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Planning during Execution

* Planning 1s a repeated process!
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Planning during Execution

* Planning 1s a repeated process!

— partially-known environments

— dynamic environments
— imperfect execution of plans

— 1imprecise localization

ATRYV navigating
initially-unknown environment planning map and path
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Planning during Execution

* Planning 1s a repeated process!

— partially-known environments

— dynamic environments
— 1mperfect execution of plans

— 1imprecise localization

planning in dynamic environments

Carnegie Mellon University



Planning during Execution

* Planning 1s a repeated process!

— partially-known environments

— dynamic environments
— 1mperfect execution of plans

— 1imprecise localization

* Need to be able to re-plan fast!

» Several methodologies to achieve this:
— anytime heuristic search: return the best plan possible within T msecs
— 1ncremental heuristic search: speed up search by reusing previous efforts

— real-time heuristic search: plan few steps towards the goal and re-plan later
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Planning during Execution

* Planning 1s a repeated process!

— partially-known environments

— dynamic environments
— 1mperfect execution of plans

— 1imprecise localization

* Need to be able to re-plan fast!

» Several methodologies to achieve this: this class

— anytime heuristic search: return the best plan possible within T msecs
— 1ncremental heuristic search: speed up search by reusing previous efforts

— real-time heuristic search: plan few steps towards the goal and re-plan later

\
next class
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Planning during Execution

* Planning 1s a repeated process!

— partially-known environments

— dynamic environments
— 1mperfect execution of plans

— 1imprecise localization

* Need to be able to re-plan fast!

» Several methodologies to achieve this:
— anytime heuristic search: return the best plan possible within T msecs
— 1ncremental heuristic search: speed up search by reusing previous efforts

— real-time heuristic search: plan few steps towards the goal and re-plan later
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Anytime Heuristic Search: Straw Man Approach

« Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing &

=25

=15

e =1.0

13 expansions
solution=11 moves

15 expansions
solution=11 moves
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solution=10 moves



Anytime Heuristic Search: Straw Man Approach

« Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing &

=25

=15

e =1.0

13 expansions
solution=11 moves

e Inefficient because

15 expansions
solution=11 moves

20 expansions
solution=10 moves

— many state values remain the same between search iterations

— we should be able to reuse the results of previous searches
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Anytime Heuristic Search: Straw Man Approach

« Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing &

=25

=15

e =1.0

13 expansions
solution=11 moves

* Anytime Repairing A* (ARA*)

- efficient version of above that reuses state values between iterations

15 expansions
solution=11 moves

Carnegie Mellon University

20 expansions
solution=10 moves
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A* with Reuse of State Values
 Alternative view of A*

ComputePath function
while(s,,,, 1s not expanded AND OPEN # 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;
insert s into CLOSED;
fot/every successor s of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) + c(s,s);
insert s * into OPEN;

Carnegie Mellon University
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A* with Reuse of State Values
 Alternative view of A*

— v-value — the value of a state

during its expansion (infinite if

ComputePath function state was never expanded)

while(s,,,, 1s not expanded AND OPE
remove s with the smallest + h(s)] from OPEN;,
insert s into CLO

for every successor s’ of s such that s 'not in CLOSED
ifg(s) >g(s) + c(s,s)

g(s’) =g(s) +e(ss);
insert s * into OPEN;
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A* with Reuse of State Values

e Alternative view of A*

all v-values initially are infinite;

ComputePath function
while(s,,,, 1s not expanded AND OPEN # 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;
insert s into CLOSED;

V(s)=g(s);
for every successor s’ of s such that s 'not in CLOSED
ifg(s) >g(s) + c(s,s)

g(s) =g(s) tc(ss);
insert s ” into OPEN;

* g(S’) — mins”epred(s’) V(S ”) T C(S ”’S’)

Carnegie Mellon University
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A* with Reuse of State Values

e Alternative view of A*

all v-values initially are infinite;

ComputePath function
while(s,,,, 1s not expanded AND OPEN # 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

V(s)=8(s);

for every successor s’ of s such that s 'not in CLOSED
ifg(s) >g(s) + c(s,s)

g(s) =g(s) tc(ss);
insert s ” into OPEN;

