
15–150: Principles of Functional Programming

Work Analysis

Michael Erdmann∗

Spring 2020

1 Introduction

Today’s lecture introduces techniques for analyzing the runtime of functional programs. You should
already be familiar with the basic concepts, but we give a brief recap of the main ideas.

2 Main Points

• We show how to obtain a recurrence relation for the runtime of an SML function when applied
to an argument with a given size.

• We show how to find exact solutions to recurrences, or an asymptotic approximation when
an exact solution is not needed or not feasible.

• We list solutions for some common recurrence relations.

• Sometimes the efficiency of a function can be improved by introducing an “accumulator”, or
by computing extra information.

• We give a first example for a span analysis using recurrences.

3 Asymptotic Analysis

We will focus on asymptotic analysis of programs. This kind of analysis predicts how long it will
take to run your code on really big inputs, without actually running it. It is one of the main tools
used to choose between different algorithms for the same problem. Underlying this kind of analysis
is the assumption that primitive operations (such as arithmetic and Boolean operators, or consing
an item onto a list) take constant time and that we don’t care about (and don’t need to know) the
precise value of these constants.

∗Adapted from a document by Stephen Brookes.

1

big-O classification

Asymptotic analysis is based on big-O classifications: O(1) or “constant time”; O(n) or “linear”;
O(n2) or “quadratic”; O(log n), or “logarithmic”; and so on. As we have said, big-O abstracts away
from constant factors. So an algorithm with running time proportional to 50000n3 is O(n3) and so
is an algorithm with running time 2n3. In fact constant factors sometimes do make a difference,
practically, especially for low input sizes; but usually the behavior when inputs get very large is
more significant. And we would probably prefer a running time of 50000n3 to a running time of
2n, when n is large, since 2n > 50000n3 for all large enough values of n. Thus we say that O(n3) is
better than or faster than O(2n).

More rigorously, for two functions f, g of type int -> int we say that “f is O(g)” if there is a
constant c and an integer N such that for all n ≥ N , |f(n)| ≤ c|g(n)|.

When f(n) and g(n) are always non-negative (e.g., when they represent running times of code
fragments!) we can elide the absolute value signs and just say “for all n ≥ N, f(n) ≤ c ∗ g(n)”.

We often say “for sufficiently large n” as an abbreviation for “for all n ≥ N , for some N”.
We usually simplify and write something like 30n2 + 4000n + 1 is O(n2), rather than naming

the functions (e.g., “let f(n) = 30n2 + 4000n + 1. . . ”).
We may take advantage of well known results about big-O notation, for instance the fact that

“constants don’t matter”. On page 7, we summarize some key results.

4 Examples

In these examples, we sometimes omit explicit type annotations and almost always omit REQUIRES
and ENSURES clauses, because we want to focus on runtime analysis. In homework and lab, please
continue to include this information for any functions that you write.

4.1 Powers of 2

The SML function exp given next calculates powers of 2.

(* exp : int -> int *)
fun exp (0:int):int = 1

| exp (n:int):int = 2 * exp (n-1)

It is easy to prove by induction that for all n ≥ 0, expn evaluates to 2n.
Let Wexp(n) be the running time (or “work”) of exp n, for n ≥ 0. We assume (as usual)

that arithmetic and Boolean operations take constant time. From the structure of the function
definition, we see that there are positive constants c0, c1 such that

Wexp(0) = c0

Wexp(n) = c1 + Wexp(n − 1), for n > 0.

Using this recurrence relation, we may prove by induction on n, that for all n ≥ 0, Wexp(n) =
n ∗ c1 + c0:

• Base Case: n = 0. Need to show Wexp(0) = c0.
That is given explicitly by the first equation for Wexp.

• Inductive Step: Prove for n + 1, with n ≥ 0.

2

– Inductive Hypothesis: Wexp(n) = n ∗ c1 + c0.
– Need to Show: Wexp(n + 1) = (n + 1) ∗ c1 + c0.
– Showing:

Wexp(n + 1) = c1 + Wexp((n + 1) − 1) [by second recurrence equation]
= c1 + Wexp(n)
= c1 + n ∗ c1 + c0 [by IH]
= (n + 1) ∗ c1 + c0.

