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Probabilistic Roadmaps (PRMs)

Great for problems where a planner

has to plan many times for different start/goal pairs Not so great for single shot planning

1 needs to be done only once

Step 1. Preprocessing Phase: Build a roadmap (graph) ¢ which,
hopetully, should be accessible from any point in C,,

Step 2. Query Phase: Given a start configuration ¢, and goal

configuration g, connect them to the roadmap & using a local planner,
and then search the augmented roadmap for a shortest path from g, to

4G
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Rapidly Exploring Random Trees (RRTSs) [LaValle, *98]

No preprocessing step: starting with the initial configuration g, build the
graph (actually, tree) until the goal configuration g 1s part of it

Very effective for single shot planning
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Rapidly Exploring Random Trees (RRTSs) [LaValle, *98]

BUILD_RRT(gis)
1 T.illit{fj.j.”_.” )

2 fork=1to K do
3 Grand — RANDOM_CONFIG():
4 EXTEND(T, ¢rand):
5 Return 7T
EXTEND(T,q)

1 Gnear «— NEAREST_NEIGHBOR(q, T):

2 if NEW_CONFIG(q, ¢nearsGnew ) then e

; q

3 T .add _vertex(q,e ) f-—-f new

4 T .add_edge(qnear, Gnew ): ——
D if g,,..0 = g then t q
6 Return Reached; 9near

T else qipit

8 Return Advanced;

9 Return Trapped, EXTEND operation

borrowed from “RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle
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Rapidly Exploring Randama Trees (RRTs) [LaValle, *98]

Path to the goal is a path in the tree
BUILD_RRT(gini) rom q,,., to the vertex closest to goal
1 Tllllf {II?.,;.”_H )

selects closest vertex in the tree

2 for k=1to K do
3 Grand — RANDOM_CONFIG():
4 EXTEND(T, ¢rand):
5 Return 7
moves by at most ¢
from q,,,,, towards q
EXTEND(T, ¢) —

1 ¢poar — NEAREST R(q, 7):

2 if NEW_CONTFIG(q, ¢near.Gnew ) then e

; q

3 T .add _vertex(q,e ) f-—-f new

4 T .add_edge(qnear, Gnew ): ——
D if g,,..0 = g then t q
6 Return Reached; 9near

T else qipit

8 Return Advanced;

9 Return Trapped, EXTEND operation

borrowed from “RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle
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Rapidly Exploring Random Trees (RRTs) [LaValle, *98]

 RRT provides uniform coverage of space

borrowed from “RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle
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Rapidly Exploring Random Trees (RRTSs) [LaValle, *98]

« RRT provides uniform coverage of space -

borrowed from “RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle
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Rapidly Exploring Random Trees (RRTSs) [LaValle, *98]

,ﬁ e

r sp pATE

» Alternatively, the growth is always biased by the largest unexplored region

.

borrowed from “RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle
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Rapidly Exploring Random Trees (RRTSs) [LaValle, *98]

Carnegie Mellon University

borrowed from “RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle
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RRT-Connect [Kuffher & LaValle, ‘00]

Bi-directional growth of the tree

_|_

relax the e constraint on the growth of the tree
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RRT-Connect [Kuffher & LaValle, ‘00]

RRT_CONNECT _PLAN }\ER(Q’?”?; goal )
1 %.-'init(‘?i-nii); %-illit(q;?ou..t )
2 fork=1to K do
3 Grand < RANDOM_CONFIG();
4 if not (EXTEND(7., ¢rand) = Trapped) then
5! if (CONNECT(7p, ¢new) =Reached) then
6 Return PATH(7,.7s):
7 SWAP(T,.Ty);

&  Return Failure

CONNECT(T.q)
1 repeat
2 S + EXTEND(T,q);

3 until not (S = Advanced)
4  Return S;

borrowed from “RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle
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RRT-Connect [Kuffher & LaValle, ‘00]

RRT_CONNECTPLEKNNER(Q’?ﬂ?f qgomf)
1 To.init(ginit); Tp.init(ggoar); tries to grow T to q,.,,,

2 fork=1to K do that was just added to T,
3 Grand & RANDOM_CONFIG():

4 if not (EXTEND(7, 47ana) = Trapped) then

5 if (CONNECT(Ty. ¢pew) =Reached) then

6 Return PATH(7,,7s);

7 SWAP(T,.Ty);

& Return Failure

CONNECT(T,q)