* g(S’) — mins”epred(s’) V(S ”) T C(S ”’S’) -

Carnegie Mellon University
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A* with Reuse of State Values
 Alternative view of A*

all v-values initially are infinite;

ComputePath function
while(s,,,, 1s not expanded AND OPEN # 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;
insert s into CLOSED;
V(s)=8(s);
for every successor s’ of s such that s 'not in CLOSED
ifg(s) >g(s) + c(s,s)
g(s’) =g(s) +c(s,s);

insert s ” into OPEN;

overconsistent state

° g(S’) = mins " e pred(s’) V(S ”) + C(S ”,S ’ consistent state

 OPEN: a set of states with v(s) > g(s
all other states have v(s) = g(s)

Carnegie Mellon University
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A* with Reuse of State Values
 Alternative view of A*

all v-values initially are infinite;

ComputePath function
while(s,,,, 1s not expanded AND OPEN # 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;
insert s into CLOSED;
V(s)=8(s);
for every successor s’ of s such that s 'not in CLOSED
ifg(s) >g(s) + c(s,s)
g(s’) =g(s) +c(s,s);

insert s ” into OPEN;

overconsistent state

° g(S’) = mins " e pred(s’) V(S ”) + C(S ”,S ’ consistent state

 OPEN: a set of states with v(s) > g(s
all other states have v(s) = g(s) A//.

Carnegie Mellon University
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A* with Reuse of State Values
 Alternative view of A*

all v-values initially are infinite;

ComputePath function
while(s,,,, 1s not expanded AND OPEN # 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;
insert s into CLOSED;

V(s)=g(s);
for every successor s’ of s such that s 'not in CLOSED
ifg(s) >g(s) + c(s,s)

g(s) =g(s) tc(ss);
insert s ” into OPEN;

* g(S’) — mins”epred(s’) V(S ”) T C(S ”’S’)
 OPEN: a set of states with v(s) > g(s)
all other states have v(s) = g(s)

» A* expands overconsistent states in the order of their f-values

Carnegie Mellon University 17



A* with Reuse of State Values
« Making A* reuse old values:

initialize OPEN with all overconsistent states;

ComputePathwithReuse function
while(f(s,,,,) > minimum f-value in OPEN ) <
remove s with the smallest [g(s)+ h(s)] from OPEN;
insert s into CLOSED;
V(s)=8(s);
for every successor s’ of s such that s 'not in CLOSED
ifg(s) >g(s) + c(s,s)
g(s’) =g(s) +c(s,s);
insert s ” into OPEN;

all you need to do to
ake it reuse old values!

* g(S’) — mins”epred(s’) V(S ”) T C(S ”’S’)
 OPEN: a set of states with v(s) > g(s)
all other states have v(s) = g(s)

» A* expands overconsistent states in the order of their f-values

Carnegie Mellon University
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A* with Reuse of State Values

g=1 g=3
v=1 v=23
=0 h=2 h=1 _
SZ > V= o0
=g @KM
% l l | Sgoa
3 //////”
&0
CLOSED = {} g=2 g= oo
_ V= 00 V= 00
OPEN = {54800/ ) ]

next state to expand: s,

g(S’) - IIliIlS " e pred(s’) V(S ”) + C(S ”’S’)
initially OPEN contains all overconsistent states

Carnegie Mellon University 19




A* with Reuse of State Values

g=1 g=3
v=1 v=23

g:0 ]’l:2 N /’l=] g= 5

h‘“/ 2 h=0

Sua ! 51

l - g

G)——@
CLOSED = {s,} g=2 g=35
OPEN = {s..s v=2 |
{ 3 goa# h:2 h:1

next state to expand: S 0al

Carnegie Mellon University 20



A* with Reuse of State Values

g=1 g=3
v=1 v=23
g:0 h=2 N h=1 g= 5
h=3 1 2 h=0
(S ! s
[ L
(50— @
CLOSED = {5, 00} 87 g=>7
OPEN = {s,] V=2 V=
h=2 h=1
done

after ComputePathwithReuse terminates:
all g-values of states are equal to final A* g-values

Carnegie Mellon University 21




A* with Reuse of State Values
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g=2 g=J
v=_2 V= 00
h=2 h=1

we can now compute a least-cost path

Carnegie Mellon University
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A* with Reuse of State Values

