16-782
Planning & Decision-making in Robotics

Planning under Uncertainty:
Expected Formulation, Solving MDPs

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

Minimax Formulation 1s Often Too Conservative

Example:

moving over the hill has 10% chance of slipping

Maxim Likhachev Carnegie Mellon University

Expected Cost Formulation

2
@ P(Sgoal|S] Cl]) =0.9

C(S] aj Sgoa” =2

1 c(s;, a]S 2
3
so——(s)

* Optimal policy 7*:
minimizes the expected cost-to-goal
* = argmin_E{cost-to-goal}

{os

expectation over outcomes

Maxim Likhachev Carnegie Mellon University

Expected Cost Formulation

P(Sgoallslfa]):ag
C(S,A1,8 00 = 2

goa
P@ﬂSpaﬂ:?j;/L//w
3

(s)——(s,)

* Optimal policy 7*:
minimizes the expected cost-to-goal
* = argmin_E{cost-to-goal}

{os

expectation over outcomes
* expected cost-to-goal for z,=(go through s,) 1s

1+1+3+1=6

* cost-to-goal for z,=(try to go through s,) 1s:
0.9%(142+2) + 0.9%0.1%(1+2+2+2+2) + 0.9%0.1%0. 1 %(14+2+2+2+242+2) + ...=5.444

goal

Maxim Likhachev Carnegie Mellon University 4

Expected Cost Formulation

oaNC

Given a policy, its value can be computed by

solving a system of linear equations

CAPECLULLON OVer OUTCOMIg How to
« expected cost-to-goal for z;=(go through s, compute it?

1+143+1=6
* cost-to-goal for z,=(try to go through s,) 1s:
0.9%(142+2) + 0.9%0.1%(1+2+2+2+2) + 0.9%0.1%0. 1 ¥(14+2+2+2+242+2) + ...=5.444

Maxim Likhachev Carnegie Mellon University 5

Expected Cost Formulation

2
@ P(Sgoal|S1’a]):0'9

C(S1,a 1,8 p0) = 2

goa
P(S2,|Szjaz):0°]/1'
3

so——(s)

Given a policy, its value can be computed by
solving a system of linear equations

CAPECLUI” fior 7o
* expected cost-to-goal fo V(S51a) = 1HV(55)
_ V(sy) = 2+v(s))
13+1=6 U(5,) = 0.9%2+v(s,,) 0.1 2 +v(55)
* cost-to-goal for 7,=(try t0 S

0.9%(14+2+2) + 0.9%0.1%(1+2+2+2+2) + 0.9%(. ...=5.444

Maxim Likhachev Carnegie Mellon University 6

Expected Cost Formulation

2
@ g P(Sgoallsl’a]):ag

C(S A1, ppn) = 2

goa
P(S2|S1,Clz):0.]/1v
3

* Optimal policy 7*:
minimizes the expected cost-to-goal
* = argmin_E{cost-to-goal}

goal

» Optimal expected cost policy 7 * = m,=(go through s,)

Maxim Likhachev Carnegie Mellon University

Expected Cost Formulation

2
@ g P(Sgoal|S1’a]):0°9

c(sl,a],sgoay =2

3
so——(s)

* Optimal policy 7*:
minimizes the expected cost-to-goal
n* = argmin_ E{cost-to-goal}

» Optimal expected cost policy 7 * = m,=(go through s,)

Maxim Likhachev Carnegie Mellon University

Computing Expected Cost Minimal Plans

c(s;,a;s

2
P(S2|S] a,)=0.1 goa]
/
(s)——()

* Optimal policy 7*:
minimizes the expected cost-to-goal
* = argmin_ E{cost-to-goal}

* Let v*(s) be minimal expected cost-to-goal for state s

Maxim Likhachev Carnegie Mellon University

Computing Expected Cost Minimal Plans

* Optimal policy 7*:
w*(s) = argmin, E{c(s,a,s ') +v*(s’)}

(expectation over outcomes s’ of action a executed at state s)

Why?

