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• Full-body planning

• 12 Dimensions
(3D base pose,   
1D torso height,
6DOF object pose, 
2 redundant DOFs 
in arms)

Start state

Goal state

Example problem: move picture frame on the table

Design of Informative Heuristics



Design of Informative Heuristics

• For grid-based navigation:

– Euclidean distance

– Manhattan distance: h(x,y) = abs(x-xgoal) + abs(y-ygoal)

– Diagonal distance: h(x,y) = max(abs(x-xgoal), abs(y-ygoal))

– More informed distances???

Carnegie Mellon University

Which heuristics are admissible for

4-connected grid?

8-connected grid?



Design of Informative Heuristics

• For lattice-based 3D (x,y,Ѳ) navigation:

Carnegie Mellon University

Any ideas?



Design of Informative Heuristics

• For lattice-based 3D (x,y,Ѳ) navigation:

– 2D (x,y) distance accounting for obstacles (single Dijkstra’s on 2D 

grid cell starting at goalcell will give us these values) 
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Any problems where it will be highly uninformative?



Design of Informative Heuristics

• For lattice-based 3D (x,y,Ѳ) navigation:

– 2D (x,y) distance accounting for obstacles (single Dijkstra’s on 2D 

grid cell starting at goalcell will give us these values) 

Carnegie Mellon University

Any problems where it will be highly uninformative?

Any heuristic functions 

that will guide search well 

in this example?



Design of Informative Heuristics

• 20DoF Planar arm planning (forget optimal A*, use weighted A*):
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Design of Informative Heuristics

• 20DoF Planar arm planning (forget optimal A*, use weighted A*):

– 2D end-effector distance accounting for obstacles

Carnegie Mellon University

Example where it will miserably fail?



Design of Informative Heuristics

• Arm planning in 3D:

Carnegie Mellon University

Any ideas?



Design of Informative Heuristics

• Arm planning in 3D:

– 3D (x,y,z) end-effector distance accounting for obstacles

Carnegie Mellon University

Any ideas?
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Few Properties of Heuristic Functions

• Useful properties to know:

- h1(s), h2(s) – consistent, then: 

h(s) = max(h1(s),h2(s)) – consistent

- if A* uses ε-consistent heuristics: 

h(sgoal) = 0 and h(s) ≤ ε c(s,succ(s)) + h(succ(s) for all s≠sgoal, 

then A* is ε-suboptimal:

cost(solution) ≤ ε cost(optimal solution)

- weighted A* is A* with ε-consistent heuristics

- h1(s), h2(s) – consistent, then: 

h(s) = h1(s)+h2(s) – ε-consistent
Carnegie Mellon University
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Few Properties of Heuristic Functions

• Useful properties to know:

- h1(s), h2(s) – consistent, then: 

h(s) = max(h1(s),h2(s)) – consistent

- if A* uses ε-consistent heuristics: 

h(sgoal) = 0 and h(s) ≤ ε c(s,succ(s)) + h(succ(s) for all s≠sgoal, 

then A* is ε-suboptimal:

cost(solution) ≤ ε cost(optimal solution)

- weighted A* is A* with ε-consistent heuristics

- h1(s), h2(s) – consistent, then: 

h(s) = h1(s)+h2(s) – ε-consistent
Carnegie Mellon University

Proof?

What is ε? Proof?
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• Full-body planning

• 12 Dimensions
(3D base pose,   
1D torso height,
6DOF object pose, 
2 redundant DOFs 
in arms)

Start state

Goal state

Example problem: move picture frame on the table

Back to the Example
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• h0: base distance
– 2D BFS from goal state 

Admissible and Consistent Heuristic

Back to the Example

Do you think it will guide search well?

Any other ideas for good heuristics?
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• h1: base distance + object 
orientation difference with goal 

• h2: base distance + object 
orientation difference with vertical

Inadmissible Heuristics

Back to the Example
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• h1: base distance + object 
orientation difference with goal 

• h2: base distance + object 
orientation difference with vertical

More generally: we can often easily generate N arbitrary heuristic functions that estimate costs-to-goal

Solutions to N lower-dimensional manifolds

Solutions to N problems with different constraints relaxed

….

Back to the Example
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Can we utilize a bunch of inadmissible heuristics simultaneously, 
leveraging their individual strengths while preserving guarantees on 

completeness and bounded sub-optimality? 

Utilizing Multiple Heuristic Functions
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Can we utilize a bunch of inadmissible heuristics simultaneously, 
leveraging their individual strengths while preserving guarantees on 

completeness and bounded sub-optimality? 