« Making weighted A* reuse old values:

initialize OPEN with all overconsistent states;

ComputePathwithReuse function
while(f(s,,,,) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ ¢h(s)] from OPEN;

insert s into CLOSED;

V(s)=8(s);

for every successor s’ of s such that s 'not in CLOSED
ifg(s) > g(s) + c(s,s”)

g(s) = g(s) +c(s,s);
insert s ” into OPEN;

the exact same
thing as with A*

Carnegie Mellon University
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A* with Reuse of State Values
« Making weighted A* reuse old values:

initialize OPEN with all overconsistent states;

ComputePathwithReuse function
while(f(s,,,,) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ ¢h(s)] from OPEN;
insert s into CLOSED;
V(s)=8(s);
for every successor s’ of s
ifg(s) > g(s) + c(s,s”)

g(s) = g(s) +c(s,s);
if s 'not in CLOSED then insert s’ into OPEN;

the exact same
thing as with A*

To maintain the invariant:
g(s’) = min, " pred(s’) v(is”) +ces”s’

Carnegie Mellon University 24



Anytime Repairing A* (ARA™)
« Efficient series of weighted A* searches with decreasing ¢:

set £to large value;
g(8..J = 0; v-values of all states are set to infinity; OPEN = {s .}
while £> 1

CLOSED = {};

ComputePathwithReuse();

publish current & suboptimal solution;

decrease &
initialize OPEN with all overconsistent states;

Carnegie Mellon University
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ARA*
« Efficient series of weighted A* searches with decreasing ¢:

set £to large value;
g(8..J = 0; v-values of all states are set to infinity; OPEN = {s .}
while £> 1

CLOSED = {};

ComputePathwithReuse();

publish current & suboptimal solution;

decrease &
initialize OPEN with all overconsistent states;

need to keep track of those

Carnegie Mellon University 26



ARA*

« Efficient series of weighted A* searches with decreasing ¢:

initialize OPEN with all overconsistent states;

ComputePathwithReuse function
while(f(s,,,,) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ ¢h(s)] from OPEN;,
insert s into CLOSED;
V(s)=8(s);
for every successor s’ of s
ifg(s) > g(s) + c(s,s”)

g(s) = g(s) +c(s,s);
if s " not in CLOSED then insert s’ into OPEN;

Carnegie Mellon University 27



ARA*

Efficient series of weighted A* searches with decreasing e:

initialize OPEN with all overconsistent states;

ComputePathwithReuse function
while(f(s,,,,) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ ¢h(s)] from OPEN;,
insert s into CLOSED;
v(s)=g(s);
for every successor s’ of s
ifg(s’) > g(s) +c(s,s)
g(s) = g(s) +c(s.s);
if s 'not in CLOSED then insert s " into OPEN;,
otherwise insert s " into INCONS

* OPEN U INCONS = all overconsistent states

Carnegie Mellon University
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ARA*
« Efficient series of weighted A* searches with decreasing ¢:

set £to large value;
g(8..J = 0; v-values of all states are set to infinity; OPEN = {s .}

while > 1
CLOSED = {}; INCONS = {},
ComputePathwithReuse();
publish current & suboptimal solution;

decrease &
initialize OPEN = OPEN U INCONS;

all overconsistent states
(exactly what we need!)

Carnegie Mellon University 29



ARA*

e A series of weighted A* searches
e=25 e=1.5 e=1.0

13 expansions 15 expansions 20 expansions
solution=11 moves solution=11 moves solution=10 moves
e ARA¥*
=25 e=1.5 e=1.0

13 expansions 1 expansion 9 expansions
solution=11 moves solution=11 moves solution=10 moves

Carnegie Mellon University 30



Anytime Heuristic Search in Action

* Anytime D* during Urban Challenge race

Carnegie Mellon University
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Planning during Execution

* Planning 1s a repeated process!

— partially-known environments

— dynamic environments
— 1mperfect execution of plans

— 1imprecise localization

* Need to be able to re-plan fast!