�

Wexp(n) = n ∗ c1 + c0, is called a closed form solution of the recurrence relation. This closed
form tells us that Wexp(n) is linear in n, i.e., that Wexp(n) is O(n), as follows:

We know that there are (positive) constants c0 and c1 such that Wexp(n) = n ∗ c1 + c0, for all
n ≥ 0. Pick c to be c1 + 1 and let N ≥ c0. Then for all n ≥ N we have

Wexp(n) = n ∗ c1 + c0 ≤ n ∗ (c1 + 1) = c ∗ n.

Thus, according to the definition of big-O, Wexp(n) is O(n).
Actually, it can be convenient to make a simplifying assumption about these “unknown” con-

stants. For instance, for any positive constants c0 and c1, the function f(n) = n ∗ c0 + c1 is O(n).
The choice of constants makes no difference to this fact. So we could have made an arbitrary
decision to choose c0 = c1 = 1 and taken the recurrence defining Wexp to be

Wexp(0) = 1
Wexp(n) = 1 + Wexp(n − 1), for n > 0.

We would have then been able to show that Wexp(n) = n + 1 for n ≥ 0, and hence that Wexp(n) is
O(n) as before.

4.2 Powers of 2, faster

Now let’s define a (more efficient) function that takes advantage of some simple mathematical facts
about powers of 2. Specifically whenever n > 0, either n is even, and 2n = (2n div 2)2; or n is odd,
and 2n = 2 ∗ 2n−1.

fun square (x:int):int = x*x

(* fastexp : int -> int *)
fun fastexp (0:int):int = 1

| fastexp (n:int):int =
case (n mod 2) of

0 => square (fastexp (n div 2))
| _ => 2 * fastexp (n-1)

Again it is easy to prove that for all n ≥ 0, fastexp n evaluates to 2n.
Now let Wfastexp(n) be the runtime of fastexp n, for n ≥ 0. Again the structure of the function

definition tells us that there are constants k0, k1, k2 such that:

Wfastexp(0) = k0

Wfastexp(n) = k1 + Wfastexp(n div 2) if n > 0 and n even
Wfastexp(n) = k2 + Wfastexp(n − 1) if n > 0 and n odd

3

Hence, because n − 1 is even when n is odd, and in such a case (n − 1) div 2 is equal to n div 2,
we actually have:

Wfastexp(0) = k0

Wfastexp(n) = k1 + Wfastexp(n div 2) if n > 0 and n even
Wfastexp(n) = k2 + k1 + Wfastexp(n div 2) if n > 0 and n odd.

Since we only care about the asymptotic runtime, we lose no generality by expanding out the case
for n = 1, setting all constants to 1, and working with the recurrence relation given by

Tfastexp(0) = 1
Tfastexp(1) = 1
Tfastexp(n) = 1 + Tfastexp(n div 2) for n > 1.

Tfastexp defined this way is not the same function as Wfastexp, but it can be shown that these two
functions have the same asymptotic behavior. It’s much easier to find a closed form for Tfastexp.

Indeed this recurrence for Tfastexp is exactly the same recursive pattern as one uses to define
the logarithm function log : int -> int; this function computes logarithms in base 2. So we can
get a closed form for Tfastexp(n): For all n ≥ 1, Tfastexp(n) = log2(n) + 1. Recall that log2 n is the
largest non-negative integer k such that 2k ≤ n.

This doesn’t imply that Wfastexp(n) is also equal to log2(n) — it couldn’t be, because its recur-
rence relation mentions k0, k1, k2. But we said that Wfastexp and Tfastexp have the same asymptotic
behavior; Wfastexp(n) is in the same O-class as Tfastexp(n). Hence Wfastexp(n) is O(log2 n).

Recall as well that for any two bases a and b, logb n = c loga n, with constant c = logb a. Thus
O(logb n) is the same class as O(loga n). The choice of logarithmic base makes no difference to big-O
classification. We simply say that Tfastexp(n) is O(log n).