1 repeat |

2 S + EXTEND(T,q); CONZ\;ECT ﬁtillfc'}zz‘zon.grfws the tree
3 ' more inan just one &

3 until not (S = Advanced) i Ju

4  Return S;

borrowed from “RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle
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RRT-Connect [Kuffher & LaValle, ‘00]

* Forany g € C;,,, lim,_,,, P[d(q) < &] = 1, where d(q) 1s a
distance from configuration ¢ to the closest vertex in the
tree, and assuming C,, 1s connected, bounded and open

 RRT-Connect 1s probabilistically complete: as # of samples
approaches infinity, the algorithm is guaranteed to find a
solution if one exists

Carnegie Mellon University 13



RRT-Connect [Kuffner & LaValle, ‘00]

* Forany g € C;,,, lim,_,,, P[d(q) < &] = 1, where d(q) 1s a
distance from configuration ¢ to the closest vertex in the
tree, and assuming C,, 1s connected, bounded and open

 RRT-Connect 1s probabilistically complete: as # of samples
approaches infinity, the algorithm is guaranteed to find a
solution if one exists
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RRT-Connect [Kuffner & LaValle, ‘00]

* Forany g € C;,,, lim,_,,, P[d(q) < &] = 1, where d(q) 1s a
distance from configuration ¢ to the closest vertex in the
tree, and assuming C,, 1s connected, bounded and open

 RRT-Connect 1s probabilistically complete: as # of samples
approaches infinity, the algorithm is guaranteed to find a
solution if one exists
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Sampling-based approaches

Typical setup:
« Run PRM/RRT/RRT-Connect/...

» Post-process the generated solution to make 1t more
optimal

Could also be highly non-trivial

An important but
often time-consuming step
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Post-processing

Consider this path generated by RRT or PRM or A* on a grid-based graph:

AN

Carnegie Mellon University
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Simple Post-processing via Short-cutting

Short-cutting a path consisting of a series of points
NewPath=[]; P=start point, PI = point P+1 along the path
while P I= goal point
while line segment [P.P1+1] is obstacle-free AND P1+1 < goal point
P1 = point P1+1 along the path;
NewPath+= [PP1]; P =PI, Pl = point P+1 along the path;

AN

Carnegie Mellon University 18



Simple Post-processing via Short-cutting

Short-cutting a path consisting of a series of points
NewPath=[]; P=start point, PI = point P+1 along the path
while P I= goal point
while line segment [P.P1+1] is obstacle-free AND P1+1 < goal point
P1 = point P1+1 along the path;
NewPath+= [PP1]; P =PI, Pl = point P+1 along the path;

AN

Pl
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Simple Post-processing via Short-cutting

Short-cutting a path consisting of a series of points
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Simple Post-processing via Short-cutting

Short-cutting a path consisting of a series of points
NewPath=[]; P=start point, PI = point P+1 along the path
while P I= goal point
while line segment [P.P1+1] is obstacle-free AND P1+1 < goal point
P1 = point P1+1 along the path;
NewPath+= [PP1]; P =PI, Pl = point P+1 along the path;

Pl

AN
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Simple Post-processing via Short-cutting

Short-cutting a path consisting of a series of points
NewPath=[]; P=start point, PI = point P+1 along the path
while P I= goal point
while line segment [P.P1+1] is obstacle-free AND P1+1 < goal point
P1 = point P1+1 along the path;
NewPath+= [PP1]; P =PI, Pl = point P+1 along the path;

AN

Pl

P
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Simple Post-processing via Short-cutting

Short-cutting a path consisting of a series of points
NewPath=[]; P=start point, PI = point P+1 along the path
while P I= goal point
while line segment [P.P1+1] is obstacle-free AND P1+1 < goal point
P1 = point P1+1 along the path;
NewPath+= [PP1]; P =PI, Pl = point P+1 along the path;

P

Pl
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Examples of RRT 1n action

N

RRT-connect

e
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by |
|
|

path after postprocessing

borrowed from “RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle
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Examples of RRT 1n action
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RRT-connect path after postprocessing

borrowed from “RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle
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Examples of RRT 1n action

RRT-connect path after postprocessing

borrowed from “RRT-Connect: An Efficient Approach to Single-Query Path Planning” paper by J. Kuffner & S. LaValle
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Examples of RRT