» Several methodologies to achieve this:
— anytime heuristic search: return the best plan possible within T msecs
— 1ncremental heuristic search: speed up search by reusing previous efforts

— real-time heuristic search: plan few steps towards the goal and re-plan later

Carnegie Mellon University 32



Incremental Heuristic Search

* Reuse state values from previous searches
cost of least-cost paths to s, initially
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Incremental Heuristic Search

* Reuse state values from previous searches

cost of least-cost paths to s, initially
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Incremental Heuristic Search
* Reuse state values from previous searches

cost of least-cost paths to s, initially
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These costs are optimal g-values if search is
done backwards

Can we reuse these g-values from one search to
goal another? — incremental A*
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Incremental Heuristic Search

* Reuse state values from previous searches

cost of least-cost paths to s, initially

14113 [12]11]10] 9 716 6
14113121110
14113121110
14]13]12]11]10
1411311211110
14113112 )11 [10
14113112 (11

6
5
A
3
2
1
T
3
5
6

[o2e]) (wo] [0 e] [we] (wa] (wo]

al

i

14113112 )11]10
1411312 )11]10
141131211 ]10( 10
14113 )12 11 11|11
14113 (12 ] 12112

I
18 IS famp16--15--14"| 14

cost of least-cost paths to

14113 [12]11]10] 9
1413 ]12]11[10] 9
14113[12]11]10] 9
141312 ]11[10] 9
9
9
9

2

A

K] =N (7] FN (FF] (151 161 6] (6] ] [¥%] I
1o [on | uw ro]~]—|— o|uw | &= oy
on
1 (=Y (T F=N (5] [[S] 1S Y R (] [FF] NN 3 (o
1= (] Y [FV] 6] [ 1] (1] (6] (S [F%] I TN ‘=N
N [y} |91 H=N [US] (FF] [95] [F¥] [FF] (9'%] (FF] BN 0. [}

SR (el (O] BN (O8] (VU] [UN] (UN] (ON) N) LUN] BEN O] (ot

D= | [l onlon lah]onlon a fon lnloalon [ S
Qo fon | s e e s e e | [ fon [on

6
6
6
6
6
0
6
6
6
6
7
8

)

14]113)12)11]10
14113 [12])11[10
14131211

8
8
8
8
8
8

=~ |~ [
(@)% (@) (@)} [o2] [o)] (@)} (@)}

]

()

[oa] D o WY BN (DR | U] ot ST Lol [ RO LVR] PN 8

[ore] D] (@)Y (W] FEN FEN PN PR A A EE R B )

[*ls] EN ] (o) L] HEN (U9 | S0] | R0 (R (W) | (U] Wi 4
(oo RN f= []] P LUSY [%] (9% (O] (%] %) IS NN B

SO~ |n | F= |l [ == = |2 | | = |

[o2e] RN ()W W] FEN LUV [S] o ol (ol (RS LB FEN 8

[oa] CAN [yl L] Y L] | SN | B R S0 ) [ SN ) LS ] NS (9

oo |~3|an[n|n]on [n]nln fonfon [un|nln g
ool~alonfon]| o [ua|ua|us s fua ua| e o

Carnegie Mellon University 36



Incremental Heuristic Search
* Reuse state values from previous searches

initial search by backwards A* initial search by D* Lite

second search by backwards A* second search by D* Lite

—_—
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Incremental Heuristic Search

* Three general approaches to reusing previous search efforts:

— Identifying the boundaries of the previously generated search tree that

remains to be valid and re-starting the search from it

» Differential A* [Trovato & Dorst, ‘02], Fringe-Saving A* [Sun & Koenig, ’07], Tree-restoring
weighted A* [Gochev et al., ‘14]

— Fixing the previously generated search tree by re-using as much of it as

possible
« D* [Stentz, *95], D* Lite [Koenig & Likhachev, ’02], Anytime D* [Likhachev et al., ‘08]

— Restarting search from scratch but “learning” heuristics values

» Hierarchical A* [Holte et al., 96], Adaptive A* [Koenig & Likhachev, ‘06], Generalized
Adaptive A* [Sun et al., 08]
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Incremental Heuristic Search

* Three general approaches to reusing previous search efforts:

— Identifying the boundaries of the previously generated search tree that

remains to be valid and re-starting the search from it
» Differential A* [Trovato & Dorst, ‘02], Frinoe-Coxin~ A* TQun & Koenig, ’07], Tree-restoring
weighted A* [Gochev et al., ‘14] .
© this lecture

