
16-782

Planning & Decision-making in Robotics

Search Algorithms:

Heuristic Functions, Multi-Heuristic A*

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

Carnegie Mellon University 2

• Full-body planning

• 12 Dimensions
(3D base pose,
1D torso height,
6DOF object pose,
2 redundant DOFs
in arms)

Start state

Goal state

Example problem: move picture frame on the table

Design of Informative Heuristics

Design of Informative Heuristics

• For grid-based navigation:

– Euclidean distance

– Manhattan distance: h(x,y) = abs(x-xgoal) + abs(y-ygoal)

– Diagonal distance: h(x,y) = max(abs(x-xgoal), abs(y-ygoal))

– More informed distances???

Carnegie Mellon University

Which heuristics are admissible for

4-connected grid?

8-connected grid?

Design of Informative Heuristics

• For lattice-based 3D (x,y,Ѳ) navigation:

Carnegie Mellon University

Any ideas?

Design of Informative Heuristics

• For lattice-based 3D (x,y,Ѳ) navigation:

– 2D (x,y) distance accounting for obstacles (single Dijkstra’s on 2D

grid cell starting at goalcell will give us these values)

Carnegie Mellon University

Design of Informative Heuristics

• For lattice-based 3D (x,y,Ѳ) navigation:

– 2D (x,y) distance accounting for obstacles (single Dijkstra’s on 2D

grid cell starting at goalcell will give us these values)

Carnegie Mellon University

Any problems where it will be highly uninformative?

Design of Informative Heuristics

• For lattice-based 3D (x,y,Ѳ) navigation:

– 2D (x,y) distance accounting for obstacles (single Dijkstra’s on 2D

grid cell starting at goalcell will give us these values)

Carnegie Mellon University

Any problems where it will be highly uninformative?

Any heuristic functions

that will guide search well

in this example?

Design of Informative Heuristics

• 20DoF Planar arm planning (forget optimal A*, use weighted A*):

Carnegie Mellon University

Design of Informative Heuristics

• 20DoF Planar arm planning (forget optimal A*, use weighted A*):

Carnegie Mellon University

Design of Informative Heuristics

• 20DoF Planar arm planning (forget optimal A*, use weighted A*):

Carnegie Mellon University

Any ideas?

Design of Informative Heuristics

• 20DoF Planar arm planning (forget optimal A*, use weighted A*):

– 2D end-effector distance accounting for obstacles

Carnegie Mellon University

Design of Informative Heuristics

• 20DoF Planar arm planning (forget optimal A*, use weighted A*):

– 2D end-effector distance accounting for obstacles

Carnegie Mellon University

Example where it will miserably fail?

Design of Informative Heuristics

• Arm planning in 3D:

Carnegie Mellon University

Any ideas?

Design of Informative Heuristics

• Arm planning in 3D:

– 3D (x,y,z) end-effector distance accounting for obstacles

Carnegie Mellon University

Any ideas?

15

Few Properties of Heuristic Functions

• Useful properties to know:

- h1(s), h2(s) – consistent, then:

h(s) = max(h1(s),h2(s)) – consistent

- if A* uses ε-consistent heuristics:

h(sgoal) = 0 and h(s) ≤ ε c(s,succ(s)) + h(succ(s) for all s≠sgoal,

then A* is ε-suboptimal:

cost(solution) ≤ ε cost(optimal solution)

- weighted A* is A* with ε-consistent heuristics

- h1(s), h2(s) – consistent, then:

h(s) = h1(s)+h2(s) – ε-consistent
Carnegie Mellon University

16

Few Properties of Heuristic Functions

• Useful properties to know:

- h1(s), h2(s) – consistent, then:

h(s) = max(h1(s),h2(s)) – consistent

- if A* uses ε-consistent heuristics:

h(sgoal) = 0 and h(s) ≤ ε c(s,succ(s)) + h(succ(s) for all s≠sgoal,

then A* is ε-suboptimal:

cost(solution) ≤ ε cost(optimal solution)

- weighted A* is A* with ε-consistent heuristics

- h1(s), h2(s) – consistent, then:

h(s) = h1(s)+h2(s) – ε-consistent
Carnegie Mellon University

Proof?

