
adv-learning
This repository contains code, datasets, and writing related to the "adversarial learning" project.

Code

At the moment, the two most important bodies of code are contained in code/pylearn-train.py
and code/pylearn-attack.py. As suggested by the filenames, each relies heavily on pylearn2,
which is a Python library with extensive support for deep learning architectures. pylearn-train.py
supports training a new model, described in a YAML file. pylearn-attack.py runs the attack on a
trained model and an image.

Installation

All of the code so far is written in Python 2. It requires three primary packages to run:
opencv-python, theano, and pylearn2. opencv-python contains Python bindings for OpenCV, a
library with image processing and manipulation routines. theano is a Python library that allows one
to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays
efficiently. It has support for compilation to GPU code. pylearn2 is a Python machine learning
library built on top of Theano, which supports rapid development and customization of new deep
learning architectures.

First, make sure Python 2.x is installed and working properly. The code in the repository has been
tested most extensively with Python 2.7.5.

Installing the dependencies on a Mac

opencv-python

I have had the best luck installing opencv-python via Homebrew. If Homebrew isn't already
installed, make it so with the following command:

ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)"

Optionally, run brew doctor to check for errors. Next install the Homebrew science add-on:

brew tap homebrew/science

Now to actually install OpenCV:

brew install opencv

If it gives you problems, try the following alternate command:

brew install opencv --env=std

To test that everything installed correctly, fire up Python and run the following:

>>> import cv
>>> import cv2

If you experience any other problems, check out the comments section at
http://www.jeffreythompson.org/blog/2013/08/22/update-installing-opencv-on-mac-mountain-lion/

theano

theano is available on PyPI, at https://pypi.python.org/pypi/Theano. Download the tarball (the code
in this repository was developed with Theano 0.6.0), unpack it, and run

python setup.py install

You may need to run the setup under sudo if you wish for the packages to install globally.

Note: If you have easy_install or pip on your system, you can simply run easy_install Theano or
pip Theano, although if you do this after version 0.6.0 has been superseded, you might not get a
compatible version.

You can test the installation by opening Python from the command line, and executing:

>>> import theano

If it doesn't complain, everything so far should work.

pylearn2

pylearn2 is not on PyPI yet, so you need to check out the latest development version from the main
repository.

git clone git://github.com/lisa-lab/pylearn2.git

Note that it is probably best to do this from outside of the adv-learning repository directory tree.
Once everything has downloaded, enter the main directory and run

python setup.py develop

Again, you may need to do this as superuser, depending on your preferences. You can test the

installation by opening Python from the command line, and executing:

>>> import pylearn2

If it doesn't complain, everything so far should work.

Installing the dependencies on Linux

First, a disclaimer. This has only been tested on Ubuntu 14.04 Desktop. If you are using a different
Linux, then you are on your own. Most of the packages are in managers, so it shouldn't be too
difficult.

opencv-python

OpenCV is by far the most difficult of the dependencies to install. Several choices made by the
always-brilliant Ubuntu maintainers have made this more painful than it should be. We'll walk
through getting it running from a fresh install; the commands should be "idempotent", so if you
already have some of the packages installed, nothing bad will happen.

First, remove any old versions of ffmpeg and x264:

sudo apt-get -qq remove ffmpeg x264 libx264-dev

Now install a bunch of packages needed to build and run OpenCV:

sudo apt-get -qq install libopencv-dev build-essential checkinstall cmake
pkg-config yasm libjpeg-dev libjasper-dev libavcodec-dev libavformat-dev
libswscale-dev libdc1394-22-dev libxine-dev libgstreamer0.10-dev
libgstreamer-plugins-base0.10-dev libv4l-dev python-dev python-numpy libtbb-dev
libqt4-dev libgtk2.0-dev libfaac-dev libmp3lame-dev libopencore-amrnb-dev
libopencore-amrwb-dev libtheora-dev libvorbis-dev libxvidcore-dev x264 v4l-utils

Notice that ffmpeg wasn't part of this bundle. Recent Ubuntu releases do not include it anymore,
but rather opt for an obscure fork of this popular package. We must get it from an alternate
package archive:

sudo add-apt-repository ppa:mc3man/trusty-media
sudo apt-get update
sudo apt-get install ffmpeg gstreamer0.10-ffmpeg