5DOF kinodynamic planning for a car

borrowed from “Rapidly-Exploring Random Trees: A new tool for Path Planning” paper by S. LaValle

Carnegie Mellon University
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PRMs vs. RRTs

 PRMs construct a roadmap and then searches it for a
solution whenever g, g are given

— well-suited for repeated planning in between different pairs of g,
g (multiple queries)

* RRTs construct a tree for a given ¢,, g until the tree has a
solution

— well-suited for single-shot planning in between a single pair of g,
g. (single query)

— There exist extensions of RRTs that try to reuse a previously
constructed tree when replanning in response to map updates

Carnegie Mellon University 28



RRTs vs A*-based planning
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— sparse exploration, usually little memory and computations
required, works well in high-D

— solutions can be highly sub-optimal, requires post-processing,
which in some cases can be very hard to do, the solution i1s still
restricted to the same homotopic class

Carnegie Mellon University

29




RRTs vs A*-based planning
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— does not incorporate a (potentially complex) cost function

— there exist versions (e.g., RRT*) that try to incorporate the cost
function and converge to a provably least-cost solution in the limit
of samples (but typically computationally more expensive than

RRT)
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RRTs vs A*-based planning
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 A* and weighted A* (WA™):
— returns a solution with optimality (or sub-optimality) guarantees
with respect to the discretization used

— explicitly minimizes a cost function

— requires a thorough exploration of the state-space resulting in high

memory and computational requirements
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Sampling in RRTs
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* Uniform: g,,,, 1s a random sample in C,,

* Goal-biased: with a probability (7-P,), q,,,, 1s chosen as a
random sample in Cj,,,, with probability P, g,,,, 18 set to g;
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Sampling in RRTs

RRT, P,=0 RRT, P,=0.1 RRT, P,=0.5
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* Uniform: g,,,, 1s a random sample in C,,

* Goal-biased: with a probability (7-P,), q,,,, 1s chosen as a
random sample in Cj,,,, with probability P, g,,,, 18 set to g;
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RRTH* [Karaman & Frazzoli, ‘06]

RRT
_|_

“re-wiring of nodes”

Carnegie Mellon University
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Properties of RRT again...
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RRTH* [Karaman & Frazzoli, ‘06]
Main loop (same as in RRT): Extend(G,x) (same as in RRT + “re-wiring”).

V'« V; E' «+ E;

1 Vi {zini): B+ 0; i 0; l
2 while i < N do 2 Tnearest < Nearest(G,);
3 G+ (V, I); 3 Tnew ¢ Steer(Tpncarest, )
4 Trand — Sample(i); i < i + 1; 4 if ObstacleFree(&pearest, Tnew) then
5 (V, F) < Extend(G, Trand); 5 V'« V' U {Znew}:
L Tmin ¥ Tnearest:
7 Xoear ¢ Near(G, Tyew, |V]);
8 for all xyear € Xiear do
9 if ObstacleFree(xpear, Tnew) then
10 ¢ + Cost(xnear) + ¢(Line(Tnear, Tnew)):
11 if ¢/ < Cost(apnew) then
12 L I'min ¢ Tnear.

13 E' «+ E'U {{mming $new] };
14 for all Tnear © Xnte_ar \ {Irnin} do

5 if ObstacleFree(Tuew, Tnear) and
Cost(Zncar) > Cost(Znew) + ¢(Line(ZLunew, Tacar))
then
6 Tparent < Parent(Tnear);
17 E' + E' \ {[xpa.rent: wnear}};
E « E'U {(mnew, Inear)};

18 return G’ = (V' E')

borrowed from “Incremental Sampling-based Algorthms for Optimal Motion Planning” paper by S. Karaman & E. Frazzoli
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RRTH* [Karaman & Frazzoli, ‘06]
Main loop (same as in RRT): Extend(G,x) (same as in RRT + “re-wiring”).

V'« Vi E' + E;

1 Vi {zini): B+ 0; i 0; l
2 while i < N do 2 Tnearest < Nearest(G,);
3 G+ (V, I); 3 Tnew ¢ Steer(Tpncarest, )
4 Trand — Sample(i); i < i + 1; 4 if ObstacleFree(&pearest, Tnew) then
5 (V, F) < Extend(G, Trand); 5 V'« V' U {Znew}:

L Tmin ¥ Tnearest:

7

XIIE.‘FIF — HEHI(G, 'T"“W‘.' |V|);

— & for all x,car € Xicar do
9 if ObstacleFree(xpear, Tnew) then
10 ¢ + Cost(xnear) + ¢(Line(Tnear, Tnew)):
11 if ¢/ < Cost(apnew) then
Re_erlng 12 L I'min ¢ Tnear.