4.3 Powers of 2, not so fast

Here is a rewrite of the fast exponentiation function that does not give a speedup.

(* badexp : int -> int *)
fun badexp (0:int):int = 1

| badexp (n:int):int =
case (n mod 2) of

0 => (badexp (n div 2)) * (badexp (n div 2))
| _ => 2 * badexp (n-1)

Notice that badexp makes the same recursive call twice now, rather than making it once and
squaring the result as fastexp did. Consequently, although the functions fastexp and badexp are
extensionally equivalent, they have different running times, as we see next.

Let Wbadexp(n) be the runtime of badexp n, for n ≥ 0. Then (again, from the function definition)
we can, for some constants c0, c1, and c0, derive the recurrence

Wbadexp(0) = c0

Wbadexp(1) = c1

Wbadexp(n) = c2 + 2 ∗ Wbadexp(n div 2) for n > 1.

One can show by strong induction that Wbadexp(n) is O(n), so badexp has linear runtime, just as
did the first exponentiation function, exp.

We probably prefer fastexp, with logarithmic running time, over badexp, with linear runtime.

4

4.4 Fibonacci numbers

Here is an SML implementation that corresponds to the usual mathematical presentation of the
Fibonacci series. For n ≥ 0 we represent the nth Fibonacci number as the value of fib n.

(* fib : int -> int *)
fun fib 0 = 1
| fib 1 = 1
| fib n = fib(n-1) + fib(n-2)

If we use this function in the SML interpreter window we will see that fib 42 takes a very long
time to return its result.

(Aside: fib 44 raises the Overflow exception, because the 44th Fibonacci number is too large.)
Let Wfib(n) be the running time for fib(n). Then, choosing the relevant constants to be 1, we

obtain the recurrence relation

Wfib(0) = 1
Wfib(1) = 1
Wfib(n) = 1 + Wfib(n − 1) + Wfib(n − 2) for n > 1.

This tells us that fib(n) ≤ Wfib(n) for all n ≥ 0. Since Fibonacci numbers grow exponentially
fast, this tells us that Wfib has at least exponential running time. No wonder fib 42 is so slow! It
can be shown that Wfib(n) is actually O(fib(n)), so fib has exponential running time.

We can speed up the function by returning two Fibonacci numbers instead of one:

(* ffib: int -> int*int
REQUIRES: n >= 0
ENSURES: ffib(n) ==> (f_n, f_{n-1}), the nth and {n-1}st Fibonacci numbers,

where we define f_{-1} = 0.
*)
fun ffib (0:int):int*int = (1, 0)

| ffib (n:int):int*int =
let

val (f1, f2) : int*int = ffib (n-1)
in

(f1 + f2, f1)
end

Let Wffib(n) be the running time for ffib(n), when n ≥ 0. We have, from the function definition,
that there are constants c0, c1 such that

Wffib(0) = c0

Wffib(n) = c1 + Wffib(n − 1) for n > 0.

Hence Wffib(n) is O(n).

4.5 List reversal

The list append operation L1@L2 takes time proportional to the length of L1. The list cons con-
struction x::L takes constant time.

Recall this list reversal function, based on append:

5

(* rev : int list -> int list *)
fun rev [] = []

| rev (x::L) = rev(L) @ [x]

Let Wrev(n) be the runtime for rev(L) on lists of length n. From the function definition we can
see that

Wrev(0) = c0

Wrev(n) = Wrev(n − 1) + c1 + c2 ∗ n

for some constants c0, c1, and c2. So, expanding out a few cases, we get

Wrev(1) = c0 + c1 + c2

Wrev(2) = (c0 + c1 + c2) + c1 + c2 ∗ 2
= c0 + 2 ∗ c1 + (1 + 2) ∗ c2

Wrev(3) = Wrev(2) + c1 + c2 ∗ 3
= c0 + 3 ∗ c1 + (1 + 2 + 3) ∗ c2.

(Terminology: The phrase “unrolling the recurrence” refers to this process of expanding out
terms repeatedly, to detect a pattern for the recurrence solution.)