Maxim Likhachev Carnegie Mellon University 10

Computing Expected Cost Minimal Plans

» Optimal expected cost-to-goal values v* satisfy:

V(S g0a) =0
v¥(s) = min, E{c(s,a,s’)+v*(s’)} for all s # S goal

(expectation over outcomes s’ of action a executed at state s)

Bellman optimality equation

Maxim Likhachev Carnegie Mellon University 11

Computing Expected Cost Minimal Plans

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # S goal

Maxim Likhachev Carnegie Mellon University 12

Computing Expected Cost Minimal Plans

* Value Iteration (VI):

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:
V(SgOCl” - 0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # s,

Bellman update equation
(or backup)

Maxim Likhachev Carnegie Mellon University 13

Computing Expected Cost Minimal Plans

best to initialize to admissible values

° Value IteratiOIl (VI) (under-estimates of the actual costs-to-goal)

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:
V(SgOCl” - 0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # s,

converges to an optimal value function

the speed of convergence

(v(s)=v*(s) for all s)

for any iteration order

depends on iteration order

Maxim Likhachev Carnegie Mellon University 14

Computing Expected Cost Minimal Plans
P(Sgoal|S1’a]):0'9
c(s;,as =

1
goa

P(S2|S1,a1):01 1 goal

3
@ @ Any ideas for the order?

best to initialize to admissible values

° Value IteratiOIl (VI) (under-estimates of the actual costs-to-goal)

Initialize v-values of all states to finite values;

Iterate over all s in MDP and re-compute until convergence:
V(SgOCl” - 0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # s,

converges to an optimal value function

the speed of convergence

(v(s)=v*(s) for all s)

for any iteration order

depends on iteration order

Maxim Likhachev Carnegie Mellon University 15

Computing Expected Cost Minimal Plans
v=0) v=0

@V:; =6DVZO

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # S goal

Maxim Likhachev Carnegie Mellon University 16

Computing Expected Cost Minimal Plans
v=0) v=2

P(Sgoal|S1’ al) iO 9

C(Sl’al’sgoa

: V=0
3
(s ()

=0 =0 after backing up s,

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # S goal

Maxim Likhachev Carnegie Mellon University 17

Computing Expected Cost Minimal Plans
v=1) v=2

P(Sgoal|S1’ al) iO 9

C(Sl’al’sgoa

: V=0
3
(s ()

=0 =0 after backing up s,

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # S goal

Maxim Likhachev Carnegie Mellon University 18

Computing Expected Cost Minimal Plans
v=1) v=2

P(Sgoal|S1’ al) iO 9

C(Sl’al’sgoa

: V=0
3
(s ()

=0 =] after backing up s;

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # S goal

Maxim Likhachev Carnegie Mellon University 19

Computing Expected Cost Minimal Plans
v=1) v=2

P(Sgoal|S1’ al) iO 9

C(Sl’al’sgoa

: V=0
3
(s

—A =] after backing up s,

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # S goal

Maxim Likhachev Carnegie Mellon University 20

Computing Expected Cost Minimal Plans

v=1) V=2
@ P(S 0al|S1’a1):O'9
V:2 1 C(Sfal’sgoa -

3
o)

—A =] after backing up s

start

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:
V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # s,
Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # S 4,

Maxim Likhachev Carnegie Mellon University 21

Computing Expected Cost Minimal Plans
v=1) v=2.1

P(Sgoal|S1’ al) iO 9

C(Sl’al’sgoa

3
o)

—A =] after backing up s,

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:
V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # s,
Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # S 4,

Maxim Likhachev Carnegie Mellon University 22

Computing Expected Cost Minimal Plans
v=4.1 v=2.1

2
S
)
7) v
3 /
o)

—A =] after backing up s,

P(Sgoal|S1’a]):0'9
c(s;,as =

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:
V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # s,
Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # S 4,

Maxim Likhachev Carnegie Mellon University 23

Computing Expected Cost Minimal Plans

v=4.] v=2.1
2

2
P(52|Spa1):0']/1'
3
o=

—d v=] backing up s; and s, has no
effect since their Bellman
errors are zero

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:
V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # s,
Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # S 4,

Maxim Likhachev Carnegie Mellon University 24

Computing Expected Cost Minimal Plans
v=4.1 v=2.1

v=5.11 @ :
P(S2S1,a])0_2]/lv v=0()
50—

—A =] after backing up s

P(Sgoal|S1’a]):0'9
c(s;,as =

start

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:
V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # s,
Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # S 4,

Maxim Likhachev Carnegie Mellon University 25

2
v=35.11 @ P(Sgoal|S1’a])i0-9
(S V=0

Computing Expected Cost Minimal Plans
c(s;,as
ey
$HI18,d,;)=U. 1
3 /
C el ©

v=4.1 v=2.41
goa
—A =] after backing up s,

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:
V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # s,
Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # S 4,

Maxim Likhachev Carnegie Mellon University 26

Computing Expected Cost Minimal Plans

v=4.4211 v=2.41

SZ a; P(Sgoal|S1’a]):0'9

C(Sl’al’sgoa

o
3
o)

