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Typical Planning Architecture for Autonomous Vehicle
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Motivation

* Planning long complex maneuvers for the Urban
Challenge vehicle from CMU (Tartanracing team)

 Planner suitable for

— autonomous parking in very large (200m by 200m) cluttered
parking lots

— navigating in off-road conditions

— navigating cluttered intersections/driveways
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Desired Properties

* Generate a path that can be tracked well (at up to Sm/sec):

— path 1s a 4-dimensional trajectory:

x, Yy, 0, v
( v, )

orientation speed
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— path 1s a 4-dimensional trajectory:
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Desired Properties

e Fast (2D-like) planning in trivial environments:

200 by 200m parking lot
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Desired Properties

* But can also handle large non-trivial environments:

200 by 200m parking lot
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Desired Properties

* Anytime property: finds the best path 1t can within X secs
and then improves the path while following 1t
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initial path converged (to optzmal) path
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Desired Properties

 Fast replanning, especially since we need to avoid other
vehicles

planning a path that avoids other vehicles

Carnegie Mellon University

16



Desired Properties

 Fast replanning, especially since we need to avoid other
vehicles

ehicles
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Our Approach

* Build a graph

— multi-resolution version of a lattice graph

» Search the graph for a least-cost path

— Anytime D™ [Likhachev et al. ‘05]

Carnegie Mellon University
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Building the Graph

 Lattice-based graph [Pivtoraiko & Kelly, ‘05]:

outcome state is the center of the corresponding cell

each transition is feasible
(constructed beforehand)

action template

P
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Building the Graph

 Lattice-based graph [Pivtoraiko & Kelly, ‘05]:

outcome state is the center of the corresponding cell

e : s
caal tmcndcition js feasible Sf?% % R

we will be searching this graph for

. a least-cost path from s
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Building the Graph

e Multi-resolution lattice:
— high density in the most constrained areas (€.g., around start/goal)

— low density 1n areas with higher freedom for motions

most constrained areas
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Building the Graph

 The construction of multi-resolution lattice:

— the action space of a low-resolution lattice 1s a strict subset of the
action space of the high-resolution lattice
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Building the Graph

 The construction of multi-resolution lattice:

— the action space of a low-resolution lattice 1s a strict subset of the
action space of the high-resolution lattice

— the state-space of a low-resolution lattice 1s discretized to be a
subset of the possible discretized values of the state variables in the
high-resolution lattice

Carnegie Mellon University 24



Building the Graph

e Multi-resolution lattice used for Urban Challenge:

dense-resolution lattice low-resolution lattice
15 Tinital ' ' 15
initial _initial

36 actions, 24 actions,
32 discrete values of heading 16 discrete values of heading
0.25m discretization for x,y 0.25m discretization for x,y

AN ha marltinlo ID\)DI(’

can also be non-uniform in x,y & v
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Building the Graph

* Properties of multi-resolution lattice:

— utilization of low-resolution lattice: every path that uses only the
action space of the low-resolution lattice is guaranteed to be a
valid path in the multi-resolution lattice

— validity of paths: every path in the multi-resolution lattice is
guaranteed to be a valid path in a lattice that uses only the action
space of the high-resolution lattice
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Building the Graph

 Benefit of the multi-resolution lattice:

Lattice States Expanded | Planning Time (s)
High-resolution 2,933 0.19
Multi-resolution 1,228 0.06
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Searching the Graph

¢ AHYtlme D* [Likhachev et al. ’05].

— anytime incremental version of A*

— anytime: computes the best path it can within provided time and
improves 1t while the robot starts execution.

— incremental: it reuses its previous planning efforts and as a
result, re-computes a solution much faster
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Searching the Graph

* Anytime D* [Likhachev -
set £to large value;
until goal 1s reached

ComputePathwithReuse();e—m—
publish & -suboptimal path for execution;
update the map based on new sensory information;
update current state of the agent;

if significant changes were observed
increase ¢ or replan from scratch;

else
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Searching the Graph
* Anytime behavior of Anytime D*:

cost = 133,736
€=3.0 .
13,000 # expands = 1,715
Y
7))
o)
O
g 11,000 - -
= cost = 77,345
= _
o e=1.0
2 # expands = 14 132 &
9,000
7,000
0 0.2 0.4 0.6

time (s)

Carnegie Mellon University

30



Searching the Graph

* Incremental behavior of Anytime D*:

initial path a path after re-planning
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Searching the Graph

