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Two Examples

• Planning for Mobile Manipulation

• Planning for Legged Robots
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Robotic Bartender Demo ([Phillips et al.])

• Robot takes in a command from User Interface as to what 

soda can and snack to deliver
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Typical Sequence of Operations (State Machine)
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Typical Sequence of Operations (State Machine)

How do you pick proper x,y,Ѳ

for picking up?
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Typical Sequence of Operations (State Machine)

Planning on x,y,Ѳ with 

full-body collision checking for every edge
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Graph for Navigation with Complex 3D Body [Hornung et al., ‘12]

• 3D (x,y,θ) lattice-based graph representation for full-body collision 

checking

– takes set of motion primitives as input

– takes N footprints of the robot defined as polygons as input 

– each footprint corresponds to the projection of a part of the body onto x,y plane

– collision checking/cost computation is done for each footprint at the 

corresponding projection of the 3D map
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Typical Sequence of Operations (State Machine)

Typical perception task 
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Typical Sequence of Operations (State Machine)

Pick a geometric primitive 

that approximates the object the best

and use one of the grasps 

pre-computed for this primitive
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Typical Sequence of Operations (State Machine)

Planning on q1,…q7 towards 

an arm configuration that has its end-effector 

at the pre-grasp pose (partially-defined goal)
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Typical Sequence of Operations (State Machine)

Planning on q1,…q7 towards 

an arm configuration that has its end-effector 

at the pre-grasp pose (partially-defined goal)

A sampling-based planner such as 

RRT-Connect [Kuffner & LaValle, ‘00] would work very well

(would have to plan towards a 

full arm configuration computed by IK)
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Typical Sequence of Operations (State Machine)

Move the arm 

from pre-grasp pose 

towards grasp pose (computed via IK) 

and close the gripper 
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Typical Sequence of Operations (State Machine)

Planning on q1,…q7 towards 

the “home” arm configuration (fully-defined goal)
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Two Examples

• Planning for Mobile Manipulation

• Planning for Legged Robots
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Little Dog Demo [Vernaza et al., ‘09]

• Little Dog robot needs to traverse a fully-known terrain

• Planning

– Plans footsteps first with an anytime variant of A*

– Compute COM of the robot afterwards to support execution
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Footstep Planner [Vernaza et al., ‘09]

Assumptions of the planner:

 Only one leg lifted at a time to 
ensure static stability

 Center of mass shifts during quad-
support phase to prevent tipping

 Footholds chosen deliberately to 
maximize stability
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Footstep Planner [Vernaza et al., ‘09]

Planner builds Graph:

What are states?

What are edges?
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Footstep Planner [Vernaza et al., ‘09]

Planner builds Graph:

 State (stance): 9-dimensional foothold 
configuration

- feet positions and current gait phase

 Edge: feasible transition between stances

 Edge costs for transitions computed 
based on risk, anticipated delay

Implicit or explicit graph?
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Footstep Planner [Vernaza et al., ‘09]

Planner builds (implicit) Graph:

 State (stance): 9-dimensional foothold 
configuration

- feet positions and current gait phase

 Edge: feasible transition between stances

 Edge costs for transitions computed 
based on risk, anticipated delay

Requires definition of:

GetSuccessors(state S)

GetCost(state S, state S’)



Implementation of GetSuccessors(s) Function
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 Finite set of good quality
candidate footholds selected
prior to planning

 Valid stances are kinematically
feasible 4-tuples of candidate
footholds

 Successors of a given stance
computed by:

- determining reachable candidate
footholds that result in a valid
stance



Implementation of GetCost(s,s’) Function
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 Edgecosts are weighted sum of:

Any thoughts?



Implementation of GetCost(s,s’) Function
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 Edgecosts are weighted sum of:

 Fixed cost per step

 Minimizes # of steps in the plan

 Center of mass travel

 Discourages unnecessary 
motion of COM

 Incircle radius

 Discourages stances with small 
incircle radii (distance from 
point 3 to point 5 in the picture)



Implementation of GetCost(s,s’) Function
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 Edgecosts are weighted sum of:

 Collision

 Risk of body/foot colliding with terrain

 Foot height variance

 Encourages robot to stay level



Implementation of GetCost(s,s’) Function
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 Edgecosts are weighted sum of:

 Reachability

 Robot's ability to reach next foothold, switch to next 
support triangle without dragging feet

 Terrain slope

 Ensures terrain slope supports 
direction of motion

 Terrain cost

 Considers slippage potential given 
terrain
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Lots of features make up the cost function. 

Fine tuning them is not fun 
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 Edgecosts are weighted sum of:

 Reachability

 Robot's ability to reach next foothold, switch to next 
support triangle without dragging feet

 Terrain slope

 Ensures terrain slope supports 
direction of motion

 Terrain cost

 Considers slippage potential given 
terrain

Lots of features make up the cost function. 

Fine tuning them is not fun 

There are ways to learn the weights

(e.g., Learning to Search [Ratliff, Silver & Bagnell, ‘09])
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Sometimes smart but often stupid

no footstep planning
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What You Should Know…

• General state machine for mobile manipulation

• The dimensionality when planning footsteps for 

quadrupedal (and bipedal) robots

• Appreciate the complexity of cost components when 

planning for quadrupedal (and bipedal) robots