—A =] after backing up s,

v

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:
V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # s,
Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # S 4,

Maxim Likhachev Carnegie Mellon University 27

v

Sy

Computing Expected Cost Minimal Plans

v=4.4211 v=2.41
1 ,a,8,) =2 =
S B =i | @" 0

a; P(Sgoal|S1’a]):0'9
OO !
g v=] after backing up s,

c(s;,as

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:
V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # s,
Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # S 4,

Maxim Likhachev Carnegie Mellon University 28

v

Sy

Computing Expected Cost Minimal Plans

v=4.4211 v=2.441
I P =) _
@ ey | @V 0

a; P(Sgoal|S1’a]):0'9
O -
g =] after backing up s,

c(s;,as

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:
V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # s,
Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # S 4,

Maxim Likhachev Carnegie Mellon University 29

S,
c(s;,as

Computing Expected Cost Minimal Plans

v=4.42141 v=2.441
| a.,S,) =2 =
@ ey | @V 0

P(Sgoal|S1’a]) iog
3
@v=4 =@v=1 after backing up s,

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:
V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # s,
Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # S 4,

Maxim Likhachev Carnegie Mellon University 30

S,
c(s;,as

Computing Expected Cost Minimal Plans

v=4.42141 v=2.441
v=35.44Y

I P =) _
@ ey | @V 0

P(Sgoal|S1’a])i0'9
3
@V:4 V@V:] after backlng Up Start

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:
V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # s,
Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # S 4,

Maxim Likhachev Carnegie Mellon University 31

v

v=4.44444... v=2.44444...
v=5.44444. L L Pgalsray =09
2 =
S P(shispa)=01 | @" 0
3 /
(s

Computing Expected Cost Minimal Plans
C(Sl’al’sgoa
=4 y=] every lteratzm? COWlpL.lteS
one more decimal point

At convergence...

* Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:
V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # s,
Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # S 4,

Maxim Likhachev Carnegie Mellon University 32

Computing Expected Cost Minimal Plans
v=4.44444... y=2.44444...

v=>5.44444... 1

3 / Lo
S v - @ every iteration computes

v=1
one more decimal point

optimal policy is given by greedy policy:
° Va always select an action that minimizes
E{lc(s,a,s’)+tv(s’)}

Initialize V= ver == ates to finite values;

[terate Que it} And re-compute until convergence:

At convergence...

expected cost of executing greedy policy is at most:

v*(Ssmrt)Cmin/(cmin_A.) fO]/' any S # Sgoal

where c,,;, is minimum edge cost
Usual O™ @eiiman error over all states < A

Bellman error: v(s) - min, E{c(s,a,s)+v(s’)}| for any s # Sg,,

Maxim Likhachev Carnegie Mellon University 33

Computing Expected Cost Minimal Plans
v=4.44444... y=2.44444...

y=5.44444...] @ (50, o) =2
g ey e

3
S : @ . .
@\/: 4 y=] every lteration computes

01 cieningss ina | point

VI converges in finite number of iterations

° Value Iterati on (VI) (assuming goal is reachable from every state)

Initialize v-values of all states to Why condition?
Iterate over all s in MDP and re-computc uisus vousvergence:
V(Sgoa” =0
v(s) = min, E{c(s,a,s’)+v(s’)} for any s # s,
Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # S 4,

Maxim Likhachev Carnegie Mellon University 34

Computing Expected Cost Minimal Plans
v=4.44444... y=2.44444...

y=5.44444...1 @

3
S : @ . .
@v: 4 y=] every lteration computes

O caaegies i a] point

VI converges in finite number of iterations

® Value Iteratlon (VI) (assuming goal is reachable from every state)

Initialize v-values of all states to i
Iterate over all s in MDP and r

V(Sgoa” =0 9
v(s) = min, E{fc(s,a,s’)+v(s’)} o Stochastzc actions:

Usual convergence condition: Bellman error over all states < A
Bellman error: |v(s) - min, E{c(s,a,s’)+v(s’)}| for any s # s

How many backups
required in a graph with no

goal

Maxim Likhachev Carnegie Mellon University 35

Computing Expected Cost Minimal Plans with RTDP
v=4.44444... y=2.44444...

y=5.44444...1 @

P(52|Spa1):0']/1'
3
o=

v=4 v=1

 Real-time Dynamic Programming (RTDP)
- very popular alternative to Value Iteration
- does NOT compute values of all states
- focusses computations on states that are relevant
- typically, much more efficient than Value Iteration

Maxim Likhachev Carnegie Mellon University 36

Computing Expected Cost Minimal Plans with RTDP
v=4.44444... y=2.44444...