What is ε? Proof?

Carnegie Mellon University 17

• Full-body planning

• 12 Dimensions
(3D base pose,
1D torso height,
6DOF object pose,
2 redundant DOFs
in arms)

Start state

Goal state

Example problem: move picture frame on the table

Back to the Example

Carnegie Mellon University 18

• h0: base distance
– 2D BFS from goal state

Admissible and Consistent Heuristic

Back to the Example

Do you think it will guide search well?

Any other ideas for good heuristics?

Carnegie Mellon University 19

• h1: base distance + object
orientation difference with goal

• h2: base distance + object
orientation difference with vertical

Inadmissible Heuristics

Back to the Example

Carnegie Mellon University 20

• h1: base distance + object
orientation difference with goal

• h2: base distance + object
orientation difference with vertical

More generally: we can often easily generate N arbitrary heuristic functions that estimate costs-to-goal

Solutions to N lower-dimensional manifolds

Solutions to N problems with different constraints relaxed

….

Back to the Example

Carnegie Mellon University 21

Can we utilize a bunch of inadmissible heuristics simultaneously,
leveraging their individual strengths while preserving guarantees on

completeness and bounded sub-optimality?

Utilizing Multiple Heuristic Functions

Carnegie Mellon University 22

Can we utilize a bunch of inadmissible heuristics simultaneously,
leveraging their individual strengths while preserving guarantees on

completeness and bounded sub-optimality?

Utilizing Multiple Heuristic Functions

Combining multiple heuristics into one (e.g., taking max)

is often inadequate

- information is lost

- creates local minima

- requires all heuristics to be admissible

Carnegie Mellon University 23

Inad. Search 1 Inad. Search 2 Inad. Search 3

priority queue: OPEN1

key = g + w1*h1

priority queue: OPEN2

key = g + w1*h2

priority queue: OPEN3

key = g + w1*h3

• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal

Multi-Heuristics A*: version 1

Within the while loop of the ComputePath function:

for i=1…N

remove s with the smallest [f(s) = g(s)+w1*h(s)] from OPENi ;

expand s;

Carnegie Mellon University 24

Inad. Search 1 Inad. Search 2 Inad. Search 3

priority queue: OPEN1

key = g + w1*h1

priority queue: OPEN2

key = g + w1*h2

priority queue: OPEN3

key = g + w1*h3

• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal

Problems:
• Each search has its own local minima
• N times more work
• No completeness guarantees or bounds on solution quality

Multi-Heuristics A*: version 1

Carnegie Mellon University 25

Inad. Search 1 Inad. Search 2 Inad. Search 3

priority queue: OPEN1

key = g + w1*h1

priority queue: OPEN2

key = g + w1*h2

priority queue: OPEN3

key = g + w1*h3

• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal
• Key Idea #1: Share information (g-values) between searches!

found
paths

found
paths

Multi-Heuristics A*: version 2

Within the while loop of the ComputePath function (note: CLOSED is shared):

for i=1…N

remove s with the smallest [f(s) = g(s)+w1*h(s)] from OPENi ;

expand s and also insert/update its successors into all other OPEN lists;

Carnegie Mellon University 26

Inad. Search 1 Inad. Search 2 Inad. Search 3

priority queue: OPEN1

key = g + w1*h1

priority queue: OPEN2

key = g + w1*h2

priority queue: OPEN3

key = g + w1*h3

• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal
• Key Idea #1: Share information (g-values) between searches!
Benefits:
• Searches help each other to circumvent local minima
• States are expanded at most once across ALL searches
Remaining Problem:
• No completeness guarantees or bounds on solution quality

found
paths

found
paths

Multi-Heuristics A*: version 2

Carnegie Mellon University 27

Inad. Search 1 Inad. Search 2 Inad. Search 3

priority queue: OPEN1

key = g + w1*h1

priority queue: OPEN2

key = g + w1*h2

priority queue: OPEN3

key = g + w1*h3

• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal
• Key Idea #1: Share information (g-values) between searches!
• Key Idea #2: Search with admissible heuristics controls expansions
Benefits:
• Algorithm is complete and provides bounds on solution quality

