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AARA is a type-based resource analysis
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Two guestions about any type systems
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First contribution: semantic characterization
of AARA

ﬂ?olynomial-time untyped programx /Polynomial—time Turing machines\
/ Typable in AARA \
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1. Input-output relations remain identical.
2. Cost bound is larger than or equal to the original
running time.




Second contribution: sufficient condition for
AARA’s typability

1. not identical to AARA

2. easy to understand
/ Typable in AARA \

The sufficient condition should be
/ Polynomial-time untyped programs \
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AARA uses the potential method
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AARA uses the potential method
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Input list: A|B|C|D
double( _
Outputlist: |A|A|B|B|C|C|D|D
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AARA uses the potential method

Input list: A|B|C
double (
Output list: |A|A|B

> 0o
o |50
O 1IN
O (mEm

D

B

O

> (DN
oo |IEN

double : L3 (b) — L' (b)

> |1EW
o | 18T
O | 108

o |0

O i



AARA: benefits and expressive power

Benefits:
1. Automatic type inference by LP solving
2. Precision by amortized analysis

3. Soundness
4. Certification in the form of type derivations

Programs Multivariate polynomial cost bounds

double x )

multiply x y x| - |y
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Inherently polynomial time: termination
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Polynomial time programs

4 Typable in AARA
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1. Primitive recursion instead of general recursion.

2a. The program must be polynomial-time.
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Inherently polynomial time: compositionality

ypable

2b. Every subexpression must be polynomial time.



Inherently polynomial time: primitive recursion

Primitive recursion has the form

FV(€1) C {ya Y5, Z}

e:=recx {|] = e | (y: ys)with z — e}

Question

If &, and e, are polynomial time, is €
always also polynomial time?

Recursive result
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Inherently polynomial time: primitive recursion

Recursive result

e:=recz {|] —eg| (y::ys) with z — append (z, 2) }
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Inherently polynomial time: primitive recursion

Recursive result

=recz {|| = e | (y:: ys) with z — append (z, z)}

ANV AN

Stepping function

3. In a primitive recursion, the stepping function’s running time
is constant in |z].
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Inherently polynomial time: summary

1. Primitive recursion instead of general recursion.
2b. Every subexpression must be polynomial time.
3. In a primitive recursion, the stepping function’s running time is

constant in | z].
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Naive theorem is not compositional
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We need a stronger theorem
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How do we find a loop invariant?

New Goal

Input Output
potential  potential
e is inherently l I

polynomial time
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recx {[] — eo | (y :: ys) with z < ey}
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Stepping function
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How do we find a loop invariant?

Problem |
Recursive result

recx {[] — eo | (y :: ys) with z < ey}
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Stepping function
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We need uniform resource annotations

recx {[] <= eq | (y :: ys) with z < e }

Special case ¥ : [Wmmp, ys: ), 2 : - eq :

A e, runs in constant time in | z|.

Uniform resource-annotated types of with respect to v4, ..., v,,.
)
( \
Generalcase 1 : S s U1 - seeeysUp -e:

A e runs in constant time in |v;|. ;




Contributions

1. Embedding of polynomial-time Turing machines in AARA
2. Definition of inherently polynomial time

3. Typability proof under two restrictions:
* Variable sharing
* Nested lists.