 RTDP:

Initialize v-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal
1s reached;

2. Backup all states visited on the way;

3. Reset to s,,,,, and repeat 1-3 until all states on the current
greedy policy have Bellman errors < A;

Maxim Likhachev Carnegie Mellon University 37

Computing Expected Cost Minimal Plans with RTDP
v=4.44444... y=2.44444...

For any state s, picking action a that Picking successor state s’ at random
minimizes E{c(s,a,s’)+v(s’)} according to probability P(s’|a,s)

 RTDP:

Initialize v-walues of all states to admissible values;
1. Follow greedy policy picking outcomes at random until goal

1s reached; Updating v(s) = min E{c(5,a,5")+v(5")}
2. BackupMd on the way;

3. Reset to s,,,,, and repeat 1-3 until all states on the current
greedy policy have Bellman errors < A;

Maxim Likhachev Carnegie Mellon University 38

Computing Expected Cost Minimal Plans with RTDP
v=4.44444... y=2.44444...

RTDP focusses its backups on what is
relevant to the optimal plan rather than computing
ALL state values (what VI does)

 RTDP:

Initialize v-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal
1s reached;

2. Backup all states visited on the way;

3. Reset to s,,,,, and repeat 1-3 until all states on the current
greedy policy have Bellman errors < A;

Maxim Likhachev Carnegie Mellon University 39

Computing Expected Cost Minimal Plans with RTDP
v=4.44444... y=2.44444...

RTDP converges in finite number of iterations
(assuming goal is reachable from every state)

 RTDP:

Initialize v-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal
1s reached;

2. Backup all states visited on the way;

3. Reset to s,,,,, and repeat 1-3 until all states on the current
greedy policy have Bellman errors < A;

Maxim Likhachev Carnegie Mellon University 40

Computing Expected Cost Minimal Plans with RTDP
v=4.44444... y=2.44444...

—_— oallSpa))=0.9
y=5.44444...) @ csfaﬁ!s;ab) =2
Suy L g v=0
P(S2|S1,a1):01 1 Sgoal
3 /
(o)
v=4 V=4

expected cost of executing greedy policy is at most:

min min

min

 RTDP:

Initialize v-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal
1s reached;

2. Backup all states visited on the way;

3. Reset to s,,,,, and repeat 1-3 until all states on the current
greedy policy have Bellman errors < A;

Maxim Likhachev Carnegie Mellon University 41

Rewards version of MDPs

* Suppose we have a Trash Collecting robot
— 1ts task 1s to go around the room and pick-up trash
— 1f battery 1s dead, it can’t move anymore

— available actions:

e Look for trash (takes 1 min) and discovers trash with probability 0.4
* Pick-up trash (takes 1 min), and receive reward of 100 units
* Re-charge (takes 1 min). Battery level goes back to full 3 mins if

successful with probability 0.9 (there 1s a chance that re-charge is not
successful)

Example on the board

Maxim Likhachev Carnegie Mellon University 42

Markov Decision Processes, REWARDS version

P(Sgoal|S1’a])i0'9

r(SI’aI’Sgoa

* Optimal expected reward values v* satisfy:
v¥(s) = max, E{r(s,a,s’)+yv¥s’)} forall s
(expectation over outcomes s’ of action a executed at state s)
 Optimal policy 7*:
n*(s) = argmax, E{r(s,a,s’)+ yv*(’))
* Computing optimal v*-values via value 1teration (VI):
re-compute v(s) = max, E{r(s,a,s’)+ yv(s’)} until convergence

Maxim Likhachev Carnegie Mellon University

43

Markov Decision Processes, REWARDS version

0
(s,) Pyl =0.9

F(SI’ al’Sgoa

v¥(s) = max, E{r(s,a,s’)+yv¥(s’)} for all s

(expectation over outcomes s’ of action a executed at state s)

 Optimal policy 7*:
n*(s) = argmax, E{r(s,a,s’)+ yv*(’))

* Computing optimal v*-values via value 1teration (VI):
re-compute v(s) = max, E{r(s,a,s’)+ yv(s’)} until convergence

Maxim Likhachev Carnegie Mellon University 44

What You Should Know...

* Pros and Cons of solving Expected Cost formulation
(rather than Minimax formulation)

 The operation of Value Iteration
* The operation of RTDP

e Rewards formulation of MDPs and when 1t should be
used

Maxim Likhachev Carnegie Mellon University 45