* Performance of Anytime D* depends strongly on
heuristics /4(s): estimates of cost-to-goal

should be consistent and admissible (never overestimate cost-to-goal)

goal
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Searching the Graph

* Performance of Anytime D* depends strongly on
heuristics /4(s): estimates of cost-to-goal

should be consistent and admissible (never overestimate cost-to-goal)

goal
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Searching the Graph

* In our planner: A(s) = max(h,,,.(s), h,,(s)), where

enyv
— h,,..(s) — mechanism-constrained heuristic
— h,, (s) —environment-constrained heuristic

h,,..n(S) — considers only dynamics constraints h,,.(s) — considers only environment
and ignores environment constraints and ignores dynamics

t*‘D
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Searching the Graph

* In our planner: A(s) = max(h,,,.(s), h,,(s)), where

enyv
— h,,..(s) — mechanism-constrained heuristic

— h,, (s) —environment-constrained heuristic

h,,..n(S) — considers only dynamics constraints h,,.(s) — considers only environment
and ignores environment constraints and ignores dynamics
\ |
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Searching the Graph

* In our planner: A(s) = max(h,,,.(s), h,,(s)), where
— h,,..(s) — mechanism-constrained heuristic

— h,, (s) —environment-constrained heuristic

h,,..n(S) — considers only dynamics constraints h,,.(s) — considers only environment
and ignores environment constraints and ignores dynamics
\ |
pre-computed as a table lookup computed online by running
for high-res. lattice a 2D A* with late termination

ot

Closed-form analytical solutions
(Dubins paths [Dubins, 57],
Reeds-Shepp paths [Reeds & Shepp, ‘90]) : >4----@;----1--°* b

nychllenges wing ”
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Searching the Graph
* In our planner: A(s) = max(h,,,..(s), h,,.(S))

e Jh(s) needs to be admissible and consistent
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Searching the Graph
In our planner: A(s) = max(h,,,..(s), h,,.(S))

h(s) needs to be admissible and consistent

ith,,.(s) and h, (s) are admissible and consistent, then
h(s) 1s admissible and consistent (pear, 8]

h,...(s) — cost of a path 1n high-res. lattice with no
obstacles and no boundaries

h,...(S) —admissible and consistent
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Searching the Graph
In our planner: A(s) = max(h,,,..(s), h,,.(S))

h(s) needs to be admissible and consistent

ith,,.(s) and h, (s) are admissible and consistent, then
h(s) 1s admissible and consistent (pear, 8]

h,,(s) — cost of a 2D path of the inner circle of the vehicle
into the center of the goal location

N b NOTamisbe

Af—l)
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Searching the Graph
* In our planner: A(s) = max(h,,,..(s), h,,.(S))

h,,(s) — NOT admissible

* h, (s)—costofa?2D path of the inner circle of the vehicle
into the center of the goal location

GOAL high-cost strip

robot
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Searching the Graph
* In our planner: A(s) = max(h,,,..(s), h,,.(S))

h,,(s) — NOT admissible
 h, (s)— costofa?2D path of the inner circle of the vehicle

eny

into the center of the goal location

according to h,, (s):
cost = average over this box (convolution) cost = average over the trace of inner circle

cost < cost,

FIX: cost = max(cost,cost,)

7 : W
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Searching the Graph
In our planner: A(s) = max(h,,,..(s), h,,.(S))

h,...(s) —admissible and consistent
h,,(s) —admissible and consistent

h(s) — admissible and consistent
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Searching the Graph
* In our planner: A(s) = max(h,,,..(s), h,,.(S))

* h,..(s)—admissible and consistent
* h, (s)—admissible and consistent

* h(s) —admissible and consistent

Theorem. The cost of a path returned by Anytime D* is no more than
¢ times the cost of a least-cost path from the vehicle configuration to
the goal configuration using actions in the multi-resolution lattice,
where ¢ is the current value by which Anytime D* inflates heuristics.
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Searching the Graph

 Benefit of the combined heuristics:
[~

Heuristic States Expanded Planning Time (s)
Environment-constrained only 26,108 1.30
Mechanism-constrained only 124,794 3.49
Combined 2,019 0.06
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Optimizations

* Pre-compute as much as possible

— convolution cells for each action for each nitial heading

B

T Wi
Tz
10
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Optimizations

* Pre-compute as much as possible

— mechanish-constrained heuristics
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Optimizations

 avoid convolutions based on collision checking with inner

and outer circles

-
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Optimizations

 Efficient re-planning by maintaining low-resolution boolean
map of states expanded
— each map update may affect thousands of states
— need to 1terate over those states to see 1f they are effected

— optimization: iterate and update edge costs only when map update
1s 1n the area that have states expanded
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Results

* Plan improvement

Tartanracing, CMU
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Results
* Replanning 1n a large parking lot (200 by 200m)

b

Tartanracing, CMU
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What You Should Know...

 Different types of planning for autonomous driving and how
they interact

 What is multi-resolution lattice

 Different heuristic functions used in Motion Planning
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