16-782 Planning & Decision-making in Robotics ## Planning under Uncertainty: Minimax Formulation Maxim Likhachev Robotics Institute Carnegie Mellon University - So far our planners assumed no uncertainty - execution is perfect search the graph for a least-cost path from s_{start} to s_{goal} - So far our planners assumed no uncertainty - execution is perfect - Any deviations from the plan are dealt by re-planning - Could be quite suboptimal and sometimes dangerous - planning a path along cliff does not take into account slippage - others examples??? • Modeling uncertainty in execution during planning - at least one action in the graph has more than one outcome - each outcome is associated with probability and cost • Modeling uncertainty in execution during planning - at least one action in the graph has more than one outcome - each outcome is associated with probability and cost example: $$s_3$$, s_4 , $s_5 \in succ(s_2, a_{SE})$, $P(s_5|a_{se},s_2) = 0.9$, $c(s_2,a_{se},s_5) = 1.4$ $P(s_3|a_{se},s_2) = 0.05$, $c(s_2,a_{se},s_3) = 1.0$ $P(s_4|a_{se},s_2) = 0.05$, $c(s_2,a_{se},s_4) = 1.0$ ## Moving-Target Search Example - Uncertainty in the target moves - What is a state-space and action space? #### Planning in MDPs - What plan to compute? - Plan that minimizes the worst-case scenario (minimax plan) - Plan that minimizes the expected cost - Without uncertainty, plan is a single path: a sequence of states (a sequence of actions) - In MDPs, plan is a policy π : mapping from a state onto an action #### Planning in MDPs - What plan to compute? - Plan that minimizes the worst-case scenario (minimax plan) - Plan that minimizes the expected cost - Without uncertainty, plan is a single path: a sequence of states (a sequence of actions) - In MDPs, plan is a policy π : mapping from a state onto an action #### **Minimax Formulation** - Optimal policy π^* : minimizes the worst cost-to-goal - $\pi^* = argmin_{\pi} max_{outcomes\ of\ \pi} \{cost-to-goal\}$ - worst cost-to-goal for π_1 =(go through s₄) is: - worst cost-to-goal for π_2 =(try to go through s_1) is: $$1+2+2+2+2+2+\dots = \infty$$ #### Minimax Formulation - Optimal policy π^* : minimizes the worst cost-to-goal $\pi^* = argmin_{\pi} \max_{outcomes\ of\ \pi} \{cost-to-goal\}$ - Optimal minimax policy $\pi^* = (go through s_4) = \int \{s_{start}, a_{ne}\}, \{s_2, a_{south}\}, \{s_4, a_{east}\}, \{s_3, a_{ne}\}, \{s_{goal}, null\}\}$ #### Minimax backward A*: ``` g(s_{goal}) = 0; all other g-values are infinite; OPEN = \{s_{goal}\}; while (s_{start} \ not \ expanded) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; insert s into CLOSED; for every s's.t s \in succ(s', a) for some a and s' not in CLOSED if g(s') > max_{u \in succ(s', a)} c(s', u) + g(u) g(s') = max_{u \in succ(s', a)} c(s', u) + g(u); insert s' into OPEN; ``` #### • Minimax backward A*: ``` g(s_{goal}) = 0; all other g-values are infinite; OPEN = \{s_{goal}\}; while (s_{start} \ not \ expanded) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; insert s into CLOSED; for every s's.t s \in succ(s', a) for some a and s' not in CLOSED if g(s') > max_{u \in succ(s', a)} c(s', u) + g(u) g(s') = max_{u \in succ(s', a)} c(s', u) + g(u); insert s' into OPEN; reduces to usual backward A^* if ``` no uncertainty in outcomes Minimax backward A*: next state to expand: s_{goal} ``` g(s_{goal}) = 0; all other g-values are infinite; OPEN = \{s_{goal}\}; while (s_{start} \ not \ expanded) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; insert s into CLOSED; for every s's.t s \in succ(s', a) for some a and s' not in CLOSED if g(s') > max_{u \in succ(s', a)} c(s', u) + g(u) g(s') = max_{u \in succ(s', a)} c(s', u) + g(u); insert s' into OPEN; ``` Minimax backward A*: next state to expand: s_{goal} ``` g(s_{goal}) = 0; all other g-values are infinite; OPEN = \{s_{goal}\}; while (s_{start} \ not \ expanded) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; insert s into CLOSED; for every s's.t s \in succ(s', a) for some a and s' not in CLOSED if g(s') > max_{u \in succ(s', a)} c(s', u) + g(u) g(s') = max_{u \in succ(s', a)} c(s', u) + g(u); insert s' into OPEN; ``` After s_{goal} expanded, what are $g(s_3)$ and $g(s_1)$? Carnegie Mellon