Utilizing Multiple Heuristic Functions

Combining multiple heuristics into one (e.g., taking max) 

is often inadequate

- information is lost

- creates local minima

- requires all heuristics to be admissible  
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Inad. Search 1 Inad. Search 2 Inad. Search 3

priority queue: OPEN1

key = g + w1*h1

priority queue: OPEN2

key = g + w1*h2

priority queue: OPEN3

key = g + w1*h3

• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal

Multi-Heuristics A*: version 1

Within the while loop of the ComputePath function:

for i=1…N   

remove s with the smallest [f(s) = g(s)+w1*h(s)] from OPENi ;

expand s;
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Inad. Search 1 Inad. Search 2 Inad. Search 3

priority queue: OPEN1

key = g + w1*h1

priority queue: OPEN2

key = g + w1*h2

priority queue: OPEN3

key = g + w1*h3

• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal

Problems:
• Each search has its own local minima
• N times more work
• No completeness guarantees or bounds on solution quality

Multi-Heuristics A*: version 1
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Inad. Search 1 Inad. Search 2 Inad. Search 3

priority queue: OPEN1

key = g + w1*h1

priority queue: OPEN2

key = g + w1*h2

priority queue: OPEN3

key = g + w1*h3

• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal
• Key Idea #1: Share information (g-values) between searches!

found 
paths

found 
paths

Multi-Heuristics A*: version 2

Within the while loop of the ComputePath function (note: CLOSED is shared):

for i=1…N   

remove s with the smallest [f(s) = g(s)+w1*h(s)] from OPENi ;

expand s and also insert/update its successors into all other OPEN lists;
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Inad. Search 1 Inad. Search 2 Inad. Search 3

priority queue: OPEN1

key = g + w1*h1

priority queue: OPEN2

key = g + w1*h2

priority queue: OPEN3

key = g + w1*h3

• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal
• Key Idea #1: Share information (g-values) between searches!
Benefits:
• Searches help each other to circumvent local minima
• States are expanded at most once across ALL searches
Remaining Problem:
• No completeness guarantees or bounds on solution quality

found 
paths

found 
paths

Multi-Heuristics A*: version 2
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Inad. Search 1 Inad. Search 2 Inad. Search 3

priority queue: OPEN1

key = g + w1*h1

priority queue: OPEN2

key = g + w1*h2

priority queue: OPEN3

key = g + w1*h3

• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal
• Key Idea #1: Share information (g-values) between searches!
• Key Idea #2: Search with admissible heuristics controls expansions
Benefits:
• Algorithm is complete and provides bounds on solution quality

Anchor Search 
priority queue: OPEN0

key = g + w1*h0, h0-admissible

found 
paths

found 
paths

Multi-Heuristics A* [Aine et al.,’14]
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• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal
• Key Idea #1: Share information (g-values) between searches!
• Key Idea #2: Search with admissible heuristics controls expansions
Benefits:
• Algorithm is complete and provides bounds on solution quality

Multi-Heuristics A* [Aine et al.,’14]
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• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal
• Key Idea #1: Share information (g-values) between searches!
• Key Idea #2: Search with admissible heuristics controls expansions
Benefits:
• Algorithm is complete and provides bounds on solution quality

Multi-Heuristics A* [Aine et al.,’14]

Within the while loop of the ComputePath function

(note: CLOSED is shared among searches 1…N. Search 0 has its own CLOSED):

for i=1…N   

if(min. f-value in OPENi ≤ w2* min. f-value in OPEN0 )

remove s with the smallest [f(s) = g(s)+w1*hi(s)] from OPENi ;

expand s and also insert/update its successors into all other OPEN lists;

else

remove s with the smallest [f(s) = g(s)+w1*h0(s)] from OPEN0 ;

expand s and also insert/update its successors into all other OPEN lists;
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Multi-Heuristics A* [Aine et al.,’14]
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Within the while loop of the ComputePath function

(note: CLOSED is shared among searches 1…N. Search 0 has its own CLOSED):

for i=1…N   

if(min. f-value in OPENi ≤ w2* min. f-value in OPEN0 )

remove s with the smallest [f(s) = g(s)+w1*hi(s)] from OPENi ;

expand s and also insert/update its successors into all other OPEN lists;

else

remove s with the smallest [f(s) = g(s)+w1*h0(s)] from OPEN0 ;

expand s and also insert/update its successors into all other OPEN lists;

• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal
• Key Idea #1: Share information (g-values) between searches!
• Key Idea #2: Search with admissible heuristics controls expansions
Benefits:
• Algorithm is complete and provides bounds on solution quality

Multi-Heuristics A* [Aine et al.,’14]

Theorem 1: min. key of OPEN0 <= w1*optimal solution cost 

Theorem 2: min. key of OPENi <= w2*w1*optimal solution cost 

Theorem 3: The algorithm is complete 

and the cost of the found solution is no more than 

w2*w1*optimal solution cost 

Theorem 4: Each state is expanded at most twice: 

at most once by one of the inadmissible searches 

and at most once by the Anchor search 
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• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal
• Key Idea #1: Share information (g-values) between searches!
• Key Idea #2 Search with admissible heuristics controls expansions

Multi-Heuristics A* [Aine et al.,’14]
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• Examples of heuristic functions 

– for X-connected grids

– For higher dimensional planning problems derived by 
lower-dimensional search

• Be able to come up with a good heuristic function 
for a given problem

• Properties of heuristic functions

• How Multi-heuristic A* works

What You Should Know…