/

— Fixing the previously generated search tree by re-using as much of it as

possible
« D* [Stentz, *95], D* Lite [Koenig & Likhachev, ’02], Anytime D* [Likhachev et al., ‘08]

— Restarting search from scratch but “learning” heuristics values
» Hierarchical A* [Holte et al., 96], Adaptive A* [Koenig & Likhachev, ‘06], Generalized
Adaptive A* [Sun et al., 08] \

next lecture
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A* with Reuse of State Values

* So far, ComputePathwithReuse() could only deal with
states whose v(s) > g(s) (overconsistent or consistent)

* Edge cost increases may introduce underconsistent states

(V(s) < g(s))

1 3
1 3
2 1

S < 0Q
1

g
v
h

@é@\z

1

%@

V= 2 V= o0

h=2 h=1

<” 0Q
I I
w D

Q’;

5
5
0

U)

goa
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A* with Reuse of State Values

* So far, ComputePathwithReuse() could only deal with
states whose v(s) > g(s) (overconsistent or consistent)

* Edge cost increases may introduce underconsistent states

(V(s) < g(s))

suppose the robot
updates an edge cost

g=2 g=>J5
y=2 V= o0
h=2 h=1
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A* with Reuse of State Values

» Edge cost increases may introduce underconsistent states (v(s) < g(s))

ComputePathwithReuse invariant:
g(S’) = mins ”e pred(s’) V(S ”) T C(S ”’S’)

l

need to update g(s,)

g=1 g=3

v=1 v=23
RO O
@ 1 Sgoa

v= 2 V= o0

h=2 h=1
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A* with Reuse of State Values

» Edge cost increases may introduce underconsistent states (v(s) < g(s))

ComputePathwithReuse invariant:
g(S’) = mins ”e pred(s’) V(S ”) T C(S ”’S’)

l

need to update g(s,)

l

v(sy) < g(sy)

g=1I I

v=1 v=23
g=0 h=2 A h=1 g=35
D@,
@ 1 Sgoa

V= 2 V= o0

h=2 h=1
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A* with Reuse of State Values

» Edge cost increases may introduce underconsistent states (v(s) < g(s))

ComputePathwithReuse invariant:
g(S’) = mins ”e pred(s’) V(S ”) T C(S ”’S’)

* Fix these by setting v(s) = o

g=1 g=>
v=1 VZY\OO
D S @,
@ 1 Sgoa
v= 2 V= o0
h=2 h=1
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A* with Reuse of State Values

» Edge cost increases may introduce underconsistent states (v(s) < g(s))
ComputePathwithReuse invariant:
g(s) =ming._ 46y V(S") T c(s”,s))

« Makes s overconsistent or consistent v(s) > g(s)

* Fix these by setting v(s) = o

1
1
2

g b)
\Y% 0.0
h Ji

@*@xi

1

%@

v2 V= o0

h=2 h=1

<”0Q

Il I

w OO
bﬁ%
1 1

Q’;

5
5
0

U)

goa
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A* with Reuse of State Values

Edge cost increases may introduce underconsistent states (v(s) < g(s))
ComputePathwithReuse invariant:
g(s) =ming._ 46y V(S") T c(s”,s))
Makes s overconsistent or consistent v(s) > g(s)

Fix these by setting v(s) = oo

Propagate the changes

1
1
2

g b)
\Y% 0.0
h 1

@%@Kz

1

%@

v2 V= o0

h=2 h=1

S < 0Q
1

< update g(sgoa,)

<”0Q
I I
w SO

Q’;

o0
5
0

U)

goa
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A* with Reuse of State Values

Edge cost increases may introduce underconsistent states (v(s) < g(s))
ComputePathwithReuse invariant:
g(s) =ming._ 46y V(S") T c(s”,s))
Makes s overconsistent or consistent v(s) > g(s)

Fix these by setting v(s) = oo

Propagate the changes

no more underconsistent states!

g=1 5
v=1 00
h=2 1

@%@Kz

1

%@

v2 V= o0

h=2 h=1

<”0o

I

w SO
wﬁ%
I

Q?