University Minimax backward A*: next state to expand: s₃ ``` g(s_{goal}) = 0; all other g-values are infinite; OPEN = \{s_{goal}\}; while (s_{start} \ not \ expanded) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; insert s into CLOSED; for every s's.t s \in succ(s', a) for some a and s' not in CLOSED if g(s') > max_{u \in succ(s', a)} c(s', u) + g(u) g(s') = max_{u \in succ(s', a)} c(s', u) + g(u); insert s' into OPEN; ``` Minimax backward A*: next state to expand: s_4 ``` g(s_{goal}) = 0; all other g-values are infinite; OPEN = \{s_{goal}\}; while (s_{start} \ not \ expanded) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; insert s into CLOSED; for every s's.t s \in succ(s', a) for some a and s' not in CLOSED if g(s') > max_{u \in succ(s', a)} c(s', u) + g(u) g(s') = max_{u \in succ(s', a)} c(s', u) + g(u); insert s' into OPEN; ``` #### Minimax backward A*: next state to expand: s₂ ``` g(s_{goal}) = 0; all other g-values are infinite; OPEN = \{s_{goal}\}; while (s_{start} \ not \ expanded) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; insert s into CLOSED; for every s's.t s \in succ(s', a) for some a and s' not in CLOSED if g(s') > max_{u \in succ(s', a)} c(s', u) + g(u) g(s') = max_{u \in succ(s', a)} c(s', u) + g(u); insert s' into OPEN; ``` #### Minimax backward A*: $g(s_{goal}) = 0$; all other g-values are infinite; $OPEN = \{s_{goal}\}$; while(s_{start} not expanded) remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert s into CLOSED; for every s's.t $s \in succ(s', a)$ for some a and s' not in CLOSED if $$g(s') > max_{u \in succ(s', a)} c(s', u) + g(u)$$ $g(s') = max_{u \in succ(s', a)} c(s', u) + g(u);$ insert s' into *OPEN*; #### • Minimax backward A*: ``` g(s_{goal}) = 0; all other g-values are infinite; OPEN = \{s_{goal}\}; while (s_{start} \ not \ expanded) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; insert s into CLOSED; for every s's.t s \in succ(s', a) for some a and s' not in CLOSED if g(s') > max_{u \in succ(s', a)} c(s', u) + g(u) g(s') = max_{u \in succ(s', a)} c(s', u) + g(u); insert s' into OPEN; ``` #### • Minimax backward A*: $g(s_{goal}) = 0$; all other g-values are infinite; $OPEN = \{s_{goal}\}$; while $(s_{start} \ not \ expanded)$ remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert s into *CLOSED*; for every s's.t $s \in succ(s', a)$ for some a and s' not in CLOSED if $$g(s') > max_{u \in succ(s', a)} c(s', u) + g(u)$$ $g(s') = max_{u \in succ(s', a)} c(s', u) + g(u);$ insert s' into $OPEN$; in this example, the computed policy is a path, but in general it is a Directed Acyclic Graph #### Minimax backward A*: $g(s_{goal}) = 0$; all other g-values are infinite; $OPEN = \{s_{goal}\}$; while(s_{start} not expanded) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN What are its branches? insert s into CLOSED; for every s 's.t $s \in succ(s', a)$ for some if $$g(s') > max_{u \in succ(s', a)} c(s', u) + g(u)$$ $$g(s') = max_{u \in succ(s', a)} c(s', u) + g(u);$$ insert s' into *OPEN*; in this example, the computed policy is a path, but in general it is a Directed Acyclic Graph Why no cycles? #### • Minimax backward A*: $g(s_{goal}) = 0$; all other g-values are infinite; $OPEN = \{s_{goal}\}$; while $(s_{start} \ not \ expanded)$ remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; insert s into CLOSED; for every s 's.t $s \in succ(s', a)$ for some a and s 'not in CLOSED if $$g(s') > max_{u \in succ(s', a)} c(s', u) + g(u)$$ $g(s') = max_{u \in succ(s', a)} c(s', u) + g(u)$ insert s' into $OPEN$; And never the success of s Minimax A* guarantees to find an optimal path, and never expands a state more than once, provided heuristics are consistent (just like A*) - Pros/cons of minimax plans - robust to uncertainty - overly pessimistic - harder to compute than normal paths - especially if backwards minimax A* does not apply - even if backwards minimax A* does apply, still more expensive than computing a single path with A* (heuristics are not guiding well) Why? #### What You Should Know... - What is Markov Decision Processes (MDP) - Minimax formulation of planning under uncertainty - The operation of Minimax backward A* - Pros and cons of planning with Minimax formulation