Anchor Search
priority queue: OPEN0

key = g + w1*h0, h0-admissible

found
paths

found
paths

Multi-Heuristics A* [Aine et al.,’14]

Carnegie Mellon University 28

• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal
• Key Idea #1: Share information (g-values) between searches!
• Key Idea #2: Search with admissible heuristics controls expansions
Benefits:
• Algorithm is complete and provides bounds on solution quality

Multi-Heuristics A* [Aine et al.,’14]

Carnegie Mellon University 29

• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal
• Key Idea #1: Share information (g-values) between searches!
• Key Idea #2: Search with admissible heuristics controls expansions
Benefits:
• Algorithm is complete and provides bounds on solution quality

Multi-Heuristics A* [Aine et al.,’14]

Within the while loop of the ComputePath function

(note: CLOSED is shared among searches 1…N. Search 0 has its own CLOSED):

for i=1…N

if(min. f-value in OPENi ≤ w2* min. f-value in OPEN0)

remove s with the smallest [f(s) = g(s)+w1*hi(s)] from OPENi ;

expand s and also insert/update its successors into all other OPEN lists;

else

remove s with the smallest [f(s) = g(s)+w1*h0(s)] from OPEN0 ;

expand s and also insert/update its successors into all other OPEN lists;

Carnegie Mellon University 30

Multi-Heuristics A* [Aine et al.,’14]

Sst

S300

S101

S1

S301 S400

S102

S2 S100

S200 Sgoal

…

…

…

200

200 200 200

200

100 100 100 100 100

200

1

1 1 1

h=102

h=300 h=19,800 h=200

h=10,000 h=9,900 h=100

h=101 h=100 h=1

h1=101 h1=100 h1=1

h1=∞ h1=∞ h1=∞

h1=∞

h1=∞ h1=∞ h1=∞

h2=∞ h2=∞ h2=∞

h2=∞

h2=101 h2=100 h2=1

h2=∞ h2=∞ h2=∞

Carnegie Mellon University 31

Within the while loop of the ComputePath function

(note: CLOSED is shared among searches 1…N. Search 0 has its own CLOSED):

for i=1…N

if(min. f-value in OPENi ≤ w2* min. f-value in OPEN0)

remove s with the smallest [f(s) = g(s)+w1*hi(s)] from OPENi ;

expand s and also insert/update its successors into all other OPEN lists;

else

remove s with the smallest [f(s) = g(s)+w1*h0(s)] from OPEN0 ;

expand s and also insert/update its successors into all other OPEN lists;

• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal
• Key Idea #1: Share information (g-values) between searches!
• Key Idea #2: Search with admissible heuristics controls expansions
Benefits:
• Algorithm is complete and provides bounds on solution quality

Multi-Heuristics A* [Aine et al.,’14]

Theorem 1: min. key of OPEN0 <= w1*optimal solution cost

Theorem 2: min. key of OPENi <= w2*w1*optimal solution cost

Theorem 3: The algorithm is complete

and the cost of the found solution is no more than

w2*w1*optimal solution cost

Theorem 4: Each state is expanded at most twice:

at most once by one of the inadmissible searches

and at most once by the Anchor search

Carnegie Mellon University 32

• Given N inadmissible heuristics
• Run N independent searches
• Hope one of them reaches goal
• Key Idea #1: Share information (g-values) between searches!
• Key Idea #2 Search with admissible heuristics controls expansions

Multi-Heuristics A* [Aine et al.,’14]

Carnegie Mellon University 33

• Examples of heuristic functions

– for X-connected grids

– For higher dimensional planning problems derived by
lower-dimensional search

• Be able to come up with a good heuristic function
for a given problem

• Properties of heuristic functions

• How Multi-heuristic A* works

What You Should Know…