Checking if we can improve (re-wire)| 13 | E' < E' U {(Zmin,Tnew)}:

— 14 for all xpcar € Xnear \ {m"'i“} do
the cost of other nodes near s if ObstacleFree(Tnew, Tnear) and
the new node x,,,,,, Cost(Zncar) > Cost(Znew) + c(Line(Znew, Tucar))
then
6 Tparent < Parent(Tnear);
17 E' + E' \ {[xpa.rent: wnear}};
E « E'U {(i-'new, Inear)};

~— o

18 return G’ = (V' E')

borrowed from “Incremental Sampling-based Algorthms for Optimal Motion Planning” paper by S. Karaman & E. Frazzoli
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RRT?* [Karaman & Frazzoli, ‘06]

3 . 4 . . 1.,
Main looz ro-wiring”).
Xoear- S€t of all vertices v in V s.t. they lie within radius r from x,,,,, where
1/d
. (Y 10g|V|)
r=min(| < , &),
((5 V|
d — dimensionality of space, 6 — volume of unit hyperball, y — user defined constant

th & W ke =

Ansr;lr — HEEI'(G, 'T"“W‘.' |V|);

8§ for all xycar € Xiear do
9 if ObstacleFree(xpear, Tnew) then
10 ¢’ < Cost(Zpear) + c(Line(Tnear, Tnew)):
11 if ¢/ < Cost(apnew) then
Re_wy/'lng 12 L I'min ¢ Tnear.

Checking if we can improve (re-wire)| 13 | E' < E' U {(Zmin,Tnew)}:

— |4 for all Tnear € XTH:‘!-?IT \ {mrnin} do
the cost of other nodes near s if ObstacleFree(Tnew, Tnear) and
the new node x,,,,, Cost(Znear) > COSE(Zrow) + C(Line(Tnew, Tncar))
then
16 Tparent < Parent(Tnear);
7 E'+ E' \\ {[xpﬂ-rent: mnear]};
E' « E'U {(mnev-'u -Inea.r)};

~— o

18 return G’ = (V' E')

borrowed from “Incremental Sampling-based Algorthms for Optimal Motion Planning” paper by S. Karaman & E. Frazzoli
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RRT* [Karaman & Frazzoli, ‘06]

Main looz o-wiring ).
Xoear S€t Of all vertices vin V s.t. they lie within radius r from x,,,,, where
1/d
. % loglVl)
r=min(({=——— a
((5 V| ‘
d — dimensionality of space, 0 — volume of unit hyperball, y — user defined constant

b

th & W ke =

RRT™ (unlike RRT) is asymptotically optimal:
converges to an optimal solution in the limit of the number of samples

Checking 1)
LTI d{)
the cost OfOthel" OGS T UbstacleFIee(.;f:,,:,w,_T:,i,m) and
the hew nOde xnew Gust{:ﬁnﬂar} = cﬂst(;ﬂ]mw) -+ C(Liﬂe{:‘[;m._,w’ Ini.‘ﬂ.r}]
then
[ Iparent. — PEIEﬂt{:I.‘"EHr);
7 E'+ E' \ {[xpﬂ-rent: mnear]};

E' <+ E"U {(Znew, Tnear) };

~— o

18 return G’ = (V' E')

borrowed from “Incremental Sampling-based Algorthms for Optimal Motion Planning” paper by S. Karaman & E. Frazzoli
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RRT vs RRT*

time & its effect on the solution

Le]

T R

a 4 B - M I-"-'m -R E 4 -3 a : 2 ; [ ’ & n .-1 l-. - - - - ] . B - |1
time & its effe
i ‘s% 1

borrowed from “Incremental Sampling-based Algorthms for Optimal Motion Planning” paper by S. Karaman & E. Frazzoli
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RRT vs RRT*

T* tree over t

N~

borrowed from “Incremental Sampling-based Algorthms for Optimal Motion Planning” paper by S. Karaman & E. Frazzoli
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What You Should Know...

Pros and Cons of RRT, PRM, RRT-Connect, RRT*
How RRT, RRT-Connect and RRT* operate
What guarantees RRT/RRT™* provide

Simple shortcutting algorithm
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