Robotics Institute Carnegie Mellon University
16-782: Planning and Decision Making in Robotics
Problem-Set 3: Symbolic Planning
Due: November 13" 2024, 11:59 PM
Professor: Maxim Likhachev TAs: Itamar Mishani, Yorai Shaoul

Problem Description

In this homework, you will implement a generic symbolic planner. We have provided the
code for reading an environment description from a file by using regular expressions and
generating the corresponding environment object. Your job is to write a planner that gets
an environment object as an input and outputs a sequence of actions to go from the start to
the goal. An example of the environment description for the Blocks World that was taught
in the class is below:

B
C
A

A
B

C

Symbols: A, B, C, Table.

Initial Conditions: On(A,B), On(B,Table), On(C,Table), Block(A), Block(B), Block(C),
Clear(A), Clear(C)

Goal Conditions: On(B,C), On(C,A), On(A,Table)
Actions:
MoveToTable(b,x)
Preconditions: On(b,x), Clear(b), Block(b), Block(x)
Effects: On(b,Table), Clear(x), !On(b,x)
Move(b,x,y)
Preconditions: On(b,x), Clear(b), Clear(y), Block(b), Block(y)
Effects: On(b,y), Clear(x), !On(b,x), !Clear(y)

In the provided code, we parse the description files for you and provide you with the envi-
ronment object (Env class) which includes the 1) initial conditions, 2) goal conditions, 3)



Planning and Decision Making in Robotics 16-782 P-Set 3

actions, and 4) symbols. An object of the Env class is passed to your planner.

The Env class uses the data structures below. Feel free to add more functions to them as
needed. However, do not change the main function.

e Condition: this class includes 3 member variables: 1) name of the condition, 2) the
arguments, and 3) if the condition is negated or not.

e GroundedCondition: this class includes 3 member variables: 1) name of the condition,
2) the values for the arguments, and 3) if the condition is negated or not.

e Action: this class includes member 4 variables: 1) name of the action, 2) action argu-
ments, 3) preconditions, and 4) effects.

e GroundedAction: this class includes 2 member variables: 1) name of the action and 2)
values for the arguments.

In this homework, we provide the environment description files for three environments: 1)
Blocks World, 2) Blocks and Triangles, and 3) Fire Extinguisher.

We will explain these environments later on. These environment description files are parsed
and an environment object (Env) is passed to your planner. Your job is to write a general
planner that outputs a sequence of steps to get from the initial condition to the goal condition.
The output of your planner is a list of GroundedActions (std: :1ist<GroundedAction>).

Environments

The Blocks World environment was introduced earlier. Details for the remaining two are
below.

Blocks and Triangles Environment

This environment is similar to the Blocks World problem explained in the class. In addition
to the blocks, this environment has triangles that can be moved in the exact same way as
blocks with the exception that nothing can be put on top of them. A simple example of this
environment with only three objects is shown below.



Planning and Decision Making in Robotics 16-782 P-Set 3

B
C A

We provide a description file for an environment with 5 blocks (B0, B1, B2, B3, B4), 2
triangles (T0, T1) and a Table. The start and goal conditions are below:

e Start conditions: B0 is on B1, B1 is on B4, B2 is on Table, B3 is on B2, B4 is on Table,
TO is on B0, and T'1 is on B3.
e Goal conditions: B0 is on B1, B1 is on B3, and T'1 is on BO.

For easier debugging, we provide a trivial environment (BlocksEasy.txt) with 3 blocks (A,B,C).

e Start conditions: A is on B, B is on Table, C is on Table.

e Goal conditions: A is on Table.

Fire Extinguisher Environment'

The goal of this problem is to have a pair of robots put out a fire. This domain has two
robots 1) a quadcopter and 2) a mobile robot.

The mobile robot can travel between locations. The quadcopter only moves between locations
by landing on the mobile robot and having the mobile robot travel to the other location.
The quadcopter can fly around a single location (cannot navigate between locations) if its
battery level is High, but it won’t be able to take off if its battery level is Low.