Recall that the sum of the first n positive integers is equal to 1
2n(n + 1). Indeed, one my prove

by induction on n, that for all n ≥ 0,

Wrev(n) = c0 + n ∗ c1 +
1
2
n(n + 1) ∗ c2.

Hence Wrev(n) is quadratic in n, i.e., O(n2). So the runtime of rev(L) is quadratic in the length
of L.

4.6 Faster reversal

As we saw in Lecture 4, sometimes one may improve efficiency by writing a tail-recursive function,
using an extra argument to the function to “accumulate” or build up the final result.

For list reversal we wrote:

(* trev : int list * int list -> int list *)
fun trev([], acc) = acc
| trev(x::L, acc) = trev(L, x::acc)

One implements the reversal function of type int list -> int list by calling the fast tail-
recursive function:

(* Rev : int list -> int list *)
fun Rev L = trev (L, [])

Let Wtrev(n, m) be the runtime for trev(L,acc) when L has length n and acc has length m.
From the function definition we can see that

Wtrev(0, m) = c0, for all m

Wtrev(n, m) = Wtrev(n − 1, m + 1) + c1, for n > 0 and for all m,

for some constants c0 and c1. Thus Wtrev is O(n), meaning that both trev and Rev have runtimes
linear in the length of the list being reversed.

6

5 Work and Span

So far we have talked about running time for code evaluated sequentially, on a single processor.
Some data structures, such as trees and sequences (which we discuss in more detail later in the

semester), allow parallel evaluation. In general when trying to analyze the performance character-
istics of programs it is useful to deal with two concepts: work, which reflects the total number of
steps or operations needed (and corresponds to sequential running time); and span, which gives an
upper bound on the running time if an unlimited supply of processors is available and we partition
the work among as many processors as we need.

Span is determined by the data dependencies in a computation: a step that depends on or uses
data from another step in the computation must occur later, namely when the data is available.

For sequential code running on a single processor, work is essentially the same as the “time” to
evaluate, as in our examples throughout this lecture.

We will discuss work and span in more detail in a few lectures when we return to parallelism,
but see Section 8 for an example.

6 Big-O Classes

• O(1), known as constant time

• O(n), known as linear time

• O(n2), known as quadratic time

• O(n3), known as cubic time

• O(log n), known as logarithmic time

• O(n log n)

• O(2n), O(3n), . . ., different classes of exponential time

7 Common Recurrences

Here are some common recurrences and their big-O classes (we show only the recursive clause, for
n > 0, for each recurrence):

type of recurrence big-O class

T (n) = c0 + T (n div 2) O(log n)
T (n) = c0 + T (n − 1) O(n)
T (n) = c0 + 2 T (n div 2) O(n)
T (n) = c0 + c1n + T (n div 2) O(n)
T (n) = c0 + c1n + 2 T (n div 2) O(n log n)
T (n) = c0 + c1n + T (n − 1) O(n2)
T (n) = c0 + c1n + c2n

2 + T (n − 1) O(n3)
T (n) = c0 + 2 T (n − 1) O(2n)
T (n) = c0 + c12n + 2 T (n − 1) O(n 2n)

Practice Problem: Derive the big-O class for each recurrence.

7

8 A Brief Introduction to Parallelism in Trees

Consider the following tree declaration:
datatype tree = Empty | Node of tree * int * tree

and the following code for summing the integers in a tree:
(* sum : tree -> int

REQUIRES: true
ENSURES: sum(T) evaluates to the sum of all the integers in T.

*)

fun sum (Empty : tree) : int = 0

| sum (Node(l,x,r)) = (sum l) + x + (sum r)

Let’s analyze the work of sum. Given a tree t, let n be the number of integers in the tree. If t
is not Empty, then let n� be the number of integers in t’s left subtree and nr the number of integers
in t’s right subtree. Note that n = n� + nr + 1. Let Wsum(n) denote the work required to evaluate
sum(t), with t containing n integers. We obtain the following recurrence relation:

Wsum(0) = c0

Wsum(n) = c1 + Wsum(n�) + Wsum(nr) when n > 0,

for some constants c0 and c1.
With some experience you will recognize that this means Wsum(n) is O(n).
In fact, using induction one can prove that:

Wsum(n) = c0 + (c1 + c0)n.