Now download OpenCV:

wget -O OpenCV-2.4.9.zip
http://sourceforge.net/projects/opencvlibrary/files/opencv-unix/$version/opencv-2.4.
9.zip/download

When it completes, unzip and enter opencv-2.4.9, then prepare the build directory:

mkdir build
cd build

Construct the build system:

cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON
-D BUILD_NEW_PYTHON_SUPPORT=ON -D WITH_V4L=ON -D INSTALL_C_EXAMPLES=ON -D
INSTALL_PYTHON_EXAMPLES=ON -D BUILD_EXAMPLES=ON -D WITH_QT=ON -D WITH_OPENGL=ON ..

and finish building:

make -j2
sudo checkinstall
sudo sh -c 'echo "/usr/local/lib" > /etc/ld.so.conf.d/opencv.conf'
sudo ldconfig

If you did not hit any bumps, consider yourself lucky. You can test that everything installed correctly
by opening python, and executing:

>>> import cv
>>> import cv2

You may need to reboot your machine before this works.

If, when building OpenCV, you see an error message along the lines of,

No rule to make target `/usr/lib/x86_64-linux-gnu/libGL.so'

Then check to see if /usr/lib/x86_64-linux-gnu/libGL.so is a link which (eventually) points to a
non-existent file:

ls -alh /usr/lib/x86_64-linux-gnu/libGL.so

(note: you might have to modify the filename above if your error message refers to a different
path). If it does, then try to find a valid libGL.so somewhere on your machine:

sudo find / -name libGL.so*

On my system, a valid libGL.so was at
/usr/lib/x86_64-linux-gnu/mesa/libGL.so.9.0.24229.991745; the exact filename will depend on
your environment. Update /usr/lib/x86_64-linux-gnu/libGL.so to point to the file you found,
which we will denote VALID_LIBGL:

sudo rm /usr/lib/x86_64-linux-gnu/libGL.so
sudo ln -s VALID_LIBGL /usr/lib/x86_64-linux-gnu/libGL.so

After fixing this issue, try building again:

make -j2

This problem usually arises in virtualized environments, or when Nvidia drivers are present.

theano

Installing theano is mostly the same as on Mac, but we're assuming a clean Ubuntu installation, so
install all the needed dependencies to be safe:

sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose
g++ libopenblas-dev

Then simply use pip to install theano:

sudo pip install Theano

Test by importing theano in Python.

pylearn2

Installing pylearn2 on Linux is exactly the same as on Mac. Follow the instructions given above.

Running the code

Once you have all of the dependencies installed, try learning a new model. Enter the code directory
of this repository, and train a Softmax regression model on the AT&T faces database:

python pylearn-train.py yaml/softmax_att_faces.yaml

You should see quite a bit of output, and if everything worked correctly, a new model should be
trained in the models directory (which resides at the same level as code) as softmax_att_faces.pkl.
You can now run the attack on this model, using the familiar faces from our examples:

python pylearn-attack.py ../models/softmax_att_faces.pkl
../images/att_faces/s1/3.pgm 1 --victim ../images/att_faces/s10/1.pgm --blur
--status_scale 2

Here, the first parameter is the model we trained in the previous step. The second parameter is the
image that the attack will attempt to morph into an image accepted by the model as another class.
The third parameter is the class label that the attack will target. The fourth paramter is optional,
and contains an image from the targeted class; it is used for display purposes only. --blur tells the
script to apply a Gaussian smoothing filter to the noise mask at each iteration. --status_scale 2
tells the script to scale the size of the status images by a factor of two (the AT&T faces are quite
small).

As the attack runs, you will see several lines of output indicating the current status of the attack,
e.g.,

1.72992253304 1 0.0603811311426 0.170474 -0.133065

These lines have the following format:

objective
function

value

label predicted by
model

absolute mean
value of noise

mask

max noise
mask value

min
noise
mask
value

1.72992253304 1 0.0603811311426 0.170474 -0.133065

When the attack completes, you should see a line that says something like,

... final label is 1