0.0
o0 < ﬁx Sgoal
0

U)

goa
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A* with Reuse of State Values

Edge cost increases may introduce underconsistent states (v(s) < g(s))
ComputePathwithReuse invariant:
g(s) =ming._ 46y V(S") T c(s”,s))
Makes s overconsistent or consistent v(s) > g(s)

Fix these by setting v(s) = oo

Propagate the changes

no more underconsistent states!

1

w2

g=1 g=>

v=1 V= o0
g=0 h=2 h=1 g=6
v=0 @—» V= 00

/ -
é@
\ expand s;

V= 2 v=23
h=2 h=1
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A* with Reuse of State Values

Edge cost increases may introduce underconsistent states (v(s) < g(s))
ComputePathwithReuse invariant:
g(s) =ming._ 46y V(S") T c(s”,s))
Makes s overconsistent or consistent v(s) > g(s)

Fix these by setting v(s) = oo

Propagate the changes

no more underconsistent states!

g=1 5
v=1 00
h=2 1

@*@xi

1

<”0o

I

w SO
wﬁ%
I

Q?

6
6
0

U)

goa

\ expand Sgoal
% @

V= 2 y= 5
h=2 h=1
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A* with Reuse of State Values

Edge cost increases may introduce underconsistent states (v(s) < g(s))

after ComputePathwithReuse terminates:
all g-values of states are equal to final A* g-values

Fix these by setting v(s) = oo

Makes s overconsistent or consis

Propagate the changes

A 4
we can backtrack an optimal path
start at s,,,, proceed to pred that minimizes g+c
g=>

g=1
v=1 V= o0
h=2 h=1

bﬁ%
S oo

U
N
o

goa

|

NNl

g=2 g=>J5
y=2 v=23
h=2 h=1
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A* with Reuse of State Values

Edge cost increases may introduce underconsistent states (v(s) < g(s))

after ComputePathwithReuse terminates:
all g-values of states are equal to final A* g-values

Fix these by setting v(s) = oo

Makes s overconsistent or consis

Propagate the changes

A 4
we can backtrack an optimal path
start at s,,,, proceed to pred that minimizes g+c
g=>

g=1
v=1 V= o0
h=2 h=1

g=2 g=>J5
y=2 v=23
h=2 h=1
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D* Lite
e Optimal re-planning algorithm

« Simpler and with nicer theoretical properties version of
D*

until goal is reached
ComputePathwithReuse(); /modified to fix underconsistent states
publish optimal path;
follow the path until map is updated with new sensor information;
update the corresponding edge costs;
set sy, to the current state of the agent;

Carnegie Mellon University
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D* Lite
e Optimal re-planning algorithm

« Simpler and with nicer theoretical properties version of
D*

until goal is reached
ComputePathwithReuse(); /modified to fix underconsistent states
publish optimal path;
follow the path until map is updated with new sensor information;
update the corresponding edge costs;
set sy, to the current state of the agent;

Important detail! search is done backwards:
search starts at s,,,, and searhes towards sg,,,

This way, root of the search tree remains the same and g-values are more likely to remain

the same in between two calls to ComputePathwithReuse
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Anytime Incremental Heuristic Search
* Anytime D*:
— decrease ¢ and update edge costs at the same time

— re-compute a path by reusing previous state-values

set £to large value;

until goal is reached
ComputePathwithReuse(); /modified to fix underconsistent states
publish & -suboptimal path;
follow the path until map is updated with new sensor information;
update the corresponding edge costs;
set sy, t0 the current state of the agent;
if significant changes were observed

increase ¢ or replan from scratch; -
else

decrease &
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Other Uses of Incremental Heuristic Search

 Whenever planning is a repeated process:
— 1mproving a solution (e.g., in anytime planning)
— re-planning in dynamic and previously unknown environments
— adaptive discretization
— hierarchical planning
— multi-robot planning
— planning for contingencies

— many other planning problems can be solved via iterative planning
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What You Should Know...

The alternative formulation of A* that corresponds to a series of expansions
of inconsistent states (states whose values are no longer consistent with their
SUCCESSOrS)

How ARA* works

What 1s an incremental search (D*/D* Lite) and when it 1s applicable and
when it 1s not (i.e., its pros and cons)

What is anytime incremental search (Anytime D*) and when it is applicable
and when 1t 1s not (i.e., its pros and cons)
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