An opportunity for parallelism: In evaluating the recursive clause for sum, one may evaluate
the two expressions (sum l) and (sum r) in parallel since there are no data dependencies
between these two expressions. Let Ssum(n) denote the time required to evaluate sum(t) assuming
an unlimited number of processors. One obtains the following recurrence relation:

Ssum(0) = c0

Ssum(n) = c1 + max (Ssum(n�), Ssum(nr)) when n > 0,

again for some constants c0 and c1 (possibly different than before).

Observe that the “+” we saw in the work analysis becomes a “max” in the span analysis.

Unfortunately, the tree could be very lopsided, for instance with n� = n− 1 and nr = 0 at each
node. In that case, Ssum(n) is again O(n), meaning parallelism doesn’t help.

Suppose however that the tree is roughly balanced, meaning that each subtree contains roughly
half the remaining integers. The second equation in the span recurrence then becomes:

Ssum(n) ≤ c1 + max
(

Ssum

(⌊
n − 1

2

⌋)
, Ssum

(⌈
n − 1

2

⌉))
≤ c1 + Ssum(�n/2�).

There are roughly log2(n) many recursive calls before one reaches an Empty tree.

Expanding the recurrence, one therefore sees that

Ssum(n) ≤ c0 +
�log2 n�+1∑

i=1

c1 = c0 + c1 + c1 ∗ �log2 n�,
which is O(log n).

8

The Tree Method: Sometimes it is helpful in analyzing work and span to depict the evaluation-
time recursive calls of a function visually as a tree. For instance, we can visualize the work done
by the function sum as a certain amount of work done at each node in the tree:

c1
/ \

c1 c1
/\ /\

c1 c1 c1 c1
. . . .
. . . .
. . . .

c0 ... c0 c0 ... c0

This picture suggests that the work is linear in the number of nodes, i.e., O(n), and that the
span is linear in the depth of the tree, i.e., O(d). If the tree is balanced, then d is O(log n), but if
the tree is not balanced, then d could itself be O(n).

(Caution: In the example above, the work at each node is a constant. In more general settings,
the work may depend on some other size parameter, perhaps the size of the subtree rooted at that
node.)

This method can also be useful for analyzing list functions, where the tree picture now depicts
evaluation-time decomposition of the list. For instance, if a function repeatedly splits a list into
two equal-sized sublists, then the evaluation time behavior of the function looks like a balanced
tree. We will explore that idea next, in the context of sorting.

9

9 A Peek at Sorting

The following code implements insertion sort.

(* ins : int * int list -> int list
REQUIRES: L is sorted
ENSURES: ins(x, L) evaluates to a sorted permutation of x::L

*)
fun ins (x, []) = [x]

| ins (x, y::L) = case compare(x, y) of
GREATER => y::ins(x, L)

| _ => x::y::L

(* isort : int list -> int list
REQUIRES: true
ENSURES: isort(L) evaluates to a sorted permutation of L

*)
fun isort [] = []

| isort (x::L) = ins (x, isort L)

Let’s analyze the work of these two functions. Let Wins(n) denote the work to evaluate
ins(x,L), with n the length of L. Then, for some constants c0, c1, and c2,

Wins(0) = c0,

Wins(n) = c1 + Wins(n − 1) when n > 0 and x > y,

Wins(n) = c2 when n > 0 and x ≤ y.

The equation Wins(n) = c1 + Wins(n − 1) describes the worst-case (slowest) scenario when
n > 0, so we see that Wins(n) is O(n).

Turning to isort, let Wisort(n) denote the work to evaluate isort(L), with n the length of L.
Then, for some constants k0 and k1,

Wisort(0) = k0,

Wisort(n) = k1 + Wisort(n − 1) + Wins(n − 1) when n > 0.

So Wisort(n) ≤ Wisort(n − 1) + k1 + k2 ∗ n, from which we see, by unrolling or by induction,
that Wisort(n) is O(n2).

There is no opportunity for parallelism in this code, so the work and span are the same.

We will see more efficient sorting next time.

10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