Whenever the quadcopter is on the mobile robot, it can charge its battery by calling the
charge action. The quadcopter has a tank that can be filled with water when the quadcopter
is on the mobile robot at location W (where there is water).

The fire is at location F. The W and F locations are far from each other. The quadcopter
should fly around location F in order to pour water on the fire. The quadcopter needs to
pour water on the fire three times in order to extinguish the fire.

Inspired by the final challenge at 1st Summer School on Cognitive Robotics at MIT.



Planning and Decision Making in Robotics 16-782 P-Set 3

Every time the quadcopter pours water on the fire, its battery level becomes low and its
water tank becomes empty (it should go back to W to fill its tank). The robots will each
start at one of five different locations (A, B, C, D, E), which are far from W and F. The
quadcopter cannot land on the ground.

e Start conditions: the quadcopter is flying and at location B. The mobile robot is at
location A. The quadcopter’s water tank is empty.

e Goal: The fire is extinguished.

Compiling and Executing the Code

Open a terminal and navigate to the code directory. Then:
>> mkdir build

>> cd build

Building with Cmake

>> cmake ..

>> cmake --build . --config Release

To build in debug mode change Release with Debug. Now, you can run the code with:
>> ./planner [envName]

Example:

>> ./planner Blocks.txt

You can find the environments in the envs directory.

Building with g++

To compile on Linux (Mac or Windows may require a substitute for g++, e.g. clang):



Planning and Decision Making in Robotics 16-782 P-Set 3

Make sure you are within the build directory as shown above. Then: >> g++ ../src/planner.cpp
-o planner (optional but may be necessary: -std=c++11)

To enable debugging, add a -g tag:

>> g++ ../src/planner.cpp -o planner -g

This creates an executable, namely planner, which we can then call with different inputs:
>> ./planner [envName]

Example:

>> ./planner Blocks.txt

Summary

You should 1) write a domain-independent planner that generates a plan for any environment
that follows the STRIPS representation, and 2) include the discussion and results (i.e.,
planning time and number of expanded states) of your generic planner applied on the three
environments: a) Blocks b) Blocks and Triangles and c) Fire Extinguisher.

Note: You should write a domain-independent planner. The environment object is passed
into your generic (domain-independent) planner which runs a search by applying available
valid actions to every state. Your code will be tested with other environments.

Submitting Your Work

Please submit your work through Gradescope. Your submission should include:

e A folder named code that contains 1) all the C++ source files for the planner and 2)
the description files for the three environments.

e A PDF writeup named <Andrew ID>.pdf with instructions to compile code, results,
and everything we need to know about your implementations and submission. Do not
leave any details out because we will not assume any missing information. Include the
time that the planner takes and the number of states that the search expands for each
of the three environments with and without a heuristic.



Planning and Decision Making in Robotics 16-782 P-Set 3

Grading
Your grade will depend on:

e How well-founded your approach is. In other words, can your planner guarantee com-
pleteness?

e How domain-independent the planner is. That is, is it implemented as a generic search
that can be used to solve a completely different problem from a different domain?

e The quality of the plan. Is your plan optimal (minimizes the number of steps)?

e Planning speed. Can your planner solve problems quickly (at least less than 60 sec-
onds)?

e The quality of your writeup. Provide a discussion on how much improvement you get
when you use a heuristic in your search by comparing it with a planner that does not
use any heuristics.

Extra Credit

You may earn extra credit by completing the following:

e Design an entirely new environment (not one of the three domains mentioned above),
add the corresponding configuration file, describe it, and present the performance of
the planner on it. We will run your planner on it to verify. (10 points)

e Implement the empty-delete-list heuristic as described in the lectures, evaluate its
performance as a function of the size of the problem (e.g., number of blocks and
triangles), and describe the results of your evaluation. Explain how to enable this
heuristic, so that we can run it during the grading. (10 points)



