <b7 Q>)
Problem X
[}

et

e [N (= [}e,

We need a stronger theorem

potential potential

e} [}

e is inherently l

polynomial time > VQ).3P. (FS Pre: <ba Q>)

How do we find a loop invariant?

New Goal

Input Output
potential potential
e is inherently l I

polynomial time

> VQ.3P.(T; P Fe: (b,Q))

Problem |
Recursive result

O\

recx {[] — eo | (y :: ys) with z < ey}

N

Stepping function

21

How do we find a loop invariant?

Problem |
Recursive result

recx {[] — eo | (y :: ys) with z < ey}

N

Stepping function

/// ?\ Identical resource-

annotated types

i Z1 Z7 YA
-/ u 3 I
€1 U Loop invariant
€1
€1

22

We need uniform resource annotations

recx {[] <= eq | (y :: ys) with z < e }

Special case ¥ : [Wmmp, ys:), 2 : - eq :

A e, runs in constant time in | z|.

Uniform resource-annotated types of with respect to v4, ..., v,,.
)
(\
Generalcase 1 : S s U1 - seeeysUp -e:

A e runs in constant time in |v;|. ;

Contributions

1. Embedding of polynomial-time Turing machines in AARA
2. Definition of inherently polynomial time

3. Typability proof under two restrictions:
* Variable sharing
* Nested lists.

